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Foreword

This book is based on the lecture notes of the course Dynamic data processing as it has been
given by the Department of Mathematical Geodesy and Positioning (MGP) of the Delft
University of Technology since 1990. The prerequisites are a solid knowledge of adjustment
theory and geodetic positioning, together with linear algebra, statistics and calculus. The theory
and application of least-squares adjustment are treated in Adjustment theory (Delft University
Press, 2000). The material of the present course extends the theory to the recursive estimation
of time-varying or dynamic parameters. The time-varying parameters could for instance be
geometric parameters such as position, attitude and shape, physical parameters such as
temperature and humidity, or instrumental parameters such as clock drifts and biases. The
time-varying parameters are said to be determined recursively when the method of determination
enables sequential, rather than batch processing of the measurement data. The main goal is
therefore to convey the knowledge necessary to be able to process sequentially collected
measurement data in an optimal and efficient manner for the purpose of estimating time-varying
parameters.

Following the Introduction, the basic theory of least-squares estimation is reviewed in Chapter
1. This is done for the model of observation equations and for the model of condition equations.
In Chapter 2 the principle of recursive least-squares estimation is introduced. The recursive
principle allows one to update the least-squares solution for new observations without the need
to store all past observations. Two different forms of the measurement-update equations are
given. The results of Chapter 2, which hold true for time-invariant parameters, are generalized
in Chapter 3 to the case of time-varying parameters. The time-varying nature of the parameters
is assumed captured by means of polynomial equations of motion. The recursive solution now
consists of two types of update equations, the measurement-update equations and the time-update
equations. Since there still exist many dynamic systems for which the rather simple polynomial
model of Chapter 3 does not apply, a larger class of dynamic models is introduced in Chapter
4. These models are formulated using the state-space description of dynamic systems. In order
to include randomness in the state-space description of dynamic systems, some of the elementary
concepts of the theory of random functions are discussed in Chapter 5. This chapter also includes
a description of the propagation laws for linear, time-varying systems. The results of Chapter 5
are used in Chapter 6 to model possible uncertainties associated with the dynamic model. As a
result the update equations are obtained for the recursive least-squares filtering and prediction
of time-varying parameters.

Many colleagues of the Department of Mathematical Geodesy and Positioning whose assistance
made the completion of this book possible are gratefully acknowledged. The typing of the book
was done by Mrs. M.P.M. Scholtes, while C.D. de Jong took care of the editing. Various
lecturers have taught the book’s material over the past years. In particular the feedback and
valuable recommendations of the lecturers H.M. de Heus, C.D. de Jong and C.C.J.M. Tiberius
are acknowledged.

P.J.G. Teunissen
July, 2001
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Introduction

As in other physical sciences, empirical data are used in geodesy to make inferences so as to
describe physical reality. Many such problems involve the determination of unknown parameters
from a set of redundant measurements. Measurements are said to be redundant when they exceed
the minimum necessary for a unique determination of the parameters. There are two main reasons
for collecting redundant measurements. First the requirement to be able to check for mistakes
or errors. Second the wish to increase the accuracy of the results computed. As a consequence
of measurement uncertainty (exact measurements do not exist), the redundant data are usually
inconsistent in the sense that each sufficient subset yields results which will differ from the
results obtained from another subset. To obtain a unique solution, consistency needs to be
restored by applying corrections to the data. This computational process of making the
measurement data consistent with the model such that the unknown parameters can be
determined uniquely, is referred to as adjustment. Adjustment theory therefore deals with the
optimal combination of redundant measurements together with the estimation of unknown
parameters. An introductory course on adjustment was presented in Adjustment theory (Delft
University Press, 2000). This theory is extended in this book to the case of time-varying or
dynamic parameters with an emphasis on their recursive estimation.

Time-varying parameters occur in many geodetic models. They could be geometric parameters
such as position, attitude and shape, physical parameters such as temperature and humidity, or
instrumental parameters such as clock drifts and biases. When a body (e.g. satellite, aircraft, car,
or ship) is in motion, its position changes as function of time. Being able to track the position
of such a moving object is of importance, for instance for navigation and guidance. A moving
body may also change its attitude as function of time. Attitude determination is sometimes
needed as an aid to navigation and guidance, but it also applies, in case of earth rotation, to the
Earth as a whole. Objects that are subject to deformation change their shape as a function of
time. On a global scale, for instance, the earth deforms due to various geophysical processes. But
the earth’s surface may also change its shape on more local or regional scales. Subsidence due
to gas extraction is one such example. Apart from time-varying geometric parameters, also
physical and instrumental parameters may change as function of time. Atmospheric parameters
such as those of the ionosphere and troposphere, change on an hourly, daily and even seasonal
basis. Also the performance of instruments often displays a dependence on time. This is the
reason why calibrations are carried out, so as to keep the time-varying instrumental parameters
in control.

A parameter solution is said to be recursive when the method of determination enables
sequential, rather than batch processing of the measurement data. The need for a recursive
solution is usually driven by the efficiency with which such solutions can be computed. This
holds true in particular for applications in which the time-varying parameters need to be
determined instantly or in real-time. We speak of a (near) real-time determination when the time
of determination (almost) coincides with the time the parameter takes on the value to be
determined. Such applications can typically be found in the area of navigation and guidance. In
the case of navigation, for instance, it does not make sense to determine one’s position with a
too long time delay. In these applications there is therefore a real need to have a computational
cycle time of the position determination that is as short as possible. This is feasible when
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recursive methods are used. But even in case real-time solutions are not an important issue, the
use of recursive methods can still be attractive due to their computational efficiency.

When determining time-varying parameters from sequentially collected measurement data, one
can discriminate between three types of estimation problems (see Figure 0.1). When the time at
which a parameter estimate is required coincides with the time the last measurements are
collected, the problem is referred to as filtering. When the time of interest falls within the time
span of available measurement data, the problem is referred to as smoothing, and when the time
of interest occurs after the time the last measurements are collected, the problem is called
prediction. Thus filtering aims at the determination of current parameter values, while smoothing
and prediction aim respectively at the determination of past and future parameter values. The
emphasis in this book will be on recursive filtering.

Figure 0.1: Prediction, filtering and smoothing.

The essence of a recursive method is that it enables one to update the parameter estimates for
new measurements without the need to store all past measurements. Assume, for example, that
one has collected at epoch t-1 a redundant set of measurements yt-1 which bears a linear
relationship with an unknown parameter vector x. The measurements yt-1 can then be used to
obtain a linear least-squares estimate of the unknown parameter vector x. Now assume thatx̂t 1

at the next epoch t a new set of measurements yt becomes available which also bears a linear
relationship to the same unknown parameter vector x. Since these additional measurements also
contain information about the unknown parameter vector x, they can be used to improve the
estimate of x. One approach would be to use both and yt and to repeat the least-squaresx̂t 1 yt 1

adjustment. As a result one obtains the improved least-squares estimate of x. Although thisx̂t

approach is valid, it requires that one saves the past measurements yt-1. In some cases this may
be a too heavy computational burden, in particular if there are many past measurements or many
epochs that precede the current epoch. Fortunately there is an alternative approach available, the
recursive solution. It can be shown (under some mild restrictions) that the same improved
least-squares estimate of x, can also be computed from and yt instead of from and yt.x̂t x̂t 1 yt 1

The solution will then have the recursive structure:
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in which Kt and At are matrices. This recursive equation, which holds true for any epoch t, is
referred to as the measurement-update equation: the new measurements yt are used to update the
previous parameter estimate so as to obtain the current parameter estimate .x̂t 1 x̂t

Some elements of recursive estimation were already briefly introduced in Adjustment theory
(Chapter 6, Section 3). However, just as in the above example, this brief introduction only dealt
with models in which the parameter vector remained constant in time. In this book we will
extend the theory to the case of time-varying parameters. This implies that some additional
modeling needs to be done, namely one that describes the time-dependence of the parameter
vector. Depending on the application at hand, these equations of motion can be of a kinematic
or of a dynamic nature. Kinematics is used to relate position, velocity, acceleration and time
without reference to the cause of motion, whereas dynamics also includes an explicit description
of the forces responsible for the motion. As a consequence of having incorporated the
time-varying nature of the parameter vector into the model, the recursion will now consist of two
different update equations, the time-update (TU) and the measurement update (MU):

with the transition matrix. The time-update uses the filtered estimate of epoch t-1Φt,t 1 x̂t 1 t 1

to predict the parameter vector of the next epoch, xt, as . This predicted estimate togetherx̂t t 1

with the new measurements yt are then combined in the measurement update to obtain the filtered
estimate of xt as .x̂t t





1 Least-squares: a review

1.1 The linear A-model

1.1.1 Consistency and inconsistency

Assume that we want to determine n parameters . An m-number ofxα∈ , α 1,...,n
measurements , are carried out to determine these parameters. If theyi∈ , i 1,...,m
measurements bear a known linear relationship with the unknown parameters, we may write the
model of observation equations as:

(1)

In this equation the known scalars model the assumed linear relationships between theaiα
measurements and the parameters . By introducing the matrix and vectors:yi xα

equation (1) can be written in matrix-vector form as:

This is a system of an m-number of linear equations in an n-number of unknown parameters. It

(2)

is now of interest to know under what conditions a solution to the linear system (2) exists and
if a solution exists, whether it is unique or not. It will be clear that a solution to (2) exists if and
only if the vector y can be written as a linear combination of the column vectors of matrix A.
If this is the case the vector y is an element of the column space or range space of matrix A.
This space is denoted as . Thus a solution to (2) exists if and only if:R(A)

Systems for which this holds are called consistent systems. A system is said to be inconsistent

(3)

if and only if:

In this case the vector y cannot be written as a linear combination of the column vectors of

(4)

matrix A and hence no vector x exists such that (2) holds. The difference between consistency
and inconsistency is depicted geometrically in Figure 1.1.
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Figure 1.1: .



(a) consistency : y∈R(A)⊂ m

(b) inconsistency : y∉R(A)⊂ m

Since , it follows from (3) that consistency is guaranteed if . But onlyy∈ m R(A) m R(A) m

holds if the dimension of equals the dimension of . Hence, if dim . It followsR(A) m R(A) m
therefore, since dim equals the rank of matrix A (= number of linear independent columnsR(A)
or rows of A), that consistency is guaranteed if and only if:

In all other cases, rank A < m, the linear system may or may not be consistent. Assuming

(5)

consistency, the next question one can ask is whether the solution to (2) is unique or not. That
is, whether the information content of the measurements collected in the vector y is sufficient
for determining the parameter vector x uniquely. The solution is unique only if all the columns
of matrix A are linearly independent. Hence, the solution is unique if the rank of matrix A equals
the number of unknown parameters:

To clarify this, assume x and to be two different solutions of (2). Then

(6)

x ≠ x
must hold. But this can only be the case if some of the columns ofAx Ax or A (x x ) 0

matrix A are linearly dependent, which contradicts the assumption of full column rank (6). In all
other cases, rank A < n, there will be more than one solution to a consistent system. In this book
we will always assume that (6) holds. The case that rank A < n is treated elsewhere [Teunissen,
1985a]. With rank A = n and the fact that the rank of matrix A is always equal to or less than
the number of rows or columns of A, it follows that two cases can be distinguished:

In the first case, both (5) and (6) are satisfied, implying that the linear system (2) is consistent

(7)

and that a unique solution exists. The unique solution, denoted by , is found through anx̂
inversion of the matrix A:

(8)

In the second case, only (6) is satisfied, implying that a unique solution to (2) exists provided
that the system is consistent. Consistency in this case is however not guaranteed. But if we
assume the system to be consistent, that is , one way to obtain the unique solution is toy∈R(A)
invert n out of the m > n linear equations:
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(9)

Since the columns of matrix A are linearly independent, it is possible to find a matrix forA1

which the columns are linearly independent as well, implying that the inverse of the square
matrix exists. Note that is not used in computing . This is allowed in the presentA1 y2 x̂
situation since is consistent with and hence does not contain any additional information.y2 y1

Example 1

Consider the linear system:

In this case we have: m = 2, n = 2 and rank A = 2. Thus, the system is consistent since rank A

(10)

= m = 2, and the system has a unique solution since rank A = n = 2. The unique solution of (10)
reads: .x̂ (5/7 , 3/7)

Example 2

A particle is moving with constant velocity along a straight line. If we denote the position of the
particle as function of time as , we have:u(t)

with being the initial position and initial velocity respectively of the particle atu(t0) and u̇(t0)
time . It is assumed that the initial position and initial velocity of the particle are unknown.t0
The unknown parameters can then be determined from two measurements ofu(t0) and u̇(t0)
position at times . This results in the following linear system (see Figure 1.2):t1 and t2≠t1

(11)
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Figure 1.2: Position as function of time.

In this case we have: m = 2, n = 2 and rank A = 2. Thus, the system is consistent since rank A
= m = 2, and the system has a unique solution since rank A = n = 2. With

the unique solution follows as:

or as:

(12)

Note that rank A = 1 if . In this case no unique solution exists.t2 t1

Example 3

Consider the linear system:

In this case we have: m = 3, n = 2 and rank A = 2. Since m = 3 > rank A = 2, consistency of

(13)

the system is not automatically guaranteed. A closer look at the measurement vector y of (13)
shows however that:



Least-squares: a review 9

This shows that y can be written as a linear combination of the column vectors of A. Therefore
, showing that the system is consistent. And since n = rank A = 2, its solution is alsoy∈R(A)

unique. If we partition (13) as:

the unique solution follows as:

The system (13) may of course also be partitioned as:

(14)

The unique solution follows then as:

(15)

Example 4

Consider again the situation of a particle moving along a straight line with constant velocity. But
now assume that three measurements of position are carried out at the three different times

. The linear system reads then:t1 , t2 and t3

With the times , and the position measurements

(16)

t0 0 , t1 1 , t2 2 and t3 3 u(t1 1) 3,
system (16) becomes:u(t2 2) 4, u(t3 3) 5
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In this case we have: m = 3, n = 2 and rank A = 2. Since m = 3 > rank A = 2, consistency of

(17)

the system is not automatically guaranteed. But a closer look at the measurement vector of (17)
shows that:

Thus the measurement vector y can be written as a linear combination of the column vectors of
matrix A. Therefore , showing that (17) is consistent. And since n = rank A = 2 itsy∈R(A)
solution is also unique. If we partition (17) as:

the unique solution follows as:

(18)

In this case the solution for is found from fitting the lineu(t0) , u̇(t0) u(t) u(t0) u̇(t0)(t t0)
through the two points and ( ). See Figure 1.3a. We may of(t1 1 , u(t1) 3) t2 2, u(t2) 4
course partition (17) also as:

the unique solution follows then as:

(19)

In this case the solution for is found from fitting the lineu(t0) , u̇(t0) u(t) u(t0) u̇(t0)(t t0)
through the two points . See Figure 1.3b. Since the(t2 2 , u(t2) 4) and (t3 3 , u(t3) 5)
linear system (17) is consistent, which means that all three points (t1 , u(t1)),

lie on the same line (see Figure 1.3c), the two solutions (18) and (19)(t2 , u(t2)) and (t3 , u(t3))
are of course identical.
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Figure 1.3: Fitting a straight line through consistent measurements.

Example 5

Consider the situation of Example 4. But now assume that the position measurements read:

The linear system (16) then becomes:

(20)

In this case the measurement vector y cannot be written as a linear combination of the column
vectors of matrix A. Hence , showing that the system is inconsistent. This inconsistencyy∉R(A)
can clearly be seen from Figure 1.4a. Figure 1.4a shows clearly that no straight line
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exists that passes through all three measurement points. In order to findu(t) u(t0) u̇(t0) (t t0)
a solution one could disregard measurement and solve the system:u(t3 3) 6

The solution of this system reads (see Figure 1.4b):

(21)

But instead of disregarding one could also opt for disregarding measurementu(t3 3) 6
or measurement . In case of disregarding measurement ,u(t1 1) 3 u(t2 2) 5 u(t1 1) 3

one has to solve the system:

The solution of this system reads (see Figure 1.4b):

(22)

This solution differs however from solution (21) (see also Figure 1.4b). So, which solution
should we accept? The problem with the above approach is the arbitrariness in disregarding
measurements. Why should we disregard measurement and completely rely on theu(t3 3) 6
measurements ? It seems more appropriate to have a solutionu(t1 1) 3 and u(t2 2) 5
method which somehow takes all measurements into account. In case of the present example one
could for instance think of computing the line such that it fits all threeu(t) u(t0) u̇(t0)(t t0)
measurement points as closely as possible (see Figure 1.4c). A method that accomplishes this
task in a predefined way, is the method of least-squares. This method will be introduced in the
next section.
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Figure 1.4: Fitting a straight line through inconsistent measurements.

1.1.2 Least-squares estimates

An inconsistent system, that is, a system for which holds, can be made consistent byy∉R(A)
introducing an error vector e as (see Figure 1.5):m×1

(23)



14 Dynamic data processing

Figure 1.5: The geometry of .y Ax e

In (23), y and A are given, whereas x and e are unknown. From the geometry of Figure 1.5 it
seems intuitively appealing to estimate x as such that A is as close as possible to the givenx̂ x̂
measurement- or observation vector y. In other words, the idea is to find that value of x that
minimizes the length of the vector . This idea leads to the following minimizatione y Ax
problem:

(24) .

From calculus we know that is a solution of (24) if statisfies:x̂ x̂

where is given as:

(25)

E(x)

Taking the first-order and second-order partial derivatives of gives:

(26)

E(x)

Equating the first equation of (27) to zero shows that satisfies the normal equations:

(27)

x̂

Since rank , the system is consistent and has a unique solution. Through an

(28)

A A rank A n
inversion of the normal matrix the unique solution of (28) is found as:A A

(29) .

That this solution is the minimizer of (26) follows from the fact that the matrix ofx̂ ∂2E/∂x 2

(27) is indeed positive-definite. The vector is known as the least-squares estimate of x, sincex̂
it produces the smallest possible value of the sum-of-squares function . From the normalE(x)
equations (28) it follows that . This shows that the vector , which isA (y Ax̂) 0 ê y Ax̂
the least-squares estimate of e, is orthogonal to the range space of matrix A (see Figure 1.6):

(30) .
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Figure 1.6: The geometry of least-squares: .y Ax̂ ê

Example 6

Consider again the situation of a particle moving with constant velocity along a straight line. We
assume that three observations of position are carried out at three different times

. We also assume that the time instances are equidistant:t1, t2 and t3 : u(t1), u(t2) and u(t3)
. The linear system reads then:t1 t0 t2 t1 t3 t2 T

If the system is inconsistent, it can be made consistent by introducing an error vector e as:

(31)

The least-squares solution of (31) follows now from minimizing as function of thee e
3

i 1

e 2
i

parameters . Withu(t0) and u̇(t0)

and
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the least-squares estimate of follows as:x (u(t0), u̇(t0))

This may be rearranged to give:

This result shows that the slope of the straight line, (= velocity of particle), is determined

(32)

u̇(t0)
from the two outer points , and that the intercept of the straight line,(t1, u(t1)) and (t3, u(t3))

(= initial position of particle), equals the average of .u(t0) u(ti) û.(t0)iT, i 1, 2, 3

So far we have discussed the unweighted least-squares principle. The least-squares principle can
be generalized, however, by introducing a positive-definite weight matrix W. This is donem×m
by replacing (24) by the following minimization problem:

(33) .

The solution of (33) can be derived along lines which are similar to the ones used for solving
(24). The solution of (33) reads:

(34) .

This is the weighted least-squares estimate of x. In case of weighted least-squares the normal
equations read: . This shows that the vector , which is the weightedA WAx̂ A Wy ê y Ax̂
least-squares estimate of e, satisfies:

(35) .

If the inner product of the observation space is defined as , (35) canm (a,b) a Wb, ∀a,b∈ m

also be written as . This shows that also in the case of weighted least-squares,(Ax,ê) 0, ∀x∈ n

the vector can be considered to be orthogonal to the range space of A. A summary of the least-ê
squares algorithm is given in Table 1.1.
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Inconsistent linear system

y Ax e, y, e∈ m, x∈ n, m>n rank A

Weighted least-squares principle

minimize
x

(y Ax) W(y Ax), W positive definite

Weighted least-squares estimates

parameter vector : x̂ (A WA) 1A Wy
observation vector : ŷ Ax̂
error vector : ê y ŷ

Table 1.1: Weighted least-squares.

Example 7

The elements of the weight matrix W can be chosen to emphasize (or de-emphasize) the
influence of specific observations upon the estimate . In this way different levels of importancex̂
may be attached to the different observations. This is of importance if one believes that some
observations are more trustworthy than other observations. For instance, some observations may
be more trustworthy than others if they are obtained from more accurate measurement
instruments. In order to illustrate the influence of the weight matrix, we consider a stationary
particle with unkown position . We assume that two observations of position are carried outu(t0)
at times . The linear system reads then:t1 and t2

A diagonal matrix is taken as weight matrix:

(36)

Then

(37)

or
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This shows that equals the average of (see Figure 1.7a). In this

(38)

û(t0) u(ti), i 1, 2, if w11 w22

case both observations have the same influence on . However, if then less weightû(t0) w22<w11

is attached to the second observation and is closer to , see Figure 1.7b.û(t0) u(t1)

Figure 1.7: Weighted least-squares estimate of u(t0)
(a) ; (b) .w11 w22 w11>w22

1.1.3 A stochastic model for the observations

In the previous section the principle of least-squares was introduced. The least-squares principle
enables us, in case of inconsistent systems, to obtain an intuitively appealing estimate of thex̂
parameter vector x. But although the least-squares estimate is intuitively appealing, no qualityx̂
measures as yet can be attached to the estimate. That is, we know how to compute the estimate
, but we are not able yet to say how good the estimate really is. Of course, the numerical valuex̂

of the sum of squares, , does indicate something about the quality of . If is smallê Wê x̂ ê Wê
one is inclined to have more confidence in the estimate , than if is large. But how smallx̂ ê Wê
is small? Besides, is identically zero if the linear system is consistent. Would this thenê Wê
automatically imply that the estimate has good quality? Not really, since the observations mayx̂
still be subject to measurement errors. In order to obtain quality measures for the results of least-
squares estimation, we start by introducing a qualitative description of the input, that is of the
observations. This description will be of a probabilistic nature. The introduction of a probabilistic
description is motivated by the experimental fact that the variability in the outcome of
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measurements, when repeated under similar circumstances, can be described to a sufficient
degree by stochastic or random variables. We will therefore assume that the observation vector
y, which contains the numerical values of the measurements, constitutes a sample of the random
vector of observables (note: the underscore indicates that we are dealing with a randomy
variable). It is furthermore assumed that the vector of observables can be written as the sumy
of a deterministic functional part Ax and a random residual part :e

(39) .

Although a random vector is completely described by its probability density function, we will
restrict ourselves for the time being to the first two moments of random variables. That is, we
will restrict ourselves to the mean and to the variance matrix. If we assume that models thee
probabilistic nature of the variability in the measurements, it seems acceptable to assume that this
variability is zero on the average and therefore that the mean of is zero:e

where stands for the mathematical expectation operator. The measurement variability itself

(40)

E .
is modelled through the dispersion or variance matrix of . We will assume that this matrix ise
known and denote it by :Qy

where stands for the dispersion operator. It is defined in terms of

(41)

D . E . as D .
. With (40) and (41) we are now in the position to determine the mean andE (. E . )(. E . )

variance matrix of the vector of observables . Application of the law of propagation of meansy
and the law of propagation of variances to (39) gives with (40) and (41):

(42) .

This will be our model of observation equations for the vector of observables . As the resultsy
of the next section show, model (42) enables us to describe the quality of the results of least-
squares estimation in terms of the mean and the variance matrix.

1.1.4 Least-squares estimators

Functions of random variables are again random variables. It follows therefore, that if the vector
of observables is assumed to be a random vector and substituted for y in the formulae of Tabley
1.1 in Section 1.1.2 the results are again random variables:

(43)

These random vectors will be called least-squares estimators. And if is replaced by its sampley
or measurement value y, we speak of least-squares estimates. The quality of the above estimators
can now be deduced from the first two moments of .y
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The first moment: the mean

Together with , application of the propagation law of means to (43) gives:E y Ax

(44)

This important result shows that under the assumption that (42) holds, the least-squares
estimators are unbiased estimators. Note that this property of unbiasedness is independent of the
choice for the weight matrix W.

The second moment: the variance matrix and covariance matrix

Together with , application of the propagation law of variances and covariances to (43)D y Qy

gives:

and

(45)

(46)

The above variance matrices enable us now to give a complete precision description of any
arbitrary linear function of the estimators. Consider for instance the linear function .θ̂ a x̂
Application of the propagation law of variances gives then for the precision of .θ̂: σ2

θ̂ a Qx̂a
The above results enable us to describe the quality of the results of least-squares estimation in
terms of the mean and the variance matrix. The introduction of a stochastic model for the vector
of observables enables us however also to judge the merits of the least-squares principle itself.y
Recall that the least-squares principle was introduced on the basis of intuition and not on the
basis of probabilistic reasoning. With the mathematical model (42) one could now however try
to develop an estimation procedure that produces estimators with certain well-defined
probabilistic optimality properties. One such procedure is based on the principle of Best Linear
Unbiased Estimation (BLUE), [Teunissen, 2000]. Assume that we are interested in estimating a
parameter θ which is a linear function of x:

The estimator of θ will be denoted as . Then according to the BLUE’s criteria, the estimator

(47)

θ̂
of θ has to be a linear function of :θ̂ y
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such that it is unbiased:

(48)

and such that it is best in the sense of minimum variance:

(49)

The objective is thus to find a vector such that with (48), the conditions (49) and (50) are

(50)

l∈ m

satisfied. From Adjustment theory, [Teunissen, 2000] we know that the solution to the above
problem is given by:

If we substitute this into (48) we get:

This is the best linear unbiased estimator of θ. The important result (51) shows that the best

(51)

linear unbiased estimator of x is given by:

A comparison between (43) and (52) shows that the BLUE of x is identical to the weighted least-

(52)

squares estimator of x if the weight matrix W is taken to be equal to the inverse of the variance
matrix of :y

This is an important result, because it shows that the weighted least-squares estimators are best

(53)

in the probabilistic sense of having minimal variance if (53) holds. The variances and covariances
of these estimators follow if the weight matrix W is replaced in (45) and (46) by . From nowQ 1

y

on we will always assume, unless stated otherwise, that the weight matrix W is chosen to be
equal to . Consequently no distinction will be made anymore in this book between weightedQ 1

y

least-squares estimators and Best Linear Unbiased Estimators. Instead we will simply speak of
least-squares estimators.

Example 8

Consider again the situation of a stationary particle. Assume that it is required to determine its
position with a variance of . The position measurements are uncorrelated and all have aσ2/10
variance equal to . How many position measurements are then needed in order to estimate theσ2

particle’s position with sufficient precision?

In order to answer this question we first introduce our linear A-model:
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The variance of the least-squares estimators reads then:û(t0) of u(t0)

This result shows that m = 10 position measurements are needed to satisfy the requirements.

Example 9

Consider the situation of Example 2. The position observables are assumed to be uncorrelated
and to have the same variance . An interesting question is now how the times of measurementσ2

should be chosen, in order to minimize the variances of the least-squares estimatorst1 and t2
of initial position and initial velocity . In order to answer this question we firstu(t0) u̇(t0)
introduce our linear A-model:

Note that this model consists of two equations in two unknowns. Hence the redundancy m-n
equals zero, and matrix A is square and invertible (provided that ). In this case the least-t2 ≠ t1
squares estimator and its variance matrix simply reduce to:

With

this gives for the variance matrix:
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Let us now first consider the variance of the velocity estimator . It reads:

(54)

û.(t0)

This result shows that the variance of gets smaller, i.e. its precision gets better, if the timeû.(t0)
interval gets larger. Thus one can improve the precision of the velocity estimator byt2 t1
increasing the time interval between the two position measurements. This is also quite
understandable if one looks at Figure 1.2 in Section 1.1.1. A straight line can be fitted better
through two points that are far apart than through two points that are close together. And in fact
it becomes impossible to fit the line uniquely if the two points coincide, just like it is impossible
to estimate the velocity if . Let us now consider the variance of the position estimatort2 t1

. It reads (see (54)):û(t0)

Also this result shows that the variance of the initial position estimator gets smaller if the time
interval gets larger. Also note that in case , the variance of is always largert2 t1 t1 ≠ t0 û(t0)
than the variance of of the position observables. The smallest value of is obtained forσ2 σ2

û(t0)

. This shows that the precision of the initial position estimator is best if the first positiont1 t0
measurement is taken at the initial time .t0

1.1.5 Summary

In Table 1.2 an overview is given of the main characteristics of least-squares estimation.
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The linear A-model

Least-squares estimators

Mean

Variances and covariances

Table 1.2: Least-squares estimation.

1.2 The nonlinear A-model

1.2.1 Nonlinear observation equations

Up to this point the development of our estimation theory was based on the assumption that the
m-vector is linearly related to the n-vector of unknown parameters x. In geodeticE y
applications there are however only a few cases where this assumption truly holds. A typical
example is levelling. In the majority of applications, however, the m-vector is nonlinearlyE y
related to the n-vector of unknown parameters x. This implies that instead of the linear A-model
(42), we are generally dealing with a nonlinear model of observation equations:
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(55)

where A(.) is a nonlinear vector function from . The following two simple examplesn into m

will make this clear.

Example 10

Consider the configuration of Figure 1.8a. The x, y coordinates of the three points 1, 2 and 3 are
known and the coordinates of point 4 are unknown. The observables consist of thex4 and y4

three azimuth variates . Since azimuth and coordinates are related as (see Figurea
14
, a

24
and a

34
1.8b):

the model of observation equations for the configuration of Figure 1.8a reads:

This model consists of three nonlinear observation equations in the two unknown parameters
.x4 and y4

Figure 1.8: Azimuth resection.

Example 11

Consider the situation of Figure 1.9. It shows two cartesian coordinate systems: the x,y-system
and the u,v-system. The two systems only differ in their orientation. This means that if the
coordinates of a point i are given in the u,v-system, , a rotation by an angle α is needed(ui ,vi)
to obtain the coordinates of the same point i in the x,y-system, :(xi ,yi)
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(56)

Figure 1.9: A coordinate transformation.

Let us now assume that we have at our disposal the coordinate observables of two points in both
coordinate systems: Using (56), our model reads then:(x

i
, y

i
) and (u

i
, v

i
), i 1, 2 .

This model is however still not in the form of observation equations. If we consider the

(57)

orientation angle α and the coordinates of the two points in the u,v-system as the unknown
parameters, (57) can be written in terms of observation equations as:

This model consists of eight observations in five unknown parameters. Note that the first four

(58)

observation equations are nonlinear.
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1.2.2 The linearized A-model

We know how to compute least-squares estimators in case of a linear A-model. But how are we
now going to compute least-squares estimators if the model of observation equations is non-
linear? For the majority of nonlinear problems the solution is to approximate the originally
nonlinear A-model with a linear one. In order to show how this can be done, we first recall the
theorem of Taylor.

Taylor’s Theorem

Let f(x) be a function from . Let be an approximation to and definen into x0∈
n x∈ n

. Then a scalar exists such that:∆x x x 0, and θ x 0 t(x x 0) with t∈ t∈(0,1)

with the remainder:

(59)

In (59) and (60), denotes the qth-order partial derivative of f(x) evaluated at x. For the

(60)

∂q
α1..αq

f(x)
case q = 2, it follows from (59) and (60) that:

(61)

If we introduce the gradient vector and Hessian matrix of f(x) respectively as:

then equation (61) may be written in the more compact matrix-vector form as:

(62) .

This important result shows that a nonlinear function f(x) can be written as a sum of three terms.
The first term in this sum is the zero-order term . The zero-order term depends on butf(x 0) x 0

is independent of x. The second term in the sum is the first-order term . It depends on∂xf(x
0) ∆x x 0

and is linearly dependent on x. Finally, the third term in the sum is the second-order remainder
. An important consequence of Taylor’s theorem is that the remainder can beR2(θ,∆x) R2(θ,∆x)

made arbitrarily small by choosing the approximation close enough to x. Now assume thatx 0
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the approximation is chosen such that the second-order remainder can indeed be neglected.x 0

Then, instead of (62) we may write to a sufficient degree of approximation:

(63) .

Hence, if is sufficiently close to x, the nonlinear function f(x) can be approximated to ax 0

sufficient degree by the function which is linear in x. This function is thef(x 0) ∂x f(x
0) ∆x

linearized version of f(x). A geometric interpretation of this linearization is given in Figure 1.10
for the case n = 1.

Figure 1.10: The nonlinear curve y = f(x) and its linear tangent .y f(x 0) d

dx
f(x 0)(x x 0)

Let us now apply the above linearization to our nonlinear observation equations:

Each nonlinear observation equation , can now be linearized according to (63).

(64)

ai(x), i 1, ,m
This gives:

If we denote the matrix of (65) as , and substitute (65) into (64) we get:

(65)

m×n ∂xA(x
0)

If we bring the constant m-vector to the left-hand side of the equation and defineA(x 0)
, we finally obtain our linearized model of observation equations:∆y y A(x 0)

(66) .

This is the linearized A-model. Compare (66) with (55) and (42). Note when comparing (66)
with (42) that in the linearized A-model takes the place of takes the place of A∆y y, ∂xA(x

0)
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and takes the place of x. Since the linearized A-model is linear in our standard∆x ∆x x x 0

formulae of least-squares can be applied again. This gives for the least-squares estimator
:x̂ x 0 ∆x̂ of x

(67)

Application of the propagation law of variances to (67) gives:

(68)

It will be clear that the above results, (67) and (68), are approximate in the sense that the second-
order remainder is neglected. But these approximations are good enough if the second-order
remainder can be neglected to a sufficient degree. In this case also the optimality conditions of
least-squares (unbiasedness, minimal variance) hold to a sufficient degree. A summary of the
linearized least-squares estimators is given in Table 1.3.

The nonlinear A-model

The linearized A-model

Least-squares estimators

Variances

Table 1.3: Linearized least-squares estimation.
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Example 12

Consider the configuration of Figure 1.11a. The x, y coordinates of the three points 1, 2 and 3
are known and the two coordinates of point 4 are unknown. The observables consistx4 and y4

of the three distance variates . Since distance and coordinates are related as (seel
14
, l

24
and l

34
Figure 1.11b):

the model of observation equations for the configuration of Figure 1.11a reads:

(69)

This model consists of three nonlinear observation equations in the two unknown parameters
.x4 and y4

Figure 1.11: Distance resection.

In order to linearize (69) we need approximate values for the unknown coordinates .x4 and y4

These approximate values will be denoted as . With these approximate values ax 0
4 and y 0

4

linearization of (69) gives:

where:

(70)
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Model (70) is the linearized version of the nonlinear A-model (69).

Example 13

Consider the nonlinear A-model (58) of Example 11. The unknown parameters are α and
. The approximate values of these parameters will be denoted asui, vi for i 1,2

. Linearization of (58) gives then:α0 and u 0
i , v 0

i for i 1,2

(71)

where:

Example 14

Consider the situation of Figure 1.12. A satellite orbiting the earth is assumed to have a circular
orbit with unknown radius R. Distance measurements from two known points 1 and 2 on the
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earth surface are carried out to the two satellite positions 3 and 4. It is assumed that the earth
is a non-rotating body.

Figure 1.12: Distance measurement to a satellite orbiting the earth.

The distance between two points i and j can be parameterized in terms of cartesian coordinateslij

as:

(72)

The circular satellite orbit itself can be parameterized in terms of polar coordinates as:

With (72) and (73) the nonlinear model of observation equations becomes:

(73)

(74)

The unknowns in these observation equations are besides the orbital radius R also the coordinates
. The approximate values of these parameters are denoted as .φ3 and φ4 R 0, φ0

3 and φ0
4

Linearization of (74) gives then:
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(75)

1.2.3 Least-squares iteration

Up to this point it was assumed that the second-order remainder was sufficiently small and that
was a good enough approximation for x. If this is not the case, then as computed by (67)x0 x̂

is not the least-squares estimate and hence an unacceptable error is made. In order to repair this
situation, we need to improve upon the approximation . It seems reasonable to expect that thex 0

estimate:

is a better approximation than . That is, it seems reasonable to expect that is closer to thex 0 x 1

true least-squares estimate than . In fact one can show that this is indeed the case for mostx 0

practical applications. But if is a better approximation than , a further improvement canx 1 x 0

be expected if we replace by in the linearization of the nonlinear model. The recomputedx 0 x 1

linearized least-squares estimate reads then:
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Table 1.4: Least-squares iteration.

By repeating this process a number of times, one can expect that finally the solution converges
to the actual least-squares estimate . This is called the least-squares iteration process. Thex̂
iteration is usually terminated if the difference between successive solutions is negligible. A flow
diagram of the least-squares iteration process is shown in Table 1.4. For more details on the
numerical properties of the iteration process and on the probabilistic properties of nonlinear least-
squares estimators the reader is referred to the theory as developed in [Teunissen, 1985b].
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1.3 The B-model

1.3.1 The linear B-model

In the previous sections we considered the model of observation equations. In this section and
the next we briefly review the model of condition equations. For more details the reader is again
referred to Adjustment theory, [Teunissen, 2000]. As our starting point we take the linear A-
model:

This linear model is uniquely solvable if m = n, i.e. if the number of observables equals the

(76)

number of unknown parameters. In this case A is a square matrix which is invertible because of
rank A = n. If m = n, the redundancy equals zero, and no conditions can be imposed on the
observables. If m > n = rank A, then more observables are available than strictly needed for the
determination of the n unknown parameters. In this case an ( )-number of redundantm n
observables exist. Each separate redundant observable gives rise to the possibility of formulating
a condition equation. Thus the total number of independent condition equations that can be
formulated equals:
(77) .

We will now show how one can construct the condition equations, given the linear A-model (76).
Each of the column vectors of matrix A is an element of the observation space . Together them

n-number of linearly independent column vectors of A span the range space of A. This range
space has dimension n and it is a linear subspace of . Since dim R(A) = n and dimm: R(A)⊂ m m

= m, exactly ( )-number of linearly independent vectors can be found that are orthogonal tom n
R(A). Let us denote these vectors as: . Then:bi∈

m, i 1,...,(m n)

From this it follows, if the ( )-number of linearly independent vectors are collected in anm n bi

matrix B as:m×(m n)

that
(78) .

This result may now be used to obtain the model of condition equations from (76).
Premultiplication of the linear system of observation equations in (76) by gives together withB
(78) the following linear model of condition equations:

(79) .
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Example 15

Consider the following linear A-model:

Since m = 3, n = 1 and rank A = 1 = n, the redundancy equals m−n = 2. Hence two linearly

(80)

independent condition equations can be formulated. The two vectors:

are linearly independent and are both orthogonal to the single column vector of matrix A in (80).
Hence the with (80) corresponding linear model of condition equations reads:

(81)

Example 16

Consider the linear A-model of Example 6 in Section 1.1.2:

Since m = 3, n = 2 and rank A = 2 = n, the redundancy equals m−n = 1. Hence, only one

(82)

condition equations can be formulated. The with (82) corresponding linear B-model reads:
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Verify that holds.

(83)

B A 0

Now that we have the linear B-model (79) at our disposal, how are we going to compute the
corresponding least-squares estimators? We know how to compute the least-squares estimators
for the linear A-model. The corresponding formulae are however all expressed in terms of the
A-matrix. What is needed therefore is to transform these formulae such that they are expressed
in terms of the B-matrix. This is possible with the following important matrix identity:

(84) .

The proof of this matrix identity is as follows. We define two matrices C and as:C

(85)

Since both matrices C and are of dimension and since both can be shown to be of fullC m×m
rank, it follows that they are invertible. From (85) it follows with the help of (78) that .CC Im

Hence and therefore . Substitution of (85) into this last expression provesC C 1 CC Im

(84). With (84) and the least-squares results of Table 1.2 of Section 1.1.5 we are now in the
position to derive the expressions for the least-squares estimators in terms of the matrix B. The
results are summarized in Table 1.5.
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The linear B-model

Least-squares estimators

Variances and covariances

Table 1.5: Least-squares estimation.

1.3.2 The nonlinear B-model

Just as in the case of the A-model, there are very few geodetic applications for which the model
of condition equations is linear. In most cases the model of condition equations is nonlinear. The
nonlinear B-model reads:

(86) .

Where is a nonlinear vector function from . The relationship between the non-B (.) m into m n

linear B-model and the nonlinear A-model is given by:

(87) .

This is the nonlinear generalization of (78). If we take the partial derivative with respect to x of
(87) and apply the chain rule, we get:

(88) .

This is the linearized version of (87). Compare (88) with (78). With (88) we are now in the
position to construct the linearized B-model from the linearized A-model (66). Premultiplication
of (66) with the matrix gives together with (88) the result:[∂yB(y

0)]
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(89) .

This is the linearized B-model. With (89) we are now in the position again to apply our standard
least-squares estimation formulae.

Example 17

The cartesian coordinates of three points 1, 2 and 3 are measured. The observables are therefore:
. The three points are assumed to lie on a circle with unknown radius R,x

1
, y

1
, x

2
, y

2
, x

3
and y

3
see Figure 1.13. Since the circle can be parameterized as:

the nonlinear A-model reads:

This model consists of six nonlinear observation equations in the four unknown parameters

(90)

. The approximate values of these parameters are denoted as .R, φ1, φ2 and φ3 R 0, φ0
1, φ0

2 and φ0
3

Linearization of (90) gives:
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(91)

Figure 1.13: Circle with radius R.

Instead of parameterizing the circle, one can alternatively describe the circle implicitly as:

This description leads to the following nonlinear model of condition equations:

(92)

The number of independent condition equations equals the redundancy, which is equal to
. If the approximate values are chosen such that:6 4 2
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linearization of (92) gives:

(93)

Verify yourself that holds for .[∂yB(y
0)] [∂xA(x

0)] 0 y 0 A(x 0)





2 Recursive least-squares: the static case
2.1 Introduction

In the previous chapter we reviewed the standard theory of least-squares estimation. In this
chapter we will make a modest start with the development of the theory of recursive least-
squares estimation. Recursive least-squares is a least-squares estimation procedure that enables
us to update least-squares estimators for new observables without the need of having to save all
past observables. As such the method is of great practical importance. The following example
should make the practical relevance of such a recursive procedure clear.

Example 18

Figure 2.1a shows a levelling loop of four points. The heights of these points are denoted as
. The height of point 0 is known and it is equal to zero: .x0, x1, x2 and x3 x0 0

Figure 2.1: Two levelling networks.

The four height difference observables are denoted as . They are uncorrelatedy
1
, y

2
, y

3
and y

4
and they have all the same variance . The linear A-model reads therefore:σ2

Its least-squares solution reads (verify this yourself):

(1)

(2)
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with corresponding variance matrix:

(3)

Now assume that an additional height difference observable , which has a variance of andy
5

σ2

is uncorrelated with , is included in the levelling network (see Figure 2.1b). Whaty
1
, i 1,...,4

would then be an efficient way to compute the least-squares estimator of ? Onex (x1, x2, x3)
could of course formulate again the A-model in terms of the original height difference
observables:

Its least-squares solution reads (verify this yourself):

(4)

(5)

with corresponding variance matrix:

(6)

Note that this approach requires that all original height difference observables are available. Also
no use is made in this approach of the previous solution (2) and (3). The advantage of the
recursive least-squares procedure is now that the same solution (5) and (6) can be obtained
without the explicit need of having to store all original observables. Instead of using all original
observables , plus the new observables , the recursive least-squares procedurey

1
, i 1,...,4 y

5
is based on an optimal combination of the previous solution with the new observable . Thex̂

(1)
y
5

appropriate model for this combination reads:
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As will be shown below, the solution of this model is identical to the solution (5) and (6).

(7)

Consider the partitioned model:

Note that it is assumed that are uncorrelated. The least-squares solution of (8) will be

(8)

y
1
and y

2
denoted as . It reads:x̂

(2)

Let us now consider the partial model:

(9)

Its solution will be denoted as . It reads:

(10)

x̂
(1)

From this it follows that:

(11)

Substitution of this result into (9) shows that:

But this is exactly the solution of the model:

(12)

(13)
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Hence, we have proven that the solution of the partitioned model (8) can be found in two steps.
First one solves for the partial model (10). This gives . Then in a second step onex̂

(1)
and Qx̂(1)

uses together with to find, via model (13), the final solutionx̂
(1)

and Qx̂(1)
y
2
and Q2

. This result shows that there is no need to store past observables for the purposex̂
(2)

and Qx̂(2)
y
1

of computing present estimators . This is the essence of recursive estimation.x̂
(2)

2.2 Recursive least-squares: the A-form

The two-step procedure of the previous section can be generalized to more than two steps.
Consider the partitioned model:

Note again that the , are assumed to be mutually uncorrelated. The least-squares

(14)

y
i
, i 0,...,k

solution of model (14) will be denoted as . It reads:x̂
(k)

(15)

Let us now consider model (14) with the exception of :y
k

The least-squares solution of this model reads:

(16)

(17)

From this it follows that:
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Using these equations, we may rewrite (15) as :

But this is exactly the solution of the model:

(18)

(19)

The above derivation shows that there is no need to store the previous observables
, for the purpose of computing the present least-squares estimator . Thaty

i
, i 1,...,(k 1) x̂

(k)
is , the estimator can be computed directly from the previous estimator and the presentx̂

(k)
x̂
(k 1)

observable . This, again, is the essence of recursive estimation. The recursive estimationy
k

procedure is initialized with the computation of the initial least-squares estimator :x̂
(0)

Once is known, can be computed from and for using (18). Note thatx̂
(0)

x̂
(k)

x̂
(k 1)

y
k

k 1,2,
by rearranging the right-hand side of the first equation of (18), the recursive estimator can
alternatively be expressed as (verify this yourself):

(20) .

The first equation is called the measurement update equation. It clearly shows how to update the
previous estimator in order to take care of the new observable . The second equation isx̂

(k 1)
y

k
called the variance update equation. A flow diagram of the above recursive least-squares
procedure is shown in Table 2.1. Note the great resemblance in structure between the recursive
least-squares process and the least-squares iteration process of Table 1.4 of Section 1.2.3. The
resemblance is a consequence of the fact that both processes are based on the repeated
application of the least-squares principle. Despite this resemblance, however, both processes solve
two fundamentally different problems. In order to get a somewhat better understanding of the
above recursive least-squares procedure, consider the correction term in the first equation of (20).
In this term the vector occurs. This vector depends on all previous observablesAkx̂(k 1)

, but it is independent of the present observable .y
i
, i 1,...,(k 1) y

k
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Table 2.1: Recursive least-squares estimation.

Since is unbiased, that is holds, we have thatx̂
(k 1)

E x̂
(k 1)

x E Ak x̂
(k 1)

AkE x̂
(k 1)

also holds, showing that is an unbiased estimator of . In fact, ifAkx Akx̂(k 1)
E y

k
Akx

one recalls the principle of Best Linear Unbiased Estimation, it will be clear that isAk x̂(k 1)
the Best Linear Unbiased Estimator of when the estimation is based on the model (16).E y

k
This model contains only the past observables . Hence, can bey

i
, i 0,...,(k 1) Akx̂(k 1)

interpreted as the prediction of the present observable . The difference in (20)y
k

ŷ
k

Ak x̂(k 1)
is therefore the residual value between the present observable and its prediction. It will be called
the predicted residual and denoted as:

In (20), the predicted residual is premultiplied by the matrix:

(21)

v
k

and the product is then added to the previous estimator to obtain the current estimation .

(22)

x̂
(k 1)

x̂
(k)

Hence the gain in estimation experienced by including the observable is determined by they
k
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product . It depends both on the predicted residual and on the matrix , which will beKkv k
v

k
Kk

called the gain matrix. Expression (20) shows that the correction to the estimate is smallx̂(k 1)

if the predicted residual is small. This is also what one would expect. Because if the predictedvk

observation is close to the actual observation there is no need really to change theAkx̂(k 1) yk

estimate by a large amount. Expression (20) also shows that the correction to the estimatex̂(k 1)

is small if the gain matrix is small. Equation (22) shows that the gain matrixx̂(k 1) Kk Kk

depends on respectively. Hence, it depends on:Qx̂(k 1)

, Ak and Qk

Equation (22) shows that the gain matrix is small if the variance matrix is small. This is

(23)









The precision of the previous estimator x̂
(k 1)

: Qx̂(k 1)

The type of observable y
k
that is added : Ak

The precision of the added observable y
k

: Qk .

Qx̂(k 1)

also what one would expect. If is small, the confidence in the estimator is high andQx̂(k 1)

x̂
(k 1)

therefore the new estimator should not differ too much from the old estimator . Equationx̂
k

x̂
(k 1)

(22) shows on the other hand that the gain matrix is large if the variance matrix is small. InQk

this case one has high confidence in the new observable . The estimator should thereforey
k

x̂
(k)

gain considerably from the inclusion of the new observable . To conclude this section, ay
k

summary of the above discussed recursive least-squares procedure is given in Table 2.2.

Example 19

An unknown distance x is measured a k-number of times. The observables are denoted as
. They are uncorrelated and all have the same variance . The correspondingy

i
, i 1,...,k σ2

model of observation equations reads then:

Its batch solution reads:

(24)

In this simple case the estimator equals the average of the k-number of distance observables

(25)

x̂
(k)

. A plot of the variance as function of k is given in Figure 2.2. It shows thaty
i
, i 1,...,k σ2

x̂(k)

the variance decreases for increasing values of k. This is of course as it should be. Whenσ2
x̂(k)

more distance observables are used for the estimation of the unknown distance x, more
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Partitioned model

Batch least-squares solution

Recursive least-squares solution

Initialization

Measurement update equation

Variance update equation

Table 2.2: Batch and recursive least-squares estimation (the A-form).
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Figure 2.2: The variance .σ2
x̂(k)

σ2/k

information is used and therefore a more precise estimator can be computed. In the limit we
have:

This implies that the estimator converges to a constant for . And since is anx̂
(k)

k→∞ x̂
(k)

unbiased estimator of x, that is holds, it follows that in the limit:E x̂
(k)

x

Thus the larger k gets, the closer gets to x. This is shown in Figure 2.3 for a simulatedx̂
(k)

example based on model (24). Figure 2.3a shows a plot of the simulated observations and Figure
2.3b shows a plot of the corresponding least-squares estimates as function of k. The true value
of x used in the simulation was x = 10.
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Figure 2.3: (a) Observation plot; (b) Estimation plot.
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Let us now consider the recursive least-squares estimator. It is readily derived from (25). From
writing as:x̂

(k)
and σ2

x̂(k)

and

it follows with directly that:x̂
(k 1)

1

k 1

k 1

i 1

y
i
and σx̂(k 1)

σ2 / (k 1)

This result shows that for the present case the gain matrix equals . It decreases for

(26)

Kk 1/k
increasing values of k, showing that the gain in the estimator gets less for larger values ofx̂

(k)
k. This is in agreement with the characteristics of Figure 2.3b.

Example 20

Consider the following model:

Its batch solution reads:

(27)

Note that model (27) and its solution (28) reduce to that of (24) and (25) if

(28)

. The above estimation problem can be viewed as the problem of estimatingai 1 for i 1,...,k
the unknown slope x of a straight line y = a x that passes through the origin (see Figure 2.4a).
The result (28) shows that the variance of the slope estimator, , is large if all theσ2

x̂(k)

are close to zero. This is easy to understand if one looks at Figure 2.4b.ai, i 1,...,k
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Figure 2.4: Estimation of slope.

The determination of the slope of a straight line becomes more difficult if the observation points
are clustered together and close to the origin. The variance is small however if the valuesσ2

x̂(k)

of are large. See also Figure 2.4c. Let us now consider the recursive least-squaresai, i 1,...,k
estimator of the slope. From writing as:x̂

(k)
and σ2

x̂(k)

and
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it follows directly that:

(29)

This is the recursive least-squares estimator of the slope x.

2.3 Recursive least-squares: the B-form

Expression (20) for the recursive estimator shows that a matrix of dimension n needs to bex̂
(k)

inverted. One can however also derive an expression for in which a matrix of dimensionx̂
(k)

mk

needs to be inverted. This expression is found if we solve (19) via the model of condition
equations. Model (19) reads in terms of condition equations as:

The solution of this model is identical to the solution of (19) and therefore also identical to the

(30)

solution of the partitioned model (14). The solution of (30) follows by applying our standard
least-squares algorithm for the linear B-model. It reads:

From the second equation of (31) it follows that:

(31)
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In this expression we recognize the predicted residual and its variance matrix:

(32)

v
k

y
k

Ak x̂(k 1)

Since the least-squares residual is defined as , equation (32) shows how the least-

(33)

ê
k

y
k

ŷ
k

squares residual and the predicted residual are related:ê
k

v
k

This shows that the two residuals and differ and that they should not be confused with one

(34)

ê
k

v
k

another. The least-squares residual is the difference between the actual observable and theê
k

estimated observable, whereas the predicted residual is the difference between the actualv
k

observable and the predicted observable. The recursive least-squares estimator and itsx̂
(k)

variance matrix follow from (31) as:Qx̂(k)

(35) .

Compare this expression with (20) and note that the gain matrix now takes the form:Kk

Compare this with (22). Solution (35) is of course identical to (20). The principal difference

(36)

between the two expressions (20) and (35) lies however in the number and dimension of the
matrices that need to be inverted. In case of (20) three matrices of order and n respectivelyn, mk

need to be inverted, namely:

In case of (35) only one matrix of dimension needs to be inverted, namely the variancemk

matrix of the predicted residuals:

This indicates that for most practical applications expression (35) is to be preferred over (20).
This is especially the case if . Note that in case , the matrix inversion in (35) evenmk<n mk 1
reduces to a simple scalar division. To conclude this section, a summary of the above discussed
recursive least-squares procedure is given in Table 2.3.
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Partitioned model

Batch least-squares solution

Recursive least-squares solution

Initialization

Measurement update equation

Variance update equation

Table 2.3: Batch and recursive least-squares estimation (the B-form).
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Example 21

Consider again Example 18 of Section 2.1. The result of the least-squares estimation after the
first step was given as (see (2) and (3)):

with corresponding variance matrix:

(37)

In order to take care of the second estimation step, we are now in the position to make use of

(38)

the results of Table 2.3. The partial model for the new observable reads:y
5

With and (38) it follows that:A2 ( 1 0 1), Q2 σ2

Hence, the updated estimator becomes:

(39)
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(40)

Substitution of (37) into (40) will show that (40) is identical to (5) of Section 2.1 (verify this
yourself). The variance matrix of (40) follows with , (38) and (39) as:A2 ( 1 0 1)

(41)

which is identical to (6) of Section 2.1. Note that in the present example the matrix inversion is
simply a division by a scalar.

Example 22

Consider the following model:

(42)

Note that this model reduces to that of (27) of Section 2.2 if , and it reduces to that ofx1 0
(24) of Section 2.2 if . The with model (42) corresponding estimation problem can bex2 0
viewed as the problem of estimating the intercept and slope of a straight linex1 x2 y x1 ax2

(see Figure 2.5a).



Recursive least-squares: the static case 59

Figure 2.5: Estimation of intercept and slope.

Batch estimator

We will first consider the batch solution of (42). The normal equations read:

For the ease of deriving the solution of (43) we define:

(43)

Then

(44)
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(45)

and the normal equations (43) may be written as:

If we subtract times the first equation from the second we get:

(46)

ac

Hence, the least-squares estimator of the slope reads:x2

Compare this estimator with the slope estimator of (28) of Section 2.2. With the slope estimator

(47)

(47) known, the intercept estimator follows from the first equation of (46) as:

(48)

Compare this estimator with the intercept estimator of (25) of Section 2.2. The variance matrix
of the estimator follows from inverting the normal matrix of (43) and scaling by :(x̂

1(k)
, x̂

2(k)
) σ2

With the use of (44) and (45), this expression can be simplified to:

(49)
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Note that the variances of both the intercept estimator and the slope estimator are larger than the
variances of the corresponding estimators in (25) and (28), respectively. This is of course due
to the fact that in the present example the intercept and slope are estimated simultaneously,x1 x2

whereas in (24) and in (27) of Section 2.2 the intercept and slope were estimated separately.
From the variance matrix (49) it follows that the precision of the estimators improves if either
k increases or increases. The sum can be made large by having the measurements

k

i 1
a2

i

k

i 1
a2

i

carried out such that the cover a large interval. The clustering of observation pointsai, i 1,...,k
as shown in Figure 2.5b provides therefore a poor geometry for the estimation of the intercept
and the slope. If the measurements are evenly distributed such that , with T = constant,ai iT
then (see Figure 2.5c):

For this case the elements of the variance matrix (49) can be worked out to give:

(50)

Note that the variances are infinite if k = 1. This is of course a consequence of the fact that it

(51)

is impossible to determine intercept and slope simultaneously from only one measurement.

Recursive estimator

We will now consider the recursive solution of (42). We will assume that the measurements are
evenly distributed such that , with T = constant, holds. The gain matrix can then beai iT Kk

computed from (51) for as:k 1, Qk σ2 and Ak (1 kT)

or as:

(52)

The recursive estimator for the intercept and slope becomes therefore:
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(53)

Note that the elements of the gain matrix decrease for increasing k.

Example 23

Consider the levelling network of Figure 2.6a (note that this is the network of Figure 2.1b of
Example 18, extended with the observation ). The heights of the four points are denoted asy

6
. The height of point 0 is known and equal to zero: . The six heightxα, α 0, 1, 2, 3 x0 0

difference observables are denoted as . They are uncorrelated and have the samey
i
, i 1,...,6

variance .σ2

Figure 2.6: Levelling network.

The with the configuration of Figure 2.6a corresponding linear A-model reads:

(54)

Let us assume that it is required to determine the variance matrix of the least-squaresQx̂(3)
estimator of . Then clearly:x (x1, x2, x3)

(55)
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In this case we need to invert a matrix to find . An easier way to determine would3×3 Qx̂(3)
Qx̂(3)

be to rely on the results of Example 18 of Section 2.1. In Example 18 it was shown that the
variance matrix of the least-squares estimator of based on the configuration ofx (x1, x2, x3)
Figure 2.6b, is given as:

Since the two configurations of Figure 2.6 only differ in the observable , it follows that it is

(56)

y
6

easier to compute from (56) using the variance update equation of the B-form. With (56),Qx̂(3)
it follows that:Q3 σ2 and A3 (0 1 0)

or that:

Note that only a scalar division was needed for the computation of (57). Verify yourself that (57)

(57)

is indeed identical to (55).

2.4 Linearization, iteration and recursion

Up to this point the partitioned model was assumed to consist of linear observation equations.
In this section we will consider the case that the partitioned model consists of nonlinear
observation equations. As our starting point we take the following nonlinear model:

(58)

Now assume that we have an approximation at our disposal, such that the second-orderx 0 of x
remainders of , can be neglected. From the theory of Section 1.2.2 it follows thenAi(x), i 0, ,k
that we may replace the nonlinear model (58) by the linearized model:
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(59)

in which is the matrix of partial derivatives of .∆y
i

y
i

Ai(x
0), ∆x x x 0 and ∂xAi(x

0) Ai(x)
Since the partitioned model (59) is linear in , our results of the previous two sections may be∆x
applied again. An overview of the corresponding batch- and recursive estimators is given in
Tables 2.4, 2.5 and 2.6. The results given in these tables hold as long as is a goodx 0

approximation. Now assume that is not a good enough approximation. In that case we needx 0

an iteration to improve upon the approximation (see Section 1.2.3). For the batch solution ofx 0

model (58) the iteration is straightforward. The corresponding flow diagram is given in Table
2.7. Compare this flow diagram with that of Table 1.4 of Section 1.2.3. The question is now how
to iterate in case we want to compute the least-squares estimate of x recursively. It will be clear
that the batch solution can be computed in recursive form in each iteration step. The
disadvantage of this approach is however that, although recursion is achieved within each
iteration step, the overall procedure, including the iteration, is not recursive. Each iteration cycle
requires namely the availability of the whole batch of observables . Thus they

i
, i 0, ,k

iteration procedure of Table 2.7 does not lend itself for a recursive approach. Therefore an
alternative approach needs to be developed. The idea is to have instead of a recursion step at
each iteration step, an iteration at each recursion step. The procedure is as follows. Starting with
the approximation one first solves the least-squares initialization in an iterative manner. Thisx 0

should take care of the nonlinearity in . The initialization provides the initial estimate .A0(x) x̂(0)

We are now in the position to commence with the first step of the recursion. For the first
approximation to we may either take , which was also used as a first approximation forx̂(1) x 0

the initialization, or , the initial estimate. Since is likely to be a better approximation, thisx̂(0) x̂(0)

value will be used as our first approximation to . Starting with the first step of thex̂(1) x̂(0)

recursion can now be solved in an iterative manner. This should take care of nonlinearity in
. As a result of the first step of the recursion we get . This estimate may then be usedA1(x) x̂(1)

in the second step of the recursion as the first approximation to , and the whole process isx̂(2)

repeated again. By continuing in this manner it is possible to take care of the nonlinearity in the
partitioned model and at the same time to obtain the estimates in recursive form. A flow diagram
of the whole procedure is shown in Table 2.8.
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Nonlinear partitioned model

Linearized partitioned model

Linearized batch least-squares

Table 2.4: Batch least-squares estimation.
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Linearized recursive least-squares: the A-form

Initialization

Recursion

Measurement update

Variance update

Table 2.5: Recursive least-squares estimation: the A-form.
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Linearized recursive least-squares: the B-form

Initialization

Recursion

Measurement update

Variance update

Table 2.6: Recursive least-squares estimation: the B-form.
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Table 2.7: Batch least-squares iteration.
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Table 2.8: Recursive least-squares iteration.
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Table 2.8: continued.
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Example 24

Consider the situation of Figure 2.7. It shows two cartesian coordinate systems: the x, y-system
and the u, v-system. The two systems only differ in their orientation. Hence:

It is assumed that the u, v-coordinates of a k-number of points are known. Of these same points
we have at our disposal the x, y-coordinate observables . These observables arex

i
, y

i
, i 1, ,k

uncorrelated and all have the same variance . The corresponding nonlinear A-model readsσ2

then:

This model consists of a 2k-number of nonlinear observation equations in one unknown

(60)

parameter α. We will assume that the difference in orientation between the two systems is small.
The approximate value of α may therefore be taken to be equal to zero: . The linearizedα0 0
version of (60) reads then:

(61)

Figure 2.7: Coordinate transformation.
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Let us assume that it is required to solve (61) in recursive form by taking one point at a time
into account. In order to derive the corresponding recursive estimator, we first need an expression
for the gain matrix . The following two expressions for are available to us:Kk Kk

For the present example we have . The derivation of the gain matrix is

(62)

mk 2 and n 1
therefore for the present example the easiest if we use expression (62a.) This gives, with

the following expression for the gain matrix:

Hence, the recursive least-squares estimator of reads:

(63)

∆α

Note that the two elements of the gain matrix are small if point k is located close to the origin.

(64)

This is understandable if one thinks of the point configuration that is needed for a good
determination of a rotation. The rotation about a fixed origin is clearly better determined from
points far away from the origin than from points that are close to it.



3 Recursive least-squares: the time-varying case

3.1 Introduction

In the previous chapter we considered the partitioned model:

(1)

This model formed the basis of our development of a recursive least-squares procedure for the
estimation of the parameter vector x. In this chapter we will generalize the theory of the previous
chapter such that it becomes possible to estimate time-varying parameters in recursive form. This
generalization is of great practical importance, since many geodetic applications exist in which
time-varying parameters need to be determined. In navigation applications for instance, it is often
the position and/or velocity of a moving vehicle, such as a car, ship, aircraft or satellite, that
needs to be determined as function of time.

To start our development of the appropriate model, we will thus assume that the parameter vector
x varies as time proceeds. Hence, instead of assuming x to be constant and thus time-
independent, we assume in this chapter that the parameter vector x is a continuous function of
time . In order to reconstruct the function from measurements it is furthermoret : x(t) x(t)
assumed that observables are available at discrete time instances . Thesey

i
ti, i 0, ,k

observables are uncorrelated from one time instance to another. The expected values of the
observables are assumed to bear a linear relationship with x(t) at times . This gives:y

i
t ti

(2)

It will be clear that the assumptions underlying this discrete like model are not sufficient for
estimating the continuous function x(t). Model (2) enables us at the most the estimation of x(t)
at times ti. Hence, additional information is needed in order to be able to estimate x(t) for all t.
In this chapter we will assume that this information is available in the form of the linear
relationship:

The n×n matrix in (3) will be called the transition matrix; it describes the transition from

(3)

Φ(t , t0)
to x(t) for all t. The elements of the transition matrix are assumed to be knownx(t0) Φ (t , t0)

functions of t and . The transition matrix is also assumed to be invertible. This implies thatt0
knowledge of x at any one particular time instant is sufficient for the determination of the
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complete function x(t). It is admitted that this assumption seems to be a bit unrealistic for most
practical applications. The assumption will therefore be relaxed somewhat in Chapter 5. For the
moment, however, it is assumed that relationship (3) holds true. Model (2) together with the
transition model (3) will constitute our basic model for the present chapter. Note that our
previous model (1) can be interpreted as being a special case of (2) and (3). Because if the
transition matrix is equal to the identity matrix, , then for all t, and (2)Φ (t , t0) I x(t) x(t0)
reduces to (1). We will start our development of the recursive least-squares estimation algorithms
in Section 3.3 and the sections following. First, however, we will introduce a class of models for
the transition (3) that can be used in a fair amount of applications.

3.2 Equations of motion: a polynomial model

In many geodetic applications it is the position, velocity or acceleration of a moving object that
needs to be determined as function of time. In many applications one also has some fair idea of
the type of movement the object is subject to. For instance, whether the object is stationary or
whether it moves with constant velocity, such as a ship or aircraft at cruising speed, or whether
it moves with constant acceleration, such as an object in free fall in a uniform gravity field. It
is this type of information that we will use in the following to derive an explicit expression for
the transition model (3). Figure 3.1 shows the trajectory of a moving object P. The position of
the object can be described with the coordinates u, v and w. Since the object moves as time
proceeds, the coordinates are functions of time: u(t), v(t) and w(t). The complete time history of
the object’s motion is known, once these coordinate functions are known. In the following we
will develop the transition model for the single coordinate function u(t). The development of the
transition model for the other two coordinate functions v(t) and w(t) goes along similar lines. We
will consider the following three cases: stationarity, constant velocity and constant acceleration.

Figure 3.1: Trajectory of object P.
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Stationarity

This case is trivial, but it is included since it illustrates in a straightforward manner the principal
ideas involved. Assuming that the coordinate function u(t) has a continuous time derivative, we
may write:

(4) .

This expression shows that the coordinate function u(t) is completely described once the initial
position and the velocity are known. Now assume that the object is stationary. Thenu(t0) u̇(t)

vanishes and (4) reduces simply to:u̇(t)

This is the transition model for the single coordinate function u(t) in case of stationarity. The

(5)

transition model for all three coordinate functions u(t), v(t) and w(t) reads therefore in case of
stationarity as:

In this case the transition matrix is simply the identity matrix.

(6)

Constant velocity

Assuming that the function has a continuous time derivative, we may write:u̇(t)

If this expression is substituted into (4) we get:

(7)

or

The double integral in this expression may be written as a single integral if we use integration

(8)

by parts. Since:
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it follows by substituting:

that

or that:

Substitution of (9) into (8) gives:

(9)

Expressions (7) and (10) combined read therefore in matrix vector form as:

(10)

(11) .

This expression shows that the coordinate function u(t) and its time derivative areu̇(t)
completely determined once the initial position , the initial velocity and accelerationu(t0) u̇(t0)

are known. Now assume that the object moves with constant velocity. Then vanishesü(t) ü(t)
and (11) reduces to:

This is the transition model for the single coordinate function u(t) in case of constant velocity.

(12)

The corresponding transition matrix reads therefore:



Recursive least-squares: the time-varying case 77

Note that this transition matrix is indeed invertible.

(13)

Constant acceleration

Assuming that the function has a continuous time derivative, we may write:ü(t)

If this expression is substituted into (7) we get for velocity:

(14)

or

Using (9) with replaced by , the double integral of (15) can be replaced by a single

(15)

ü(ρ) u(ρ)
integral, so that:

If this expression is substituted into (4) we get for position:

(16)

or

The double integral of (17) can be transformed into a single integral as follows. We have:

(17)

Integration by parts gives:

(18)
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From (17), (18) and (19) it follows then that can be written as:

(19)

u(t)

Expression (14), (16) and (20) combined read therefore in matrix vector form as:

(20)

(21) .

This expression shows that position, velocity and acceleration are completely determined once
their initial values and are known. Now assume that the object moves with constantu(t)
acceleration. Then vanishes and (21) reduces to:u(t)

This is the transition model for the single coordinate function in case of constant

(22)

u(t)
acceleration. It will be clear by now that the above derivations of the transition model can be
continued along similar lines to include time derivatives of the order higher than the second as
well. From the above results (5), (12) and (22) there are three immediately obvious and very
basic properties of the transition matrix. They are (verify yourself):

(23) .

These properties will be used repeatedly in the sequel.

Example 25

Consider an object which is being dropped with zero initial velocity from a building of height
(see Figure 3.2):h(t0)
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Figure 3.2: Free fall.

The gravity field is assumed to be uniform. The acceleration of the object is then constant and
equal to the gravitational acceleration g. Hence, the transition model reads:

(24)

Example 26

A ship is sailing with constant velocity in the u-direction and with constant acceleration in the
v-direction. Then . The corresponding transition model reads therefore:ü(t) 0 and v (t) 0

(25)
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3.3 Prediction, filtering and smoothing

In this section we will make a start with the estimation of time-varying parameters. But before
we proceed, first a few words about the notation used. In order to simplify our notation
somewhat, we will write instead of from now on . Also the continuous time argument ofx(ti) xi

the vector function will be written as an index. Thus instead of x(t) we write . And forx(t) xt

the transition matrix we write, instead of , simply . Using this notation we may writeΦ(t, t0) Φt, t0
the partitioned model (2) and the transition model (3) of Section 3.1 as:

and

(26)

(27)

Now assume that we want to estimate for an arbitrary time t. Then the parameter vectorsxt

of (26) need to be replaced by . This is achieved with the transition model (27).xi, i 0, ,k xt

Inversion of (27) gives: . With the inversion property of the transition matrix (seex0 Φ 1
t,0xt

(23)), this may be written as: . Substitution of this expression into givesx0 Φ0,t xt xi Φi,0x0

. And with the transition property of the transition matrix, this may in turn bexi Φi,0Φ0,t xt

written as: . This relation may now be used to replace all the n-vectors of (26) suchxi Φi,t xt xi

that only one parameter vector, namely , remains:xt

(28)

This is our basic partitioned linear model for the estimation of time-varying parameters. Note the
striking resemblance in structure between model (28) and model (1) in Section 3.1. The least-
squares solution of model (28) will be denoted as . The first index refers to the time to whichx̂

t k
the parameter vector corresponds and the second index indicates that the estimator is based on
all observables . The following three cases, depending on whethery

i
, i 0, ,k t > tk, t

may now be distinguished (see Figure 3.3).tk or t < tk,

Prediction (t > tk)

One speaks of prediction if . If denotes the present time, that is, the time the lastt > tk tk

measurement has been carried out, implies that the parameter vector is being estimatedt > tk

for future times. In this case is the predicted estimator of .x̂
t k

xt
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Figure 3.3: Prediction, filtering and smoothing.

Let us assume that we have the estimator at our disposal. Then, since , the Bestx̂
k k

xt Φt,kxk

Linear Unbiased Estimator of , which is the predicted estimator if , reads in terms ofxt t > tk x̂
k k

as:

(29) .

Filtering (t tk)

One speaks of filtering if . In this case the parameter vector is estimated for the presentt tk xt

time , that is, the time the last measurement, namely , has been carried out. The estimatortk y
k

is called the filtered estimator of . The filtered estimator of is the least-squares solutionx̂
k k

xk xk

of model (28) for the case . It reads:t tk

(30) .

Smoothing (t < tk)

One speaks of smoothing if . In this case the parameter vector is estimated for pastt < tk xt

times from measurements which have been carried out up to and including the present time .tk

In this case is the smoothed estimator of . Let us assume that we have the filteredx̂
t k

xt

estimator at our disposal. Then, since , the Best Linear Unbiased Estimator of ,x̂
k k

xt Φt,kxk xt

which is the smoothed estimator if , reads in terms of as:t < tk x̂
k k
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(31) .

When comparing (29) and (31), we note that the expression for the predicted and smoothed
estimator, when written in terms of the filtered estimator, are identical in structure. In later
chapters when we generalize our theory so as to include more realistic transition models, we will
see that this will not be the case anymore.

Example 27

Consider a particle that moves with constant velocity along a straight line. Its transition model
reads then:

The position of the particle is measured at successive time instances . The position

(32)

t1 , , tk

observables are denoted as . They are uncorrelated and all have the same varianceu
i
, i 1, ,k

. The model of observation equations parameterized in terms of position and velocityσ2 ui u̇i

reads then:

(33)

Now assume that we want to estimate for an arbitrary time t. By combining (32) and(ut , u̇t )
(33) we may write the model parameterized in terms of as:(ut , u̇t)
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or as:

(34)

(35)

This is the appropriate model in case position and velocity of the particle are unknown. For the
present example we will assume however that the initial position of the particle is known tou0

be zero: . From the transition model (32) it follows then that:u0 0

Substitution of (36) into (35) gives then:

(36)

(37)

Note that this model has the same structure as model (27) of Example 20 of Section 2.2. The
least-squares solution of model (37) reads:

(38)
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Compare this result with (28) in Section 2.2. The variance is a continuous functionσ2
ût k

of û
t k

of time t, but a discrete function of the number of observables k. The result (38) shows that:

(39)

The first inequality tells us that for a fixed number of observables k, the precision of the position
estimator deteriorates for increasing t. This is understandable if one thinks of the geometryû

t k

of the straight line (see Figure 2.4 in Section 2.2). Since the line is hinged at the origin, small
changes in its slope will result in changes in its position that are larger for points that are further
away from the hinging point. The second inequality of (39) tells us that for time t fixed, the
precision of the position estimator improves for increasing k. This is of course due to the
additional position information brought in by the increasing number of position observables. In
Figure 3.4 we have plotted the variance as function of time, for different values of k. Theσ2

ût k

plot shows that the parabola increases as function of time (the first inequality of (39)), butσ2
ût k

that it gets more flattened if k increases (the second inequality of (39)).

Figure 3.4: The parabola for different values of k.σ2
ût k

Let us now consider the precision characteristics of the predicted, filtered and smoothed position
estimators. We will first consider prediction and filtering. It is assumed that the present and
future position estimates are computed every time that a new position measurement becomes
available. Let us start at time . At this time instant all the position observablestk

u
i
, i 1, ,k

are available and the best (in the sense of minimal variance) position estimator can beû
k k

derived. It has a variance of . At time also the best position estimators for future timesσ2
ûk k

tk

can be derived. The variance of these predicted estimators is given as . Thet > tk σ2
ût k

for t > tk

variances are plotted in Figure 3.5a. Now assume that the next positionσ2
ûk k

and σ2
ût k

for t > tk

measurement is scheduled to be carried out at time . The best position estimator for this timetk 1

, based on the position observables is then given by the predicted positiontk 1
u

i
, i 1, ,k

estimator . Its variance is given by . Once the new measurement at time has beenû
k 1 k

σ2
ûk 1 k

tk 1

carried out, it can be used to improve upon the predicted estimate . The position estimatorû
k 1 k

for time , which is based on all the past position observables and the newtk 1
u

i
, i 1, ,k

position observable , reads . It is the filtered position estimator for time , and itsu
k 1

û
k 1 k 1

tk 1
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variance is of course smaller than the variance of the predicted position estimator for time .tk 1

That is, . This is shown in Figure 3.5b.σ2
ûk 1 k 1

< σ2
ûk 1 k

Figure 3.5: Variances of the predicted and filtered position estimator.

The whole process of predicting and filtering can now be repeated again. From time one cantk 1

predict the positions up to the time the next measurement is scheduled to be carried out, say tk 2

(see Figure 3.5c). Once the measurement at time is available, it can be used to improve upontk 2

the predicted position. As a result one obtains the filtered position estimate for time (seetk 2

Figure 3.5d).

Let us now consider smoothing. Again we start at time with the filtered position estimatortk

. At this time instant all the position observables are available and based onû
k k

u
i
, i 1, ,k

them the best position estimators for all times can be derived. These are the smoothedt < tk

position estimators with variances . This is shown in Figure 3.6a. At the next timeσût k

, t < tk

instant when the new position observable becomes available, the filtered positiontk 1
u

k 1

estimator can be derived. Since additional information is available in the form of theû
k 1 k 1

new position observable , the previous smoothed position estimators , can beu
k 1

û
t k
, t < tk

replaced by the improved smoothed position estimators . This is shown in Figureû
t k 1

, t < tk 1

3.6b. This whole process can be repeated again when at the next position observabletk 2

becomes available (see Figure 3.6c).
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Figure 3.6: Variances of the smoothed position estimator.

So far in the whole discussion no restrictions were put on the intervals between the times that
the measurements are carried out. These intervals were allowed to vary from one time to another.
This has as a consequence that no statement can be made about the general behaviour of the
variance of the filtered position estimator, , as function of k. This changes, however, if weσ2

ûk k

assume that the time instances are equidistant in time (= uniform sampling). Thenti

(see (38)) reads for :ti t0 iT , with T constant, and σ2
ût k

t t0 lT

(40)

This shows that in case of uniform sampling the variance of the filtered position estimator, ,σ2
ûk k

decreases as k increases. This is shown in Figure 3.7a. The relationship between the variances
in case of prediction, filtering and smoothing is shown in Figure 3.7b.
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Figure 3.7: Variances in case of uniform sampling.

3.4 Recursive prediction and filtering: the A-form

In the previous section the concepts of prediction, filtering and smoothing were introduced. In
this section we will develop the algorithm for recursive prediction and filtering. As was pointed
out in the previous chapter, the essence of recursive estimation is that there is no need to store
past measurements for the purpose of computing present least-squares estimates. Recursion
enables one to keep track of the time process by means of an efficient computation of thext

corresponding best estimates. Recursive estimation is therefore in particular of great importance
for problems where it is required to estimate time-varying parameters in real-time. The central
idea in our development of the theory of recursive prediction and filtering is to rely on the
stepwise manner in which a partitioned model may be solved. As our starting point we take the
linear model (28) parameterized in terms of :xk 1

This model may be solved in two steps. In the first step we consider model (41) with the

(41)

exception of . Its solution is then given by the filtered estimator . The completey
k

x̂
k 1 k 1

solution of model (41) then follows from solving the following model in a second step:

The solution of this model would give us in terms of the filtered estimator .

(42)

x̂
k 1 k

x̂
k 1 k 1

Instead however, we would like to obtain an expression where the filtered estimator isx̂
k k
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expressed in terms of . We therefore first parameterize model (42) in terms of .x̂
k 1 k 1

xk

Replacing in (42) by gives:xk 1 Φk 1,k xk

This model may again be solved in two steps. In the first step we consider the partial model:

(43)

Its solution would give us the predicted estimator in terms of the filtered estimator

(44)

x̂
k k 1

. Note that, since the transition matrix is square and invertible, the redundancy ofx̂
k 1 k 1

Φk 1,k

the partial model (44) equals zero. The solution of (44) follows therefore simply from inverting
the transition matrix:

(45) .

This result expresses the predicted estimator in terms of the filtered estimator. Both estimators
are based on the same set of observables . They refer however to differenty

i
, i 0, , (k 1)

time instances, namely respectively. The equations of (45) will therefore be called thetk and tk 1

time-update equations. Note that the result (45) is in agreement with (29) in Section 3.3. The
complete solution of model (43) follows now from solving in a second step the model:

Its solution reads:

(46)

(47)

Compare (46) and (47) with (19) and (18). Result (47) expresses the filtered estimator inx̂
k k

terms of the predicted estimator . It can be written in the more familiar form:x̂
k k 1

(48) .

These are the measurement-update equations. Compare (48) with (20) in Section 2.2 and note
the striking resemblance. But also note that the measurement-update equations of (48) are not
in a recursive form. This in contrast to the measurement-update equations of (20) in Secion 2.2.
For the present time-varying case, it are the time-update equations (45) together with the
measurement-update equations (48) that form a set of recursive equations. A flow diagram of the
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above derived recursive prediction and filtering algorithm is shown in Table 3.1. Compare Table
3.1 with Table 2.1.

Table 3.1: Recursive prediction and filtering: the A-form.
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3.5 Recursive prediction and filtering: the B-form

The B-form of the recursive prediction and filtering algorithm follows if we write model (46)
in terms of condition-equations:

Solving this model in the standard way gives for the measurement-update equations:

(49)

(50) .

in which is the variance matrix of the predicted residual :Qvk

v
k

(51)

Compare (50) with (35) of Section 2.2. A flow diagram of the B-form of the recursive prediction
and filtering algorithm is shown in Table 3.2. It should be noted that the time-update equations
remain unchanged.

Example 28

We will start with Example 27 in Section 3.3 and consider model (35):

(52)

Batch estimator

We will first consider the batch solution of (52). Note that the structure of model (52) is identical
to that of model (42) of Section 2.2. Hence, the variance matrix of the estimator

may be readily obtained from the result (49) in Section 2.2. With thex̂
t k

( û
t k

û
t k
)

definition:

this gives:

(53)
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Table 3.2: Recursive prediction and filtering: the B form.
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This shows that the variance of the position estimator reads:û
t k

Compare this result with (38) in Section 3.3. The following two inequalities hold:

(55)

The first inequality follows directly from (55), as this equation shows that the parabola

(56)

σ2
ût k

attains its minimum of . The second inequality of (56) is, however, not so obvious1/k at t tck

when one considers expression (55). Still, it can be shown to hold true and the reason is of
course that the precision of the estimator should improve when more observables are involved.
In Figure 3.8 we have plotted the variance as function of time, for different values of k. Theσ2

ût k

plot not only shows that attains its minimum of , but also that the parabolaσ2
ût k

1/k at t tck

gets more flattened and that its minimum decreases in value, if more observables are involved,
that is, if k increases. Compare Figure 3.8 with Figure 3.4 in Section 3.3.

Figure 3.8: The parabola for different values of k.σ2
ût k

Recursive prediction and filtering

The time-update of the estimator reads:
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(57)

For the measurement-update we may either use the A-form of (48) or the B-form of (50). From
a numerical point of view it is more advantageous for the present example to use the B-form.
However, since we already have the variance matrix (54) at our disposal, it is from an analytical
point of view faster to use the A-form. The corresponding gain matrix followsKk Qx̂k k

Ak Q 1
k

then with (54) for as:t tk , Ak (1 0) and Qk σ2

(58)

The measurement-update of the estimator reads therefore:

(59)

The general precision characteristics of the predicted and filtered position estimator are shown
in Figure 3.9. Compare Figure 3.9 with Figure 3.5.
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Figure 3.9: Variances of the predicted and filtered position estimator.

Uniform sampling

Let us now consider the case of uniform sampling. Then . Usingti t0 iT with T constant
the identities:

(60)

it can be shown that in case of uniform sampling the variance matrix of (54) reduces to:

Note that as a consequence of uniform sampling the minimum of the parabola( 1

2
(k 1)T ,1 /k)

lies now in the centre of the measurement interval .σ2
ût k

[ t1 T , tk kT ]

The time-update equations read in case of uniform sampling as:
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And the corresponding measurement-update equations read:

(62)

Note that the elements of the gain matrix reduce in value if the number of observables k

(63)

increases. Also note that the variance of the filtered position estimator:

is a decreasing function of k. This implies that in case of uniform sampling the points
, lie on a descending graph. The general precision characteristics of the(tk kT ,σ2

ûk k
) k 1,2 ,

predicted and filtered position estimator are in this case therefore as shown in Figure 3.10.

Figure 3.10: Variances of the predicted and filtered position estimator
in case of uniform sampling.



96 Dynamic data processing

Example 29

A satellite orbits the earth (see Figure 3.11). Position measurements are carried out for the
determination of the satellite’s position. The position observables are uncorrelatedx

i
, y

i
, i 1, ,k,

and all have the same variance . The model of observation equations parameterized in termsσ2

of the polar coordinates reads:ri and ϕi

(64)

Figure 3.11: Earth orbiting satellite.

These observation equations are nonlinear. Linearization of (64) gives:
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(65)

Note that the redundancy of model (64) equals zero. It is assumed that the satellite orbit is a
circle with unknown radius. It is furthermore assumed that the angular velocity of the satellite, ϕ̇t

is constant. The transition model of the satellite reads then:

(66)

All three initial values are assumed to be unknown. In order to be able to combiner0 ,ϕ0 and ϕ̇0

(65) with (66) such that the combined model is parameterized in terms of the increments ,∆rt

, we first need to formulate the transition model with expressed∆ϕt and ∆ϕ̇t (∆ri ,∆ϕi ,∆ϕ̇i )
in terms of . This relation follows from (66) as:(∆rt ,∆ϕt ,∆ϕ̇t)

(67)

Substitution of (67) into (65) gives:

(68)

At this point it is important to make some remarks about the approximate values in (68). Model
(68) consists of only three unknown parameters, namely ∆rt rt r 0

t , ∆ϕt ϕt ϕ0
t and
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This implies that all approximate values in (68) are functionally related to the∆ϕ̇t ϕ̇t ϕ̇0
t .

approximate values of . Their relation follows from the transition model (66) as:rt , ϕt and ϕ̇t

(69)

Substitution of (69) into (68) gives:

(70)

Note that the redundancy of this model equals 2k-3.

Batch estimator

We will first consider the variance matrix of the batch estimator of (70). It reads:

(71)

The 2x2 sub-matrix in (71) is a familiar one; see for instance (43) in Section 2.3. The variance
matrix follows therefore readily as:Qx̂t k
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(72)

Recursive prediction and filtering

It is now rather straightforward to formulate the time-update and measurements-update equations.
We therefore only give the gain matrix . Since it follows with (72) forKk Kk Qx̂k k

Ak Q 1
k ,

andt tk

that

(73)

Example 30

A ship sails along a straight line with constant velocity. Azimuth and distance measurementsai

are carried out at successive time instances from a known point with coordinatesli ti , i 1, ,k,
, see Figure 3.12.u 0, v 0
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Figure 3.12: Positioning of a ship.

The observables are uncorrelated and all have the same variance . The model ofa
i
and l

i
σ2

observation equations parameterized in terms of the cartesian coordinates reads then:ui ,vi

These observation equations are nonlinear. Linearization of (74) gives:

(74)

(75)

Note that the redundancy of this model equals zero. Let us now consider the transition model.
Since it is assumed that the ship sails with constant velocity in both the u- and v-direction, the
transition model reads:
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All four initial values are assumed to be unknown. In order to be able to

(76)

u0 ,v0 , u̇0 and v̇0

combine (75) with (76) such that the combined model is parameterized in terms of the
increments , we first need to formulate the transition model with∆ut ,∆vt ,∆ u̇t and ∆ v̇t

expressed in terms of . This relation follows from (76)(∆ui ,∆vi ,∆ u̇i ,∆ v̇i) (∆ut ,∆vt ,∆ u̇t ,∆ v̇t)
as:

(77)

Substitution of (77) into (75) gives:

or
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(78)

This is the basic model on which the recursive prediction and filtering of the ship’s position at
time t can be based. Note that the redundancy of model (78) equals 2k-4. It should also be noted
that the approximate values in (78) are functionally related to those of as:ut ,vt , u̇t and v̇t

(79)



4 State-space models for dynamic systems

4.1 Introduction

In Chapter 3 a start was made with the development of the theory of recursive estimation of
time-varying parameters . The development was based on a polynomial description ofx(t) x(t)
which led to the transition model . Many dynamic systems exist, however, thatx(t) Φ(t,t0)x(t0)
cannot be described with such a simple linear transition model. In this chapter we will therefore
have a closer look at a larger class of models that describe the time dependent behaviour of .x(t)
The generalization from the simple polynomial model treated in the previous chapter to the
dynamic models of the present chapter, becomes necessary if one wants to include a description
of the forces that cause the time dependency of . The inclusion of forces in our modelx(t)
description implies that the reader needs to have some working knowledge of classical mechanics
[Goldstein, 1980]. However, in order for the present book to be sufficiently self contained, we
have included a separate section on the dynamics of motion. In that section the most elementary
concepts of particle mechanics are introduced. The section on the dynamics of motion is
preceded by Section 4.2 in which the kinematics of motion are discussed. Together with the
material of the two Sections 4.2 and 4.3, the dynamic model can be formulated for a sufficiently
large number of cases.

As it turns out these models consist in their most general form usually of nonlinear differential
equations. In Sections 4.3 and following we will present ways of solving these models and show
how their solution can be put into a form that is suitable for estimation purposes. In order to
illustrate the theory we have again included a number of examples that are important from a
geodetic point of view. Many of the examples are concerned with positioning and navigation.

4.2 Equations of motion: kinematics

The quantities required for the kinematic description of the motion of a particle are its position,
velocity and acceleration. The form which the description of these vector quantities takes,
depends on the coordinates in terms of which and the coordinate system with respect to which
it is chosen to describe the motion of the particle. It should be clear that the choice of the
coordinate system is quite arbitrary. In all the examples of the previous chapter the choice was
made to describe motion with respect to a fixed coordinate system. Frequently, however, it is
mathematically more convenient to employ the kinematic description of the motion of a particle
with respect to a moving coordinate system. This is in particular the case when one wants to take
care of the relation that exists between the motion of the particle, the mass of the particle and
the forces acting on the particle. The fundamental laws of mechanics (see Section 4.3) are
namely postulated with respect to an inertial coordinate system, which is a non-accelerating, non-
rotating coordinate system. Hence, if one wants to take these laws into account and at the same
time wants to describe the motion of a particle with respect to a coordinate system fixed for
instance to the rotating and orbiting earth, a proper description of motion requires knowledge of
the relationships that exist between coordinate systems which are in motion with respect to each
other. The objective of this section is therefore to derive the relationships that exist between
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position, velocity and acceleration of a particle, in coordinate systems which are in motion with
respect to each other.

Position

Consider Figure 4.1. It shows two coordinate systems; the i-system and the b-system. The two
systems or frames differ in their location and orientation. The cartesian coordinates of the origin

of the b-frame with respect to the i-frame are denoted as . And the cartesian0b ti 1 and ti 2

coordinates of point P when expressed in the i-frame or the b-frame are denoted as
respectively. From the geometry of Figure 4.1 it follows then that:ri 1, ri 2 or rb 1, rb 2

This expression shows how the coordinates of point P are related when expressed in the two

(1)

different frames i and b. In order to transform the coordinates from the b-frame into the i-frame,
one first needs to rotate the coordinates through an angle and then add a translation vector toα
take care of the difference in origin of the two frames.

Figure 4.1: A coordinate transformation in two dimensions.

Expression (1) holds for the two-dimensional case. A similar expression can be derived for the
three-dimensional case. It reads:

(2)

The three angles of rotation of the three rotation matrices in (2) are defined inα, β and γ
Figure 4.2. Note that if , then transformation (2) reduces to that of (1) for the first twoβ γ 0
coordinates.
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Figure 4.2: The rotation angles defined.α, β, and γ

Using a self-evident vector and matrix notation, expressions (1) and (2) can be written in the
compact matrix-vector form:

(3) .

In (3), denote the vector of coordinates of point when expressed in the i- and b-ri and rb P
frame respectively, denotes the rotation matrix from the b-frame to the i-frame, andRib ti

denotes the translation vector expressed in the i-frame. Equation (3) thus relates the position of
point as seen by two observers fixed to the i- and b-frame respectively.P

Velocity

We will assume that all quantities in (3) may depend on time. Hence, we not only assume that
particle P may move with respect to the b-frame, but also that the b-frame itself may change its
location and orientation with respect to the i-frame as function of time. The relation between the
velocities of the particle as seen by the two observers fixed to the i- and b-frame respectively,
follows then from taking the time-derivative of (3):

The matrix in (4) has a special significance in its own right. First of all it is easily

(4)

R 1
ib Ṙib

demonstrated that this matrix is skew-symmetric:

This is shown as follows. First recall that is a rotation matrix and that the inverse of a

(5)

Rib

rotation matrix equals its transpose: . Now, if we write as , and takeR 1
ib Rib R 1

ib Rib I RibRib I
the time derivative we get or . Replacing in thisṘibRib RibṘib 0 (RibṘib) RibṘib Rib by R 1

ib

last expression proves (5). The matrix will be denoted as :R 1
ib Ṙib Ωib

b

(6)

With this definition, expression (4) may be written as:
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(7) .

If the origin of the b-frame is stationary, then and in is the velocity of particleṫ i 0 vb ṙi Ribvb

P referenced with respect to the i-frame, but expressed in the b-frame. It depends on , theṙb

velocity as seen by the observer fixed to the b-frame, and , the rate of change in orientationΩib
b rb

of the b-frame with respect to the i-frame. Because of the explicit form of the matrix , aΩib
b

coordinate vector may be defined through:ωib
b

(8)

where " " stands for the vector cross product. The meaning of the indices in will now be× Ωib
b

clear from (8). The lower index of indicates that the entries of matrix are expressed inΩib
b Ωib

b

the b-frame. And the two upper indices of indicate that the matrix describes the change inΩib
b

rotation from the b-frame to the i-frame. With (8), expression (7) may be written in the
alternative form:

(9) .

The significance of introducing the coordinate vector becomes clear if it is assumed thatωib
b

particle is fixed to the -frame and the origins of the two frames coincide. ThenP b Oi and Ob

and (9) reduces to:ṙb 0 and ti 0

Through an application of the transformation rule:

(10)

equation (10) can be written as:

(11)

(12)

This result shows that the rate of change of a particle fixed to a rotating -frame with fixedP b
origin, is seen by an observer fixed to the i-frame as an instantaneous rotation about the vector

, see Figure 4.3.ωib
i
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Figure 4.3: .ṙi ωib
i ×ri

The vector will therefore be referred to as the angular-velocity vector of the -frame withωib
i b

respect to the i-frame expressed in the i-frame. The proof of the transformation rule (11) is based
on the definition of a determinant of a matrix and its invariance under rotations. We have3×3
for an arbitrary vector :xi

(13)

The second equality follows from the first by the definition of a determinant of a matrix.3×3
The third equality follows from the second by taking the rotation matrix outside the brackets.Rib

The fourth equality follows from the third through the invariance of the determinant against
rotations. Finally, the last equality is again a consequence of the definition of a determinant of
a matrix. Since (13) holds for any arbitrary vector , transformation rule (11) must hold3×3 xi

true. Transformation rule (11) can also be written for the skew-symmetric matrix . It readsΩib
b

(verify yourself):

(14)

Acceleration

The relation between the accelerations as seen by the two observers fixed to the -frame,i and b
respectively, follows from taking the time derivative of (7). Using (6) this gives:

(15) .
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With (8), equation (15) can be expressed alternatively as:

(16) .

If the particle is fixed to the -frame and rotates about a fixed axis in spaceP b (ṙb 0) (ω̇ib
b 0)

such that the origin of the -frame remains stationary , then all terms, except the first, onb (ṫ i 0)
the right-hand side of (15) vanish. The acceleration of the particle is then directed towards theP
axis of rotation, see Figure 4.4.

Figure 4.4: Centripetal acceleration.

The first term on the right-hand side of (15) is therefore called the centripetal acceleration,
meaning towards the centre. The second term on the right-hand side of (15) is sometimes called
the tangential acceleration, since it is tangential to the motion of particle if the rotation isP
about a fixed axis with time-varying angular velocity. The third term is called Coriolis
acceleration, after the French engineer C.G. Coriolis, who discovered it. It comes into play when
particle is moving with respect to the b-frame. Finally, is the acceleration of asP r̈b P
witnessed by an observer fixed to the b-frame and is the acceleration of the origin of the b-ẗ i

frame with respect to the i-frame. An overview of the existing relations between position,
velocity and acceleration is given in Table 4.1.
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Position

Velocity

Acceleration

Transformation rule

Table 4.1: Position, velocity and acceleration.

Example 31

An observer I fixed to an i-frame monitors the motion of a particle . Observer I comes to theP
conclusion that particle moves with constant acceleration . The equation of motion ofP r̈i(t0)
particle for observer I reads then:P

A second observer E monitors the motion of the same particle . Observer E is however fixed

(17)

P
to an -frame which itself is in motion with respect to the i-frame. Our objective is now toe
derive the equation of motion of particle P for observer E. The differential equation that governs
the motion of particle as seen by observer E follows readily from (15) as:P

(18)

The solution of this second-order differential equation provides , the motion of the particlere (t)
as seen by observer E. A block diagram of the computation steps involved in solving (18) is
shown in Figure 4.5. It is not altogether obvious from equation (18) alone how the solution re (t)
looks like. But for the present case we do know how the solution looks like in the i-frame. The
solution of (18) follows therefore if we transform equation (17) into the -frame. This givesre(t) e
with:
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Figure 4.5: Block diagram of differential equation (18).

substituted into (17) the result:

Verify yourself that (19) is indeed the solution to (18). Let us now, in order to be more specific,

(19)

consider a concrete example. We assume that the origins of the two frames coincide and that the
e-frame rotates with respect to the i-frame with a constant angular velocity , see Figure 4.6.ω
Then , and and read:ti 0 Rie Ωie

e

(20)

Figure 4.6: Rotating -frame.e
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Hence, the differential equations (18) take the form:

(21)

Their solution follows from (19) as:

This is the equation of motion of particle as seen by observer E. If the -frame is fixed to the

(22)

P e
earth and lies in the equatorial plane with its origin at the earth’s centre, then is the earth’sω
rotation-rate. If we also assume that the gravitational field is uniform such that andü(t0) 0

, then (22) is the equation of motion, for an earth-fixed observer, of an object that hasv̈(t0) g
been dropped from a building at the equator.

4.3 Equations of motion: dynamics

Kinematics, which is the study of the geometry of motion, was discussed in the previous section.
Kinematics is used to relate position, velocity, acceleration and time, without reference to the
cause of motion. Dynamics, on the other hand, is the study of the relation that exists between
the forces acting on a body, the mass of the body, and the motion of the body. Dynamics is used
to predict the motion caused by given forces or to determine the forces required to produce a
given motion. In this section dynamics is discussed. In our presentation however, we will
introduce only a few of the most elementary concepts. In order to gain a thorough introduction
to the subject, the reader should consult [Goldstein, 1980].

Newton’s formulation of classical mechanics given in the PRINCIPIA (1687)1 forms the basis
for the study of motion. Newton’s three laws of motion can be stated in the following form:

Law I: Every particle remains in a state of rest or continues to move in a
straight line with constant velocity unless compelled by external
forces to change that state.

1 "PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA", i.e. "Mathematical Principles of
Natural Philosophy".
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Law II: The acceleration of a particle is proportional to the resultant force
acting on it and is in the direction of this force.

Law III: To every action there is always an equal and contrary reaction; or
the forces of action and reaction between any two particles are
equal in magnitude, opposite in direction, and collinear.

The first law, also known as the law of inertia, associates the motion of force with that of
acceleration, and attaches significance to the state of zero acceleration. But before any statement
can be made about the acceleration of a particle, a coordinate system or reference frame is
required, since a particle may have zero acceleration relative to one set of axes, but not to
another (see Section 4.2). The assumption behind the first law is therefore the existence of
reference frames with respect to which every particle has a constant velocity vector when free
from external forces. Such a frame is called inertial. Reference frames that accelerate or rotate
with respect to such a frame are by this definition non-inertial. The axes of an inertial frame,
though not arbitrary are also not unique, for axes moving with constant velocity relative to an
inertial frame also constitute an inertial set. Although Newton’s laws postulate the existence of
inertial frames, they do not identify inertial frames and therefore do not explain how to choose
such frames in practice. Here one must appeal to experience to decide what is reasonable. A
particular reference frame can be considered a sufficient approximation to an inertial frame if the
motion predicted by Newton’s laws using this reference frame compares satisfactorily with
observational data. A good approximation of an inertial frame of reference, and one from which
Newton derived his concept, is an astronomic coordinate system with its origin in the bary-centre
of the solar system and its axes fixed with respect to the distant galaxies. Thus an earth-fixed
system of reference is by definition non-inertial in the Newtonian sense because the earth is
rotating with respect to the distant galaxies and also has very small but measurable accelerations
relative to an astronomic coordinate system.

Newton’s second law, also known as the law of acceleration, is formulated for an inertial frame
of reference. It defines force as being proportional to acceleration. The proportionality constant
is the mass of the particle. Thus for a particle with mass m, subjected to a resultant force theFi

law may be stated as:
(23)

where both the force and acceleration are expressed in an inertial frame i. Note thatFi r̈i

Newton’s first law is a consequence of his second law, since there is no acceleration when the
force is zero, and the particle is either at rest or is moving with constant velocity. Newton’s
second law yields three differential equations of second order, which when integrated, give the
trajectory of the particle. However, for the integration to be useful, the forces acting on the
particle need to be known. Therefore, before equation (23) can be used to make predictions, it
is necessary to have further laws or measurement of force available which describe how forces
vary when a particle is subject to the various mechanisms appearing in a given problem. There
exist various forces in nature with their corresponding laws, such as for example contact forces,
nuclear forces, electric and magnetic forces. Another law which is especially of importance for
geodetic work, is Newton’s universal law of gravitation. This law says that any two particles are
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attracted to one another by a force that depends directly upon the product of their masses and
inversely on the square of the distance separating them. Thus:

(24)

where is the force of attraction on mass m due to mass is the universal gravitationalFi M, k
constant, is the vector separating M and m expressed in the i-frame and directed from m tori

M, and is the length of . Newton arrived at his law of gravitation through a study of theri ri

three laws of planetary motion which were postulated by Kepler on the basis of careful
astronomical observations of the Danish astronomer Tycho Brahe. Law (24), formulated for
particles, forms the basis in the development of a model of the earth’s gravitational field.

Newton’s third law applies to the interaction of two particles. Note that Newton’s universal law
of gravitation (24) satisfies his third law. It should also be noted that Newton’s first and second
law define the concept of force in terms of mass times acceleration while Newton’s second and
third law define the ratio of masses of two interacting particles as the reciprocal ratio of their
accelerations.

As was pointed out in Section 4.2, quite often the need arises in applications to introduce frames
which are moving with respect to an inertial frame of reference. For instance, the description of
motion of a point with respect to a coordinate system fixed to the earth involves quite naturally
a coordinate system which is at the same time being translated and rotated in space. In order to
see what form Newton’s second law takes in a frame, say a b-frame, which is rotating and
accelerating with respect to an inertial i-frame, we write equation (15) as:

Together with Newton’s second law (23) this gives:

(25)

where:

Note that (25) has the same form as Newton’s original second law (23). The sum in (25)Σ
α

F α
b

is called the sum of apparant forces or inertial forces, and it is a function of the motion of the
selected b-frame with respect to the i-frame. It consists among other forces of the centripetal,
tangential and Coriolis force. Equation (25) is the form of Newton’s second law which is usually
needed in practical applications.
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Example 32

Consider a satellite orbiting planet earth. Both the earth and the satellite are assumed to be point
masses with mass M and m respectively. It is also assumed that the centre of the earth is non-
accelerating. It can therefore be taken as the origin of our inertial i-frame, see Figure 4.7.

Figure 4.7: Earth orbiting satellite.

The satellite is assumed to be subject to two types of forces. The first force equals the
gravitational force and reads:

The second force is provided by the thrust of the satellite’s rockets. It is denoted as .

(26)

F 2
i

According to Newton’s second law we have:

Substitution of (26) and dividing by m, the mass of the satellite, gives:

where is the so-called specific force of the satellite’s thrust. Equation (27) constitutes

(27)

fi F 2
i /m

a set of three second-order nonlinear differential equations for the satellite’s inertial cartesian
coordinates. The nonlinearity is a consequence of the dependence of on . A block diagramr ri

of the computation steps involved in solving (27) is given in Figure 4.8. It shows how the inertial
position vector of the satellite, the output of the block diagram, can be computed from theri

input .fi

The differential equations of (27) are expressed in inertial cartesian coordinates. We will now
express them in a rotating and therefore non-inertial b-frame. For the sake of simplicity we will
only consider the two-dimensional case. The b-frame is defined in Figure 4.9. In order to express
(27) in the rotating b-frame we need the following result from Section 4.2:
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(28)

Figure 4.8 Block diagram of (27).

Figure 4.9 Definition of the b-frame.

Since:

we have:

(29)

substitution of (29) and (30) into (28) gives together with , and (27)

(30)

fb Rbi fi rb (r,0) , ẗ i (0,0)
the result:

(31)
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These two nonlinear second-order differential equations govern the motion of the satellite when
expressed in the polar coordinates .r and Λ

Example 33

A linear mass-spring accelerometer is an instrument designed to measure the inertial result of
translational motion. To analyze the performance of the instrument, consider Figure 4.10. This
is a single-degree-of-freedom accelerometer since it has only one axis along which it is sensitive.
Point C is the centre of mass of the sensitive element with mass m. Point O indicates the
equilibrium position of the centre of mass of the sensitive element when there is no external
force acting on the case along the sensitive axis.

Figure 4.10: Linear mass-spring accelerometer.

Point O is fixed to the case. The output indication of the instrument, supplied by displacement-
sensitive transducers, is made proportional to the displacement x of the sensitive element relative
to the case. The sensitive element is supported by a spring which is attached to the case. The
spring is assumed to be weightless and to develop a restoring force proportional to the deflection
of the sensitive element from its equilibrium position. Thus if the spring has a stiffness
coefficient of , then by Hooke’s law the restoring force is . The sensitive element is alsok>0 kx
supported by a damper. Dampers are used to provide means of controlling the response of the
instrument to dynamic inputs. The damper develops a viscous friction force , where iscẋ c>0
the damping coefficient.

Before developing the differential equation that governs the dynamics of the linear mass-spring
accelerometer, we first consider what happens to the sensitive element under some different
circumstances. Consider an accelerometer positioned on a flat platform such that its sensitive axis
is parallel to the platform surface. If the platform is held horizontally and at rest, the system will
be in equilibrium with zero indication of the accelerometer (see Figure 4.11a). Now if the case
is tilted over an angle while the accelerometer remains switched on, it will indicate theθ
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Figure 4.11: Accelerometer output.

component of gravity , see Figure 4.11b. If the accelerometer is allowed to slide, in thegsinθ
absence of frictional contact forces, it will experience an acceleration of along the tiltedgsinθ
platform, and indicate zero, see Figure 4.11c. This is due to the fact that the gravitational field
influences simultaneously both the case and the sensitive element of the accelerometer and so
by itself produces no deflection of the sensitive element. That is, the accelerometer does not
measure any component of the acceleration due to the force of gravity unless an equal and
opposite force is acting on its case. With friction the indication of the sliding accelerometer will
be proportional to the friction force only. Now, if the accelerometer is placed on the platform
so that its sensitive axis is vertical, mass attraction is acting along the sensitive axis of the
accelerometer and pulls the sensitive element toward the platform until it is balanced by spring
tension at which point the accelerometer indicates the value of gravity g, see Figure 4.11d. This
output signal is, however, indistinguishable from the output of the same accelerometer when it
is accelerated horizontally at a rate of g meters per seconds squared, see Figure 4.11e. The
important conclusion is thus reached that an accelerometer cannot distinguish between inertial
acceleration and gravitational acceleration. Hence, the effects of any component of gravity acting
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along the accelerometer sensitive axis must be allowed for, if it is required to deduce the
trajectory of the case.

To obtain the differential equation which governs the dynamic behaviour of the accelerometer,
we apply Newton’s second law to the sensitive element by equating all the forces acting on the
element along the sensitive axis (spring force, friction force and gravity) to the product of its
mass m and its acceleration relative to inertial space along the sensitive axis. Assuming that the
x-axis is vertical and pointing upwards this gives:

Substitution of , where t is the position of point O on the case relative to inertial space,r x t
and dividing by m, gives:

This equation shows that by measuring the displacement x and solving for the differential

(32)

equation, the accelerometer determines the combination of the gravitational field intensity and
the acceleration of the case relative to inertial space along the sensitive axis: . Thus once gg ẗ
is known, is known and a double integration of enables us to compute the position t of theẗ ẗ
moving case. It is this principle which is used in inertial navigation.

4.4 State vector description of dynamic systems

In Section 4.3 we have seen how the appropriate equations of motion could be derived from
Newton’s laws of mechanics. Because of the nature of Newton’s second law, these equations of
motion consist of a set of scalar second-order differential equations. For the purpose of
estimation it is, however, more convenient to transform these scalar second-order differential
equations into a first-order vector form. The following two examples show how this can be done.

Example 34

According to (32) the differential equation representing a linear mass-spring system reads:

To put this scalar second-order differential equation into a first-order vector form, we define two

(33)

variables , and as:x1 x2

Then

(34)
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and substitution of (34) into (33) yields:

(35)

(36)

The two equations (35) and (36) can be arranged to give the first-order vector form:

(37)

Thus with (34) we have transformed the scalar second-order differential equation (33) into the
first-order vector form (37). The vector (x1, x2)

* is called state vector.

Example 35

According to (27) the equations of motion of an earth orbiting satellite expressed in inertial
coordinates read:

To put these second-order differential equations into a first-order vector form, we define a 6-

(38)

vector x as:

(39)

With this definition, the three second-order differential equations of (38) can be put into the
following first-order vector form:

(40)



120 Dynamic data processing

The device used in the above examples of transforming scalar differential equations involving
second-order derivatives to first-order vector equations is an important one. This procedure is
easily generalized to allow one to express an nth-order scalar differential equation by n first-order
differential equations. Higher order scalar equations such as:

(41)

where can be put in a first-order vector form by letting ,u (n)(t) d nu (t)/dt n xi(t) u (i 1)(t), i 1, ,n
to get:

(42)

Clearly, this idea can be extended to simultaneous higher-order equations as well. The general
form of a first-order vector differential equation is given by:

This equation will be referred to as the state equation. It is in a form which is general enough

(43)

to describe the characteristics of many dynamic systems. The time-varying n-vector will bex(t)
referred to as the state vector of the system and the time-varying l-vector indicates the inputz(t)
to the system. A block diagram of the state equation (43) is given in Figure 4.12.

Figure 4.12: State equation (43).

It is implicit from the above representation that given the value of the state vector at anyx(t)
time , and given the time history of the input over an interval of time , thet t0 z(τ) t0≤τ≤ t
solution of the state equation will yield . The state equations can be classified according tox(t)
whether the vector function f is nonlinear or not, and whether it explicity depends on time or not.
If the function f is nonlinear, one speaks of a nonlinear system. Equation (40) for example
constitutes a nonlinear system. If the function f is linear and one or more parameters of the
system vary with time, the system is called a linear, time-varying system. In this case the system
equation takes the form:

(44)
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where are time-varying matrices of appropriate dimensions. A matrix blockF(t) and G(t)
diagram of a linear, time-varying system is given in Figure 4.13.

Figure 4.13: Matrix block diagram of (44).

If the system matrices of (44) are constant, i.e. independent of time, the system isF and G
called a linear, time-invariant system:

(45) .

Equation (37) for example constitutes a linear, time-invariant system.

For many systems the choice of the state vector follows naturally from the physical structure of
the dynamic system. Similarly, the state equation usually follows directly from the physical laws
that govern the system. For instance, in mechanical systems the state variables often correspond
to position and velocity, and the inputs represent the action of several external forces. The
precise nature of the differential equations is then deduced primarily through Newton’s equations
of motion. The following examples serve to demonstrate how a system may be placed in a state
vector frame work. It should be pointed out, however, that the choice of the state variables is not
unique. One may always transform a state vector via a non-singular transformation into ax(t)
new state vector . The system of equations will then transform accordingly. It is clear thatx /(t)
the transformed representation is completely equivalent to the original representation, since one
can always reconstruct the behaviour of the dynamic system in terms of the original state by
using the inverse transformation from . This shows that the choice of the state canx /(t) to x(t)
be adapted to suit various purposes.

Example 36

A mass m, considered a pointmass, is suspended from a massless rod of length l, as shown in
Figure 4.14. The rod is connected to a rigid support at Q by means of a frictionless pinned
arrangement. We shall assume the mass constrained so as to move in a plane. Consequently, only
a single coordinate is required to describe completely the position of the point mass C at anyθ
time. There are two forces acting: the force of gravity pulling the point mass C toward theF 1

i

centre of the earth and the rod tension pulling the point mass toward the pin at Q. The forceF 2
i
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of gravity will be assumed to be constant in magnitude and direction. A component of gravity
serves as a restoring force, acting to return the point mass C to its lowest position at .θ 0

Figure 4.14: The mathematical pendulum.

According to Newton’s second law we have:

(46)

with the position of the point mass in the i-frame. Substitution ofri ri (lsinθ, lcosθ) ,
into (46) gives, since l is constant:F 1

i (0, mg) and F 2
i ( F 2sinθ, F 2cosθ)

By eliminating the rod tension , the equation of motion for the mathematical pendulumF 2

follows as:

To put this equation into a state vector form, we define a two-dimensional state vector as

(47)

. The state vector form for (47) follows then as:x (θ , θ̇)

(48)

This is a zero-input nonlinear state equation.
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Example 37

Figure 4.15 shows the meridian plane of a spherical non-rotating earth with radius R. A vehicle
(car, ship, or airplane) is at time t located at position . A b-frame is attached to the vehicle.r ,ϕ
The vehicle is equipped with two single-degree-of-freedom accelerometers and one gyroscope.
The sensitive axes of the two accelerometers are aligned with the , respectively.b1 and b2 axis
They sense the resultant of acceleration along these two axes. The gyroscope senses the angular
velocity of the b-frame with respect to the inertial i-frame.

Figure 4.15: Spherical non-rotating earth with vehicle at position .r ,ϕ

As we have seen in Example 33 of Section 4.3, accelerometers are not capable of separating
vehicle acceleration from gravitational acceleration . The sensed output of ther̈i gi

accelerometers, denoted by when expressed in the i-frame, is therefore equal to the differencefi

of or:r̈i and gi

(49)

A single integration of this equation gives the vehicle’s velocity in the i-frame as:

And a second integration gives the vehicle’s position in the i-frame as:

(50)

Thus positioning and navigation of the vehicle is possible once , the initial position

(51)

fi , gi ri(t0)
and initial velocity are known. A model for the gravitational acceleration is availableṙi(t0) gi

if we assume that the earth can be considered to be a point mass with mass M. Then, according
to Newton’s universal law of gravitation:
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(52)

In order to obtain , we need to transform the sensed output of the accelerometers, , to thefi fb

inertial frame:

with

(53)

This shows that the angle is needed for the transformation. Here is where the need of aα
gyroscope shows up. The gyroscope is capable of sensing the angular velocity of the b-frame
with respect to the i-frame. If the output sensed by the gyroscope is denoted as , then:ωib

Integration of (54) gives , which when substituted into (53) enables us to compute from the

(54)

α fi

accelerometer output . Summarizing, the appropriate set of differential equations for thefb

equations of motion of the vehicle in inertial coordinates reads:

The computations involved in solving (55) are shown in the block diagram of Figure 4.16. In

(55)

order to put (55) into a first-order state vector form, we define the state vector x as x =
. Then from (55) it follows that:(r1,r2,ṙ1,ṙ2,α)

(56)

This is a nonlinear state-equation with input .f1 , f2 and ωib
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Figure 4.16: Block diagram of an inertial navigation system.

Example 38

In Example 32 the equations of motion of a satellite were expressed in the polar coordinates
(see (31) of Section 4.3). Assuming that the satellite orbit lies in the earth’s equatorialr and Λ

plane, we will now express the satellite’s equations of motion in terms of the geographic
coordinates (radius) and (longitude). This implies that we have to introduce an earth-fixedr λ
e-frame and take the constant angular velocity of the earth into account. The earth-fixed e-ω
frame is defined in Figure 4.17a. Figure 4.17b shows the b-frame relative to the e-frame. The
rotation matrices that relate the three frames, i, e and b, are given as:

Figure 4.17: The earth-fixed e-frame.

From this it follows that:

A comparison of (57) with (29) shows that obviously . Hence the equations of motion

(57)

Λ λ ωt
of the satellite in terms of the geographic coordinates , follow readily from (31) ofr and λ
Section 4.3 as:
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In order to put these equations into a first-order state vector form, we define the state vector

(58)

. It follows then from (58) that:x as x (r ,λ,ṙ,λ̇)

(59)

This is a nonlinear state equation with input .f1 and f2

4.5. Linearization of a nonlinear state equation

The main concern in the remaining sections of this chapter is to obtain solutions, analytical if
possible, to the state equations of dynamic systems. For a nonlinear system, unfortunately, one
cannot in general obtain an analytical closed-form formula which specifies explicitly inx(t)
terms of the initial state and the input . This implies that the nonlinear state equation:x(t0) z(t)

(60)

has to be integrated numerically. For an overview of existing numerical integration techniques
the reader is referred to e.g. [Stoer and Bulirsch, 1980].

If a solution of (60) is available (possibly after numerical integration) for an approximate initial
state and an approximate input , the actual solution of (60), , corresponding withx 0(t0) z 0(t) x(t)
the actual initial state and actual input , can often be approximated to a sufficient degreex(t0) z(t)
by solving the linearized version of (60). In order to see how the linearized version of (60) can
be derived, it is assumed that a solution of the nonlinear state equation (60) is known forx 0(t)
a given initial state and input . Then:x 0(t0) z 0(t)

(61)

The actual state and actual input can be written in terms of the approximate statex(t) z(t) x 0(t)
and approximate input as:z 0(t)

Substitution of (62) into (60) gives:

(62)
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If it is assumed that the vector function f is sufficiently smooth, a Taylor series expansion of
f about and gives:x 0(t) z 0(t)

(63)

Here is the matrix of partial derivatives of f with respect to x evaluated at∂x f(x 0(t) ,z 0(t) , t)
and . Thus is a matrix the th element of which is:x 0(t) z 0(t) ∂x f (α ,β)

where is the th component of f and is the th component of x. The matrix isfα α xβ β ∂z f
similarly defined. From (61) and (63) it follows, after neglecting the higher order terms in (63),
that:

(64) .

This is the linearized version of (60). Note that (64) represents a linear, time-varying system,
with the state vector , the input vector and the system matrices and∆x(t) ∆z(t) ∂xf (x

0 (t) ,z 0(t) , t)
. Whether one is allowed to neglect the higher order terms in (63) depends on∂z f (x

0(t) ,z 0(t) , t)
the smallness of and in relation to the nonlinearity of the vector function f. The∆x(t) ∆z(t)
following examples serve to demonstrate the linearization process.

Example 39

We will again consider the mathematical pendulum of Example 36. According to (48) of Section
4.4, its nonlinear state equation reads:

(65)

It is assumed that the angular displacement and angular velocity of the pendulumθ(t) θ̇(t)
remain small. A reasonable approximation to and is then:θ(t) θ̇(t)

(66)

Linearization of (65) about the approximate state (66) gives:
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(67)

This is a linear, time-invariant state equation with zero input. It describes the small angle
behaviour of the mathematical pendulum.

Example 40

The nonlinear state equation for a satellite orbiting the earth in the equatorial plane reads in
geographic coordinates (see (59) of Section 4.4):r and λ

(68)

Linearization of this nonlinear state equation gives:

(69)

This is a linear, time-varying state equation. Now assume that the satellite orbits the earth such
that to a first approximation:

Then

(70)

(71)
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The with (70) and (71) corresponding input and reads then according to (68) as:f 0
1 f 0

2

(72)

Substitution of (70), (71) and (72) into (69) gives:

(73)

This is a linear, time-invariant state equation. Thus if it is assumed that to a first approximation
no radial displacement takes place and that the time rate of change of longitude is constant, the
time-varying state equation (69) reduces to the time-invariant state equation (73).

Example 41

Consider the nonlinear state equation (56) of Section 4.4. It is expressed in terms of the inertial
coordinates . Since we assume the earth to be non-rotating in the present example, wer1 and r2
may use to transform the state equation (56) such that it is expressedr1 rcosϕ and r2 rsinϕ
in the geographic coordinates (radius) and (latitude). This gives:r ϕ

(74)

where we have used the abbreviations for , respectively.cϕ α and sϕ α cos(ϕ α) and sin(ϕ α)
Linearization of the nonlinear state equation (74) gives:
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(75)

This is a linear, time-varying system. Now assume that the motion of the vehicle is such that:

(76)

Then
(77)

If we also assume that the orientation of the b-frame is such that to a first approximation:

then

(78)

(79)

With (76), (77), (78) and (79), the linear, time-varying state equation (75) reduces to the
following linear, time-invariant state equation:
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(80)

As was pointed out earlier, the choice of the state variables is not unique. One may always
transform one state vector via a non-singular transformation into a new state vector .x(t) x /(t)
The state equations will then transform accordingly. In order to demonstrate this for the present
example, we define new state variables as:

(81)

In terms of these new state variables, the state equation (80) reads:

(82)

Note that is the misalignment angle between the -axis of the b-frame and the localϕ α b1

zenith (see Figure 4.15 of Section 4.4). By rearranging the order of the state variables such that
the vertical and horizontal coordinates are separated, the state equation (82) may also be written
as:
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(83)

This shows that the coupling between the vertical and horizontal coordinates is provided by the
term . The vertical and horizontal coordinates are decoupled if one assumes that the vehicle2ϕ̇0

is approximately stationary, that is, if . Now assume that the vehicle moves along theϕ̇0 0
spherical surface of the earth (this is of course a stronger assumption then only ).r 0(t) constant
Then and the first two equations of (83) vanish. As a result we get the stater(t) R constant
equation:

(84)

Integration of this state equation gives the horizontal position and velocity of the vehicle as
function of time. Note, since is absent, that in this case only one single-degree-of-freedomf1
accelerometer is needed.

4.6 Linear time-varying state equations

In this section the solution and the properties of an n-dimensional linear, time-varying system
represented by the state equation:

(85)

will be examined. First, attention is turned to the homogeneous part of the state equation which
is obtained by setting the input . The homogeneous equation is studied firstz(t) to zero: z(t) 0
because its solution provides the solution for the general state equation (85). In other words, the
solution to the homogeneous state equation is the difficult problem. As a start two distinct
questions about the homogeneous equation require attention:ẋ(t) F(t)x(t)

(i) Given an initial state vector at a time , does there exist a solution that passesx(t0) t0
through at time ?x(t0) t0

(ii) If there exists a solution passing through at time , is it unique?x(t0) t0
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The following theorem states the condition under which a unique solution to the homogeneous
equation can be shown to exist.

Theorem 1

If is a matrix the elements of which are continuous functions of time in the intervalF(t)
then there exists a solution of which is defined in the interval andt0≤ t≤ t1 ẋ(t) F(t)x(t) t0≤ t≤ t1

takes on the value of . Moreover, this solution is unique.x(t0) at t t0

For a proof of this theorem the reader is referred to [Decarlo, 1989]. With the above existence
and uniqueness theorem one can now show that the set of solutions of the homogeneous equation
constitutes a linear vector space of a dimension equal to that of the underlying state space.

Theorem 2

Let be an matrix the elements of which are continuous functions of time t. Then theF(t) n×n
set of solutions of the homogeneous state equation:

(86)

forms an n-dimensional linear vector space.

Proof

It is clear from Theorem 1 that the set of solutions of (86) is not empty. It is also clear by
linearity of the time derivative and by linearity of matrix , that the set of solutions is closedF(t)
under linear combinations. The set of solutions constitutes therefore a linear vector space. To
determine the dimension of this vector space, it will first be shown that if the columns of the

matrix satisfying the matrix initial value problem:n×n X(t)

are linearly independent at time , they are linear independent for all times t. Suppose that some

(87)

t0
linear combination of the columns of matrix is the zero function so that .X(t) X(t)a 0 for all t
Evaluation at yields . Hence, if the columns of matrix are linearlyt0 X(t0)a 0 a 0 X(t0)
independent. But this implies, since , that the columns of matrix areX(t)a 0 for all t X (t)
linearly independent for all . The conclusion reads thus that if an matrix ist n×n X(t)
nonsingular for some time and satisfies the homogeneous equation , it ist0 Ẋ(t) F(t)X(t)
nonsingular for all . Any matrix which satisfies and also has linearlyt n×n X(t) Ẋ(t) F(t)X(t)
independent columns at time is called a fundamental matrix of (86). Thus the columns of at0
fundamental matrix form a basis of for all times t. To show that the columns of an

fundamental matrix span the set of solutions of (86), let be any solution of (86). Sincex(t)
and the columns of are linearly independent, a vector exists such thatx(t0)∈

n X(t0) b∈ n

. Now consider . It is a linear combination of solutions of (86) and thusx(t0) X(t0)b x /(t) X(t)b
itself a solution of (86). Its value at is . By uniqueness it follows then that .t0 x(t0) x /(t) x(t)
Hence, any solution of the homogeneous equation (86) can be written as a linear combination
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of the n linearly independent columns of a fundamental matrix. This proves that the dimension
of the linear vector space of solutions of (86) equals n.

End of proof.

The concept of a fundamental matrix can be used to formulate the solution of the homogeneous
equation in terms of it. Let be any fundamental matrix of (86). Since satisfies (87) andX(t) X(t)
is nonsingular for any , the matrix defined by:t0 Φ (t , t0)

exists and satisfies:

(88)

(89)

and

for all . This special fundamental matrix is called the state transition matrix of (86).

(90)

t0 Φ (t,t0)
Since the ith column of is a solution of the initial value problemΦ (t,t0) ẋ(t) F(t)x(t),

with the "1" at the i-th position, the state transition matrix satisfiesx(t0) (0 0 1 0 0) Φ(t,t0)
the matrix differential equation (88) and reduces to the identity matrix at , one has thet t0
following result:

Theorem 3

The unique solution of:

can be represented as:

(91)

where is the unique matrix satisfying:

(92)

Φ (t,t0)

(93)

Proof

Differentiating yields:x(t) Φ (t,t0)x0

And evaluation at yields:t0

End of proof.
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Equation (92) reveals the reason that is called the state transition matrix. It describes theΦ (t,t0)
zero-input motion of the state vector of a linear, time-varying system and represents thex(t)
linear transformation which maps the initial state at time into the state at time t. Thex(t0) t0
following theorem summarizes two important properties of the state transition matrix.

Theorem 4

(i) transition property:

(ii) inversion property: .

Proof

If is any fundamental matrix of then:X(t) ẋ(t) F(t)x(t)

which is (i). Using (i) and letting :t2 t0

whence (ii) follows.

End of proof.

The transition and inversion properties are illustrated in Figure 4.18.

Figure 4.18: Two dimensional state space illustration of the
transition and inversion property of .Φ (t,t0)

Having discussed the linear homogeneous equation in some detail, the machinery is now
available to represent the solution of the complete state equation (85) for some non-zerox(t)
input .z(t)

Theorem 5

If is continuous, and is the state transition matrix forF(t) Φ (t,t0) ẋ(t) F(t)x(t) and G(t) and z(t)
are piecewise continuous for all t, then the unique solution of the state equation:
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(94)

is given by:

(95) .

Proof

Let be a fundamental matrix of . From integrating:X(t) ẋ(t) F(t)x(t)

follows:

Premultiplication with gives, with , the desired result. Note thatX(t) Φ (t,t0) X (t)X (t0)
1

uniqueness of (95) is not a problem. For if are two solutions of equation (94)x1(t) and x2(t)
satisfying the same initial condition, then , andẋ1(t) ẋ2(t) F(t) (x1(t) x2(t)) with x1(t0) x2(t0) 0
thus by Theorem 1.x1 (t) x2 (t) for all t

End of proof.

Equation (95) expresses the state vector in terms of the state transition matrix . Inx (t) Φ (t,t0)
general, it may be exceedingly difficult, or impossible, to find a closed form solution for the state
transition matrix. This implies that in most cases one must resort to numerical integration
techniques.

4.7 Linear time-invariant state equations

If the system matrices F and G in (85) of Section 4.6 are constant matrices, the linear system
is time-invariant and the state equation becomes:

(96) .

The state transition matrix of a linear, time-invariant system satisfies the matrix initialΦ (t,t0)
value problem:
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In the previous section, matrix F was time dependent and no analytical expression for the

(97)

solution of (97) could be derived. Note, however, that if F is time-independent one can obtain
an explicit form of the state transition matrix. To see this, first consider the scalar version of
(97):

The solution of this scalar first order differential equation is clearly:

where the exponential function is defined as the infinite series:

This series expansion motivates to define the exponential of a square matrix by an infinite series

(98)

identical in form to (98). Thus the matrix exponential for any square matrix F shall be defined
as:

(99) .

It can be shown that the infinite series of (99) is absolutely and uniformly convergent for all
values of t. Consequently, the series can be differentiated and integrated term by term.
Differentiating (99) term by term gives:

But this shows that the unique solution of (97) is given by:

(100) .

Hence, the following theorem has been proven:

Theorem 6

The unique solution of the linear, time-invariant state equation:

is given by:

(101)
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(102) .

Some important properties of the exponential of a square matrix are given in the next theorem.

Theorem 7

For any constant square matrix F, the matrix exponential satisfies:e Ft

The proof of the theorem is omitted since all above properties follow easily from the infinite
series definition (99) of the matrix exponential. Note that there is a strong analogy between the
matrix exponential and scalar exponential, although in some cases it breaks down slightly.

4.8 Evaluation of the matrix exponential

When the exponential of a matrix must be found, such as in the solution of a linear time-
invariant system, a number of numerical calculation methods for evaluating the matrix
exponential are available. In this section two methods will be discussed: the Taylor-series method
and the Jordan canonical form method.

4.8.1 The Taylor-series method

One straightforward way to evaluate the matrix exponential is to use the infinite series by which
the matrix exponential is defined. This method simply approximates by evaluating only thee Ft

first, say n, terms in the series expansion. In other words, one uses the approximation:
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The larger the n and the smaller the time interval , the better the approximation. For larger

(103)

∆t
time intervals , the transition property may be used:∆t

The Taylor-series method may also be used for approximating the state transition matrix of a

(104)

linear time-varying system if the time interval is much less then the time required fort t0
significant changes in the system matrix . Thus in effect one uses the constant FF(t)
approximation to replace the time-varying system by the time-invariantΦ̇ (t,t0) F(t)Φ(t,t0)
system . The Taylor-series method is quite useful for numerical work sinceΦ̇ (t,t0) F (t0)Φ (t,t0)
the repeated multiplication and addition are easily programmed and performed. The method also
makes for flexible programming since it does not require major changes when the dimension of
the state vector is changed. In general, the Taylor-series method is not preferred as an analytical
approach. Only for small dimensions or simple structures of the system matrix F, the method
may be used to write down the transition matrix explicity in terms of elementary functions. The
following three examples illustrate this analytical approach.

Example 42

Consider a particle that moves with constant acceleration in the u-direction. Then . The stateu
...

0
equation reads therefore:

(105)

This is a linear, time-invariant system with the system matrix:

From this it follows that:

(106)

Substitution of (106) and (107) into:

(107)
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gives for the transition matrix:

Compare this result with (22) of Section 3.2.

(108)

Example 43

From (67) of Section 4.5 it follows that the system matrix of the linearized state equation of the
mathematical pendulum reads:

The powers of F needed for the infinite series of the matrix exponential are:

(109)

Multipying by the appropriate powers of and the factorials and summing the elements results∆t
in:

Inspection of the terms in the above series reveals that:

(110)

The solution of the linear, time-invariant homogeneous state equation (67) of Section 4.5 reads
therefore:

(111)
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Example 44

The system matrix of the linearized state equation (84) of Section 4.5 reads:

(112)

The powers of the system matrix are:

Hence, the series expansion of the matrix exponential becomes:

Inspection of the terms in the above series reveals that:

(113)

The solution of the linear, time-invariant state equation (84) of Section 4.5 reads therefore:

Note that if we take the limit , the first two equations of (114) reduce to:

(114)

ω→0
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(115)

Compare this result with (11) of Section 3.2.

4.8.2 The Jordan canonical form method

This second method for computing the matrix exponential is based on the idea that the matrix
exponential of a diagonal matrix is very easy to compute. For a diagonal matrix , = diag.Λ Λ

, the following equality holds:(λ1, ,λn)

(116)

It also holds, see Theorem 7 of Section 4.7, that for any invertible constant matrix T:

Hence, if one could determine an invertible matrix T such that:

the matrix exponential of F could be computed as:

(117)

(118)

Unfortunately not all square nxn matrices F can be diagonalized. Square matrices can be
diagonalized, however, if they have n linearly independent eigenvectors . This can beti, i 1, ,n
seen as follows. From the n relations:

where are the eigenvalues of F, it follows that:λi

where

(119)

Then, since T is assumed to have n linearly independent columns, it has rank n and is thus
invertible. Premultiplication of both sides of (119) with the inverse yields the desired resultT 1

(117). Equation (118) is a valuable computational form for finding the matrix exponential .e Ft

It also clearly shows that the eigenvalues of F to a considerable extent determine the dynamic
behaviour of the linear, time-invariant system. A form of (118) which shows this even more
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clearly follows by expressing (118) explicitly in terms of the column vectors of Tti, i 1, ,n,
and row vectors . Using:ui , i 1, ,n, of T 1

in (118), gives the dyadic sum:

This shows that the response of a system is a composition of motions along the eigenvectors of

(120)

the system matrix F. A particular eigenvalue is excited if the initial state or input vector lies
along the corresponding eigenvector. The following two examples illustrate the calculation of the
matrix exponential using (118) with (116).

Example 45

From the state equation (37) of Section 4.4 the system matrix of a linear mass-spring
accelerometer follows as:

(121)

The characteristic polynomial of F is given by:

This gives the two eigenvalues:

For the present example it will be assumed that . Then, since is positive, both

(122)

γ2 > ω2 γ
eigenvalues are negative. The eigenvectors are obtained by solving for :i 1,2

Ordering the eigenvectors by columns, the matrix T is obtained as:

Its inverse reads:

(123)
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With (123) and (124), application of (118) with (116) gives:

(124)

(125)

The solution of the linear, time-invariant state equation (37) of Section 4.4 reads therefore:

where

(126)

Example 46

Consider again the system matrix F of (112) of Section 4.8.1:

The characteristic polynomical of F reads:

(127)

which results in the three eigenvalues:

The matrix of eigenvectors T and its inverse are given by:

(128)

With (128) and (129), application of (118) with (116) gives:

(129)
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or

(130)

where use was made of . Compare (130) with (113) of Section 4.8.1e iωt cosωt isinωt

It was already pointed out that not all square matrices can be diagonalized. For instance the
system matrix of Example 45 cannot be diagonalized if . This more complicated case isγ2 ω2

solved by transforming the systems matrix into an almost diagonal form so that the matrix
exponential of this form is still easy to compute. This almost diagonal form is called the Jordan
canonical form.

Theorem 8

Let F be any nxn matrix. Then it is always possible to find a nonsingular matrix T which can
be partitioned as:

such that:

where

The block matrix has dimension and the partitioning of T matches that of J.Ji mi×mi, i 1, ,k
The number k of blocks equals the number of linearly independent eigenvectors of F. TheJi

block matrices can be subpartitioned as:Ji

where each subblock is of the form :Jij
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The number of subblocks equals the number of linearly independent eigenvectors thatli Jij

correspond with eigenvalue . Matrix J is called the Jordan canonical form of F and matrixλi Jij

is called a Jordan block. For a proof of this theorem the reader is referred to [Noble, 1969]. The
columns of matrix T can be computed as follows. From and the form of J it followsFT TJ
that:

where is either , depending on J, and where is an eigenvalue of F. The number

(131)

αi 0 or 1 λ αi

is zero whenever the corresponding column vector corresponds with the first column of ati

Jordan block. In this case is an eigenvector of F. Once this column vector is found theti

remaining column vectors of T corresponding with the remaining columns of the Jordan block
can be found from (131) with . These remaining column vectors are known asαi 1 ti

generalized eigenvectors of F. After having computed the Jordan form J of F and the
transformation matrix T and its inverse , the matrix exponential of F can be computed asT 1

shown in the next theorem.

Theorem 9

Let:

where J is the Jordan canonical form of F. Then:

(i)

(ii)

(iii)

(iv)

where p is the dimension of .Jij
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Proof

Only (iv) will be proven. With:

of dimension p, it follows that:

where if .k
p 1

0 k<p 1

This gives with , the result:

from which (iv) follows.

End of proof.
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It is seen from this theorem that if the matrix F cannot be diagonalized, the matrix exponential
of contains besides the purely exponential terms of the form also terms of the formFt e λit

and so on. The dyadic sum of the matrix exponential of will in this case thereforete λit, t 2e λit Ft
also contain the additional terms etc. Let the matrices T and be partitioned so that theirte λit, T 1

blocks respectively correspond with the Jordan blocks . Then, according to theTij and Uij Jij

above theorem one may write:

To show explicitly the dependence on the terms and powers of t, one can take thee λit

exponential out of and write:e λit e Jijt

where is the sum of the dimensions of the -number of matrices and the matrices

(132)

σi li Jij Pij

follow from the ordering per power of t. Expression (132) reduces to that of (120) of Section
4.8.2 if matrix F can be diagonalized. The following two examples illustrate the use of the
Jordan canonical form.

Example 47

Consider a particle that moves with constant velocity in the u-direction. Then . The stateü 0
equation reads therefore:

(133)

This is a linear, time-invariant system with the system matrix:

(134)

This matrix has two identical eigenvalues: . The number of linearly independentλ1,2 0
eigenvectors that correspond with this eigenvalue equals 1. This eigenvector reads:

Using (131) the corresponding generalized eigenvector follows from:t2

as:
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Hence, the transformation matrix T and its inverse read as:T 1

The Jordan canonical form of (134) reads therefore:

with . The matrix exponential of follows with Theorem 9 then as:λ 0 Ft

Hence, the solution of the state equation (133) reads:

Compare this result with (12) of Section 3.2

Example 48

In Example 45 it was assumed that . This is known as the overdamped case. Now we willγ2>ω2

consider the critically damped case. This corresponds to the assumption that . Theγ2 ω2

eigenvalues of the system matrix:

are then:

One eigenvector of F is easily found from as:(F γ I2)t1 0

Since the rank of the 2 2 matrix is one, there is only one linearly independent× (F γ I2)
eigenvector which corresponds with the eigenvalue . The vector must therefore be aγ t2
generalized eigenvector of F. This vector is found from as:(F γ I2)t2 t1
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The matrix T and its inverse become therefore:T 1

With the Jordan canonical form of F given as:

the matrix exponential of follows as:Ft

The solution of the linear, time-invariant state equation (37) of Section 4.4 reads therefore for

(135)

the critically damped case as:

(136)

where :

4.9 Summary

In this chapter we introduced a class of models that enable us to describe the dynamic behaviour
of a sufficient number of dynamic systems. In its most general form the dynamic model consists
of a nonlinear first-order vector differential equation. An analytical closed form solution of it is
generally not available. Linearization of the nonlinear system leads however to a linear, time-
varying system of which the structure of the solution is known. The actual solution of this linear
system is known once the state transition matrix is known. In most cases numerical integration
is needed in order to find the state transition matrix. However if the linear system can be shown
to be time-invariant, then an explicit formula for the state transition matrix is available. It is the
matrix exponential of the constant system matrix. The chapter was concluded with a discussion
of two methods for evaluating the matrix exponential. Table 4.2 gives an overview of the
different types of state equations.
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Nonlinear state equation

Solution found through numerical integration

Linearized state equation

This is a linear, time-varying state equation

Linear time-varying state equation

Solution is of the form:

State transition matrix is found through numerical integration of

Linear time-invariant state equation

Solution is

Table 4.2: Different types of state equations.





5 Random functions

5.1 Introduction

In the previous chapter we developed the concept of a state-space model for time-varying
parameters . The approach taken in the precious chapter was a purely deterministic one;x(t)
no considerations of randomness were given. In practice however, it often happens that it
does not suffice to base a study of the characteristics of a dynamic system solely on a
deterministic description of the system. Often the inputs of the system are influenced by
disturbances which are difficult or even impossible to describe deterministically. If a
deterministic description of the input fails, it is fortunately often still possible to consider, to
a sufficient degree of approximation, the disturbances as random. For instance, the
acceleration imported to a vehicle when it travels over a road can be considered to be
influenced by random disturbances, the statistical nature of which depends on the quality of
the road. Also the forces acting upon a ship may sometimes be considered as random. And of
course also the inherent uncertainty in measurements of for instance the system’s input may
be considered as random. In order to be able to include randomness in the description of
dynamic systems, this chapter is concerned with some of the elementary concepts in the
theory of random functions. Random functions are sometimes also called random processes or
stochastic processes. As we will see, random functions are generalizations of random
variables, and therefore much of the probability theory of random variables can be applied to
random functions [Breiman, 1969, Papoulis, 1985, Peebles, 1987].

This chapter is organized as follows. In Section 5.2 we briefly discuss some of the statistical
characteristics of random functions. For the purposes of this book the most important
characteristics of random functions are their first two moments: the mean and variance. In
Section 5.3 we present the extremely important propagation laws for the mean and variance
of the output of dynamic systems. These laws generalize in a natural way the well-known
propagation laws of random vectors. Section 5.4 deals with a special type of random function,
namely the white noise random function. In Section 5.5 it is shown how the propagation laws
of Section 5.3 simplify if the random inputs of the dynamic system consist of white noise.
Finally, in the last section, Section 5.6, we introduce the random polynomial equations of
motion.

5.2 The mean and covariance of random functions

The consideration of random variables which are functions of time, leads us to the study of
random functions. A random function may be thought of as a family, or collection, ofx(t)
functions of time t, any one of which might be observed on any trial of anx i(t), i 1,2, ,
experiment1. The functions are called sample functions of the randomx i(t), i 1,2, ,
function . An interpretative picture of a random function in terms of its samplex(t) x(t)
functions is illustrated in Figure 5.1.x i(t), i 1,2,3

1 The parameter t will normally be interpreted as time, although this is not necessary.
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Figure 5.1: Three sample functions , of the random function .x 1(t), x 2(t) x 3(t) x(t)

For time t fixed, say takes on repeated trials of the experiment different samplet t1, x(t1)
values at random. Thus is a random variable, and the probability that takes valuesx(t1) x(t1)
in a certain range is given by the probability distribution function. In this case the
dependence on time is shown explicitly in the notation of the probability distribution
function:

The corresponding probability density function is given as:

(1)

By letting time vary in (1) and (2), we have in fact specified the first-order probability

(2)

t1
distribution function and the first-order probability density function of the random function

. For another fixed time instant, say , is again a random variable. The probabilityx(t) t2 , x(t2)
of occurrence of a pair of sample values of in certain ranges is then given byx(t1) and x(t2)
the joint probability distribution function:

The corresponding joint probability density function is given as:

(3)
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By letting vary in (3) and (4) we have specified the second-order probability

(4)

t1 and t2
distribution function and second-order probability density function of the random function

. Following this pattern, analogous definitions can be given for the higher-orderx (t)
distribution and density functions of . As with random variables, we can define the meanx(t)
and variance of a random function . The mean of a random function is defined as:x (t) x(t)

(5)

Note that the mean of is, in general, a deterministic function of t. We shall say that ax(t)
random function is mean value stationary if the mean is not a function of time t. The auto-
covariance of a random function is defined as:x(t)

The auto-variance is, in general, a function of times . We therefore speak of the

(6)

t1 and t2
auto-covariance function of . The following short-hand notation will be used for the auto-x(t)
covariance function:

Thus for fixed, is the covariance between the two random variables

(7)

t1 and t2≠t1 σxx(t1,t2)
. And for fixed, is the variance of the random variable .x(t1) and x(t2) t2 t1 σxx(t1,t1) x(t1)

We shall say that a random function is covariance stationary, if the auto-covariancex(t)
function is only dependent on the time difference . Thus if is covarianceσxx(t1,t2) t2 t1 x(t)
stationary, then only depends on . If is independent of t,σxx(t,t τ) τ and not on t σxx(t,t τ)
we will write instead of simply . Note that in this case, is the varianceσxx(t,t τ) σxx(τ) σxx(0)
of the random variable .x(t) for all t

The cross-covariance between two random functions and is defined as:x(t) y(t)

Also the cross-covariance is, in general, a function of times . We speak therefore of

(8)

t1 and t2
the cross-covariance function between . The following short-hand notation willx(t) and y(t)
be used for the cross-covariance function:
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The above given definitions hold for scalar-valued random functions. The definitions can

(9)

however be generalized quite naturally to the case of vector-valued random functions. If x (t)
is a random vector function, the scalar auto-covariance of (7) generalizes to the auto-
covariance matrix:
(10)

Thus for fixed, is the covariance matrix of the two random vectorst1 and t2≠ t1 Qxx(t1,t2)
. Note that the diagonal entries of the matrix consist of auto-x(t1) and x(t2) Qxx(t1,t2)

covariance functions, whereas the off-diagonal entries of this matrix consist of cross-
covariance functions. Also note that:

Thus the matrix is square, but not symmetric. The matrix is only symmetric if

(11)

Qxx(t1,t2)
. In this case, is the variance matrix of . The random vector function ist1 t2 Qxx(t,t) x(t) x(t)

said to be covariance stationary if only depends on the time difference . IfQxx(t1,t2) t2 t1
is covariance stationary, we will write instead of simply . The auto-x(t) Qxx(t,t τ) Qxx(τ)

covariance of covariance stationary random functions has the following properties:

(12)

Proof

ad a)

This implies that the auto-covariance function of a covariance stationary scalar
random function is an even function of :τ

ad b)
Let be a scalar random function and define .x(t) u(t) as u(t) x(t τ) x(t)
Application of the propagation law of variances and covariances gives:
0≤σuu(t,t) σxx(t τ,t τ) σxx(t τ,t) σxx(t,t τ) σxx(t,t). Since σxx(t τ,t τ) σxx(t,t)
σxx(0) and σxx(t τ,t) σxx (t,t τ) σxx(τ),we get 0≤σuu (t,t) 2(σxx(0) σxx (τ))

or:

Now define . Then we find in a similar way as

(13)

v (t) as v (t) x (t τ) x(t)
above that , or:0≤σvv (t,t) 2(σxx(0) σxx(τ))
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From (13) and (14) the result (12b) follows.

(14)

Let be two random vector functions. The scalar cross-covariance of (9)x (t) and y (t)
generalizes then to the cross-covariance matrix:

The cross-covariance of two covariance stationary random functions has the following

(15)

properties:

(16)

Proof

ad a)

ad b) Define the random vector function in terms of the scalarw(t)
random functions . Thex(t) and y(t)as w(t) (x(t),y(t τ))
variance matrix follows then as:Qww(t,t) of w(t)

Because of the covariance stationarity of , thex(t) and y(t)
entries of the matrix are independent of t :Qww(t,t)

Matrix is a variance matrix, and therefore always

(17)

Qww(t,t)
positive semi-definite. Its determinant is therefore always non-
negative. From the non-negativeness of the determinant of (17)
it follows then:

And this proves (16b). It should be noted that (16) reduces to (12) if To concludey(t) x(t).
this section, some typical examples of auto-covariance functions are given in Table 5.1. Many
of these auto-covariance functions will be seen to reappear in the remaining part of this book.



158 Dynamic data processing

σ2

0 τ

The constant covariance function

t2

−t 0 τ

The linear covariance function

qt

−t 0 τ

1

−t t0 τ

The triangular covariance function

τ The exponential covariance function

τ

The damped exponential covariance func-
tion

τ

The band limited covariance function

Table 5.1: Auto-covariance functions.
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Example 49

Let be an random vector function with auto-covariance matrix . And let thex(t) n×1 Qxx(t,τ)
random vector function be defined as:m×1 y(t)

where A is a constant matrix and a is a constant vector. We are asked to derive

(18)

m×n m×1
the auto-covariance matrix of and the cross-covariance matrix between and .y(t) y(t) x(t)
With (18), the auto-covariance matrix of follows as:y(t)

or as:

In a similar way the cross-covariance matrix between follows as:

(19)

y(t) and x(t)

or as:
(20)

Example 50

Let be two scalar random functions with auto-covariance functions:x
1
(t) and x

2
(t)

(21)

Their cross-covariance function is assumed to be identically zero. Hence, the twoσx1x2
(t,τ)

random functions are uncorrelated. A scalar random function is defined as the differencey(t)
of :x

1
(t) and x

2
(t)

We are asked to derive the auto-covariance function , and the cross-covariance

(22)

σyy(τ)
functions . In order to do so, we first write (22) in matrix-vector form as:σyx1

(τ) and σyx2
(τ)
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With

(24)

application of (19) to (23) gives:

(25)

In a similar way it follows from applying (20) to (23), with (24), that:

(26)

Example 51

Let be a random function with auto-covariance function:x(t)

We are asked to derive the variances and covariances of the three random variables

(27)

for . In order to obtain the required variances andx(ti), with ti t0 (i 1)/2 i 1,2,3
covariances, we first define a random vector y as:3×1

The variance matrix reads then:

(28)

Qyy of y

(29)
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With and (27) this gives:ti t0 (i 1)/2

The required variances and covariances of are given by the entries ofx (ti), i 1,2,3 Qyy.

Example 52

Two scalar random functions are defined as:x
1
(t) and x

2
(t)

where are random variables with the following variances and covariance:

(31)

a and b
(32)

We are asked to derive the auto-covariance functions and cross-covariance function of
. In order to solve this problem, we first define a random vector functionx

1
(t) and x

2
(t)

and write (31) in matrix-vector form as:x (t) as x (t) (x
1
(t), x

2
(t))

Substitution of (33) into:

(33)

gives:

And with (32) this gives:

or
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(34)

Hence, the required covariance functions follow as:

(35)

Note that both random functions are covariance stationary.x
1
(t) and x

2
(t)

5.3 Propagation laws for linear systems: the general case

In this section we will show how to compute the mean, the cross-covariance and the auto-
covariance of the output of a linear, time-varying system:

when the initial state is a random vector and the input is a random function. According to

(36)

Theorem 5 of Section 4.6 the solution of the state equation (36) reads:

It will be clear that when the initial state is a random vector, , and the input is a random

(37)

x(t0)
function, , the output of the linear system becomes a random function:z(t)

(38) .
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5.3.1 The mean of the output x(t)

A formal derivation of the mean of will now be given.2 From taking the expectation ofx(t)
(38) it follows that:

The propagation law for the mean of the output of a linear system reads therefore:

(39) .

This shows that the mean of is a solution of the differential equation:x(t)

2 Derivatives and integrals of random functions are again random functions. As in the case of
deterministic time functions, these derivative and integral operators are defined in terms of
limits. However, since we wish to ensure convergence of the associated limits for the entire
family of sample functions that contains the random function, the definitions of derivatives and
integrals of random functions may differ from those of ordinary deterministic time functions.
There is no difference if the associated limits exist for every sample function of the random
function. But there is a difference if the ordinary limits of some of the sample functions fail to
exist. This may for instance be due to the fact that some of the sample functions fail to be
continuous. If the ordinary limits fail to exist for the entire family of sample functions, one can
define the limits in an alternative, less stringent, way. These alternative definitions include
convergence in probability, convergence with probability one and mean-square convergence,
see e.g. [Stark and Woods, 1986]. If the ordinary limits do not exist for the entire family of
sample functions, it is usually sufficient for most practical applications, to assume that the
limits exist in the mean-square sense. And it can be shown that the same propagation laws, as
derived in this section, follow if the derivatives and integrals are to be interpreted in the mean-
square sense. For more details the reader is referred to e.g. [Melsa and Sage, 1973].
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5.3.2 The cross-covariance between the output and inputx(t) z(t)

A formal derivation of the cross-covariance matrix of the output and the inputQxz (t1 , t2) x (t)
will now be given. With the definitions:z (t)

(40)

the difference of (38) and (39) may be written as:

Substitution of (41) into:

(41)

gives:

The propagation law for the cross-covariance between the output and the input readsx(t) z (t)
therefore:

(42) .

Example 53

A random function is defined as the integral of the random function :x(t) z(t)

(43)
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The auto-covariance function of is given as:z(t)

We are asked to derive the cross-covariance function . According to (42) the cross-

(44)

σxz (t1, t2)
covariance function between of (43) satisfies:σxz (t1, t2) x(t) and z(t)

Since is covariance stationary, we have:

(45)

z(t)

Substitution of (46) into (45) gives:

(46)

If we apply the change of variable , the integral (47) becomes:

(47)

τ1 t2 τ

Substitution of (44) into (48) gives then after integration, for the required cross-covariance

(48)

funtion:

It is of interest to compare this result, with the result one would get in the discrete case. The

(49)

discrete counterpart of the integral (43) is given by the sum:

Note that (44) implies that both the variance of , as well as the covariance between

(50)

z(t)
equal the constant . For the discrete case this would mean that:z(t) and z(τ) σ2 for all t,τ

Application of the propagation law of covariances to (50) gives therefore with (51) for :

(51)

l≥k
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(52)

The same result follows for . Compare the discrete result (52) with its continuousl ≤ k
counterpart (49).

Example 54

Consider again equation (43). Now however, it is assumed that the auto-covariance function
of is of exponential form:z(t)

Substitution of (53) into (48) gives:

(53)

(54)

In order to solve this integral we need to distinguish between two cases:

The case t0 ≤ t1 ≤ t2

In this case (54) becomes:

Hence:

(55)

The case t0 ≤ t2 ≤ t1

In this case , but . We therefore write (54) as the sum of two integrals:t2 t0 ≥ 0 t2 t1 ≤ 0

Integration gives:
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or

(56)

From (55) and (56) the required cross-covariance function follows as:

(57)

Let us now investigate what happens when the limit of (57) is taken. Since (53)α→0
reduces to the constant , we expect the limit of (57) to be identical to (49)σ2 for α→0 α→0
of the previous example. In order to verify this, we make use of the expansion:

With (58), we may write (57) as:

(58)

(59)

By taking the limit of (59) we get:α→0

And this is indeed identical to (49).

(60)

Example 55

The random function is defined in terms of the random function as:x(t) z(t)

The auto-covariance function of is assumed to be a damped exponential:

(61)

z(t)
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We are asked to derive the cross-covariance function between . According to

(62)

x(t) and z(t)
(42) the cross-covariance function between of (61) satisfies:x(t) and z(t)

With the change of variable this integral may also be written as:

(63)

τ1 t2 τ

Substitution of (62) into (64) gives:

(64)

(65)

In order to solve this integral we need to distinguish between two cases:

The case t0 ≤ t1 ≤ t2

In this case (65) may be written as:

Using

(66)

and

(67)

(68)

we get for (66):
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(69)

The case t0 ≤ t2 ≤ t1

In this case (65) may be written as:

Again using (67) and (68), we get for (70):

(70)

(71)

Thus the required cross-covariance function is given by (69) and (71).

Let us now investigate what happens to the cross-covariance function if we take the limit
, or the limit , or both these limits. It follows from (69) and (71) that:ω→0 α→0

This is the cross-covariance function one would get when the auto-covariance function of the

(72)

input is of exponential form (verify this yourself). If we take the limit , it followsz(t) α→0
from (69) and (71) that:

(73)
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This is the cross-covariance function one would get when the auto-covariance of the input
is of cosine form (verify this yourself). Finally, if we take the limit of (73), itz (t) ω→0

follows that:

This is the cross-covariance function one would get when the auto-covariance function of the

(74)

input equals a constant (verify this yourself).z(t)

5.3.3 The auto-covariance of the output x(t)

A formal derivation of the auto-covariance matrix of the output will now beQxx (t1,t2) x(t)
given. Substitution of (41) into:

gives:



Random functions 171

The propagation law for the auto-covariance of the output follows therefore as:x(t)

(75) .

This result shows that the auto-covariance matrix of is composed of four terms. The firstx(t)
term depends on the variance matrix of the initial state vector . The second andQxx (t0,t0) x(t0)
third term are dependent on the cross-covariance matrix . These two termsQxz (t0,t) Qzx (t,t0)
are absent if the input is uncorrelated with the initial state vector . And the fourthz(t) x(t0)
term is dependent on the auto-covariance matrix of the input vector . It happensQzz (t1,t2) z(t)
that in many practical applications is uncorrelated with . Then:x(t0) z(t)

and (75) simplifies to:

(76) .

Note that a double integration is needed for the computation of . However, if theQxx(t1,t2)
cross-covariance matrix is known, one can do with just a single integration. ItQzx(t1,t2)
follows namely with (42) that (76) may be expressed in terms of as:Qzx(t1,t2) Qxz(t2,t1)

(77) .
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Example 56

The random function is defined as the integral of :x(t) z(t)

The auto-covariance function of is assumed to be a constant:

(78)

z(t)
(79)

We are asked to derive the auto-covariance function of . According to (76) the auto-x(t)
covariance function of satisfies:x(t)

(80)

Since is covariance stationary we have:z(t)
(81)

Substitution of (81) into (80) gives with the change of variable :τ1 τ2 τ

Substitution of (79) into (82) gives then:

(82)

or

(83)

Note that the variance of , , increases quadratically with time t,x(t) σxx (t,t) σ2 (t t0)
2

whereas the covariance between ,x (t) and x (t τ),σxx (t,t τ) σ2 (t t0)
2 σ2 (t t0)τ

increases linearly with . A plot of the auto-covariance function (83) is shown in Figure 5.2τ
for .σ2 1 and t0 0
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Figure 5.2: The auto-covariance function σxx (t1,t2) σ2 (t1 t0) (t2 t0), withσ2 1 and t0 0.

Instead of using (76) for the derivation of (83), we could also have used (77). According to
(77), the auto-covariance function of satisfies:x(t)

Since the cross-covariance function has already been derived in Example 53, we

(84)

σxz (t1,t2)
may use also (49) in Section 5.4.3. Substitution of (49) into (84) gives then after integration
indeed (83).

Example 57

The random function is defined as the average of :x (t) z(t)

The auto-covariance function of is given as:

(85)

z(t)

The auto-covariance function of the output follows then with (76) as:

(86)

x(t)

(87)

Hence, the variance of is constant and independent of t:x(t)

At first sight it may seem strange that the variance of the average is constant. Would we

(88)

x(t)
not expect that the variance of decreases for increasing t? This is at least what wex(t)
encountered so many times in the discrete case. See for instance equation (25) in Section 2.2.
In order to understand this difference, we consider the discrete counterpart of (85):
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Let us assume that the variances and covariances of are given as:

(89)

z
i

where is the Kronecker symbol, which is defined as:

(90)

δij

If we apply the propagation law for variances and covariances to (89) we get with (90) and

(91)

(91):

or

(92)

This result indeed shows that the variance of the average decreases as k increases. Howx
k

does this result then compare with (88)? The answer lies in our assumptions about the
variances and covariances of . Equation (90) is namely not the discrete counterpart of (86).z

i
With (90) we have , whereas with (86) we have .σz i z j

0 for i≠j σzz (t1,t2) σ2≠0 for t1≠ t2
The correct discrete counterpart of (86) is therefore:

(93)

If we now apply the propagation law of variances and covariances to (89) we get with (93):
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or

(94)

And this result indeed corresponds with (87). A random function having as auto-z(t)
covariance function the constant (86), is called a random constant. This terminology is best
explained if we look at the discrete case. We define a as:(k k0)×1 vector z

Its variance matrix reads according to (93) as:

(95)

Note that the rank of this matrix equals 1. Hence, there exist a -number of linearly

(96)

(k k0 1)
independent functions of that have a zero-variance. Since:z

if

the vector has a zero variance matrix and is therefore constant. This shows that thew B z
successive differences of the are constant:z

i
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Hence:

which shows that the random characteristics of the are constant for all i.z
i

Example 58

Let be defined as:x(t)

The auto-covariance function of is assumed to be of exponential form:

(97)

z(t)

According to (76), the auto-covariance function of satisfies:

(98)

x(t)

This gives with the change of variable :

(99)

τ2 τ1 τ

Since we only need to consider the case . For this case (100)

(100)

σxx (t1,t2) σxx(t2,t1) t0≤ t1≤ t2
may be written as:

Performing the integration between brackets gives:

or
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And a second integration gives:

or

The result that corresponds to the case that follows from interchanging in

(101)

t0≤ t2≤ t1 t1 and t2
(101). The auto-covariance function of reads therefore:x(t)

Let us now investigate what happens to the auto-covariance function if the limit is

(102)

α→0
taken. Using:

we may expand (102) as:

This shows that:

(103)

Compare this result with (83).

(104)

Example 59

Let be defined as the average of :x(t) z(t)

The auto-covariance function of is assumed to be of the following exponential form:

(105)

z(t)
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The auto-covariance function of the average follows then from multiplying (102) with

(106)

x(t)
. This gives:1

2
α / ((t1 t0) (t2 t0))

(107)

If we take the limit of (107) we get:α→∞

(108)

This result is the continuous counterpart of (92) in Section 5.3.3. It seems therefore natural to
believe that (106) is the continuous counterpart of (90) in Section 5.3.3 for the case that

. Note however, that although the limit (108) exists, the corresponding limit ofα→∞ σzz(τ)
of (106) does not exist. It follows therefore that (108) should be seen as an approximation to
the auto-covariance function of the average , for the case the input has (106) as auto-x(t) z(t)
covariance function with large, but finite, value of α. The auto-covariance function (106) is
plotted in Figure 5.3 for some different values of α. This figure shows that the covariance
between decreases as x decreases. And for α large enough one may considerz(t) and z (t τ)
the covariance between as practically absent. This shows that in practicalz(t) and z(t τ)
applications, one may use (106) with large, but finite, α as an approximation to the auto-
covariance function of a random function for which are uncorrelated.z(t) and z(t τ), τ≠0,
We will have more to say about uncorrelated random functions in the next section.
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Figure 5.3: The auto-covariance function σzz(τ)
1

2
ασ2e α τ

for increasing values of α.

Example 60

Let be defined as the moving average of :x(t) z(t)

The auto-covariance function of is of exponential form:

(109)

z(t)

Then

(110)

This gives with the change of variable :τ1 τ2 τ

(111)

We now need to distinguish between the case and the case :t2 t1 ≤T t2 t1 ≥T

The case t2 t1 ≤ T

If , thent2 ≥ t1 τ2 t1 ≤ 0 for τ2∈ [t2 T,t1],τ2 t1 ≥ 0 for τ2∈ [t1,t2] and τ2 t1 T ≥ 0 for
. We therefore write (111) as the sum of two double integrals:τ2∈ [t2 T,t2]
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This may be written as:

Solving for the inner integrals gives:

or

And a second integration gives:

or finally

(112)

The case t2 t1 ≥ T

If , then . We may therefore write (111)t2 ≥ t1 τ2 t1 ≥ 0 and τ2 t1 T ≥ 0 for τ2∈ [t2 T,t2]
as:

Solving for the inner integral gives:
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And a second integration gives:

Both the equations (112) and (113) hold for . The corresponding result for

(113)

t2≥ t1 t1≥ t2
follows, since , from interchanging in the right-hand sides ofσxx (t1,t2) σxx (t2,t1) t1 and t2
(112) and (113). The auto-covariance function of the moving average follows therefore,x(t)
with as:τ t2 t1

(114)
Let us now investigate what happens to the auto-covariance function (114) if the limitα→0
is taken. Using the expansion:

it follows from (114) that:

This agrees with the auto-covariance function of the average, as derived in equation (87) in

(115)

Section 5.3.3. In a similar way it follows from (114) that:

(116)

This shows that if the auto-covariance function of the input is given byz(t)
, the auto-covariance function of the moving average approaches, asσzz (τ)

1

2
ασ2e α τ x(t)

goes to infinity, the triangular function (116), see Figure 5.4.α

Figure 5.4: The triangular auto-covariance function (116).
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Example 61

Consider a particle that moves along a straight line. It is assumed that the acceleration of the
particle is measured continuously with an accelerometer. The initial position and initial
velocity of the particle are assumed known and zero. The position of the particle followsx(t)
then from the observed acceleration as (see e.g. equation (11) in Section 3.2):ẍ(t)

The auto-covariance function of the observed acceleration is assumed to be given as:

(117)

We are asked to compute the variance of the position . From (117) and (118) it

(118)

σxx(t,t) x(t)
follows with (76) that:

This may be written, with the change of variable , as:τ1 τ2 τ

or as:

(119)

Integration of the inner integrals between brackets gives:

Substitution of (120) into (119) gives:

(120)
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After integration, the variance function of position follows as:x(t)

If we substitute the expansion:

(121)

into (121) and rearrange terms we get:

This shows that:

(122)

This would be the variance of position, if the acceleration is treated as a random constant,

(123)

having as its auto-covariance function the constant . It also follows from (121)σẍ ẍ (τ) σ2

that:

This would for large, but finite, approximate the variance of position, if the continuously

(124)

α
observed accelerations have the auto-covariance function .σẍẍ (τ)

1

2
ασ2e α τ

5.4 White noise

Up to this point we have been dealing with random functions of which the auto-z(t)
covariance functions satisfy for any t . That is, we have soσzz (t,t τ) σzz (t,t τ) ≠ 0 if τ ≠ 0
far considered only random functions of which the random variables of any pairz(t)

are correlated for . The interesting question now arises as to how to define az(t1), z(t2) t1≠ t2
random function of which the random variables of any pair are uncorrelatedz (t) z(t1), z(t2)
for . Such a random function will be called a white noise random function. By drawingt1≠ t2
the parallel with the discrete case, one is tempted to define a white noise random function as
one for which the auto-covariance function satisfies forσzz (t,t τ) 0 τ≠ 0 and σzz (t,t τ)≠ 0
otherwise. However, as it turns out, no such random function exists, except in a highly
degenerate sense. To gain some insight into this rather surprising result, let us start with a
brief review of the discrete case. A random variable is defined in terms of a sequence ofx

k
random variables as:z

i
, i 1,2, ,

The are non-random constants. For the variances and covariances of the we assume

(125)

ai z
i

that:
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The symbol denotes the Kronecker symbol. It is defined as:

(126)

δij

Thus it is assumed that the sequence consists of uncorrelated random variables. If we

(127)

z
i

apply the propagation law of variances and covariances to (125) we get:

With (126) this gives:

(128)

and with property (127) of the Kronecker symbol, equation (129) reduces to:

(129)

with defined as:

(130)

min. [k,l]

Note that the above derivation shows that it is the property of uncorrelatedness of , that

(131)

z
i

makes the double sum (128) transform into the single sum (130). Let us now consider the
continuous case. The continuous counterpart of the sum (125) is given by the integral:

(132)

The function is non-random. Equation (126) suggests to define the auto-covariancea(t)
function of an uncorrelated random function as:z(t)

(133)

Application of the propagation law (76) to (132) gives:
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(134)

This result is the continuous counterpart of the discrete result (128). We may therefore expect
to find the continuous counterpart of (130) when (133) is substituted into (134). However, if
we substitute (133) into (134), we find that the double integral equals zero! This is because
the function (133) vanishes everywhere except along the line . Hence, the volume ofτ 0

is zero. Thus we find, that although (133) seems to be the continuous counterpartσzz (τ1,τ2)
of (126), the double integral (134), being zero for this case, does not correspond with the
non-zero sum (130). It therefore follows that (133) is not the way to define an uncorrelated
random function. Another approach needs therefore be taken. We have seen above in the
discrete case that it is the property of uncorrelatedness that enables us to write the double
sum (128) as a single sum (130). This shows that instead of defining uncorrelatedness in
terms of the zero covariances of the input , we may also define uncorrelatedness in termsz

i
of the variances and covariances of the output . That is, we may define the sequence tox

k
z

i
be uncorrelated if the variances and covariances of the output satisfy the single sum (130).x

k
Let us now try to generalize this approach to the continuous case. A random function is then
said to be uncorrelated if the auto-covariance of the output of (132) satisfies:

(135)

This integral is the continuous counterpart of the sum (130). The question now arises what
type of auto-covariance function of the input will make the auto-covariance function ofz(t)
the output look like (135). The answer is that the auto-covariance function of an uncorrelated
random function must be a scaled version of the so-called Dirac delta function orz(t)
impulse function. That is, the required auto-covariance function of an uncorrelated random
function is given by:z(t)

(136) .

where is the Dirac delta function or impulse function. The impulse function isδ(t) δ(t)
defined by its property that it isolates or reproduces the function value of any functionf (t)

, which is continuous at t, according to the following integral formula:f (τ)

(137) .

Let us now verify that we indeed get (135) when (136) is substituted into (134). Substitution
of (136) into (134) gives with the change of variable :τ1 τ2 τ



186 Dynamic data processing

(138)

if , then . The inner integral of (138) may then bet1 ≥ t2 τ2 t1 ≤ 0 and τ2 t0 ≥ 0 for τ2∈ [t0,t2]
considered as a special case of (137). Indeed, defining:

we obtain with (137):

(139)

(140)

Substitution of (140) into (138) gives:

(141)

which is indeed identical to (135) for . The corresponding result for the caset2≤ t1 t1≤ t2
follows by replacing in the right-hand side of (141) by . Hence, we have shown thatt2 t1
(134) reduces to (135), if the auto-covariance function of satisfies (136). Thus, it seemsz (t)
that a white noise random function may be defined as a random function having (136) asz(t)
its auto-covariance function. There is however one problem with this definition. The impulse
function does not exist as an ordinary function. It will be clear that the essential featureδ(t)
of the above derivation is given by the defining property (137) of the impulse function .δ(τ)
Unfortunately, no ordinary function exists, that has the reproducing property (137) forδ(τ)
any function continuous at t. This can be seen as follows. Let us define a functionf (t τ)

in terms of as:f (t τ) f (t τ)

It follows then with (137) that:

(142)

(143)

But this would imply with (137) that:
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(144)

And clearly no ordinary function exists such that (144) holds true for any functionδ(τ)
continuous at t. That is, no function exists that is zero in any interval notf (t τ) δ(τ)

containing the origin and non-zero at the origin. Thus, strictly speaking (137), and therefore
also (136), make no sense. A way out of this dilemma is however to consider instead of ,δ(τ)
a family of functions , parametrized with the parameter , such that (137) holds trueδα(τ) α
approximately. Consider for instance the following family of functions:

Then:

(145)

(146)

This is the average of over the interval , see Figure 5.5 which is a goodf (t τ) [ 1

α
, 1

α
]

approximation to for large values of .f (t) α

Figure 5.5: The average of .f (t τ) for τ ∈ [ 1

α
, 1

α
]

In fact, this average reduces exactly to if the limit of the integral (146) is taken.f (t) α→0
Hence, it follows that although no ordinary function exists such that (137) holds true,δ(τ)
there do exist functions for which:δα(τ)

(147)
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For large enough, the corresponding class of functions:α

may therefore be considered to approximate to a sufficient degree the auto-covariance

(148)

function of practically uncorrelated random functions . Note namely that for increasingz(t)
values of , the auto-covariance function (148) behaves more and more like an impulse, seeα
also Figure 5.6.

Figure 5.6: Graph of for different values of .δα(τ) α

The limit of (148) as does, however, not exist. This stipulates, that strictly speakingα→∞
white noise random functions do not exist. Hence, in order to model the auto-covariance
function of a practically uncorrelated random function , we should strictly speaking makez(t)
use of (148) with large but finite. The finite value of has however the disadvantage thatα α
no use can be made of the integral property (147). As a consequence the simplification from
the double integral (134) to the single integral (135) is strictly speaking impossible if isα
finite. Practically however, the single integral may be considered a good enough
approximation to the double integral for large enough. Thus for practically uncorrelatedα
random functions, the simplification from (134) to (135) can be done with a sufficient degree
of approximation. We will therefore agree from now on to define white noise random
functions as those inputs to (132) that result in an output having (135) as auto-covariancex(t)
function. The name white noise arises out of the fact that contains in the limit asδα(τ)

, just as white light, all frequencies in the same amounts. The notation used for theα→∞
auto-covariance function of a white noise random function will be that of (136), with the
impulse function satisfying the integral equation (137). And the interpretation given toδ(τ)
the integral equation (137) will be that of the limit (147). As a final remark, we note (see
137) that since the impulse function has the units of 1/time, the function of (136)δ(τ) σ2(t)
cannot have the same units as . The function is therefore not a varianceσzz(t1,t2) σ2(t)
function. It is called a spectral density function. And it has the units of the auto-covariance
function multiplied with the unit of time.

Example 62

In this example we will show that a random function with auto-covariance function:z(t)
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can be considered as white noise when . The auto-covariance function (149) is plotted

(149)

α→∞
in Figure 5.7 for different values of . Note the impulse-like behaviour of this auto-α
covariance function as increases. We consider the following integral:α

with a non-random function.

(150)

a(t)

Figure 5.7: The auto-covariance function for increasing values of .1

2
ασ2e α τ α

Application of propagation law (76) to (150) gives, with the change of variable :τ1 τ2 τ

(151)

Let us first evaluate the inner integral of (151):

(152)

If , then and . Hence, we may write (152) as:t1 ≥ t2 τ2 t1 ≤ 0 τ2 t0 ≥ 0 for τ2 ∈ [t0,t2]

(153)

Integration by parts gives for the first integral:



190 Dynamic data processing

and for the second integral:

(154)

Since and , it follows that the limits of (154) and (155) as are both

(155)

τ2 t1 ≤ 0 τ2 t0 ≥ 0 α→∞
equal to . Hence (152), which is the sum of (154) and (155), becomes after taking the1

2
a(τ2)

limit , equal to :α→∞ a(τ2)

(156)

We have therefore shown that for , the limit of (151) as equals:t1≥ t2 α→∞

The corresponding result for the case follows by replacing on the right-hand side of

(157)

t2≥ t1 t2
(157) by . As a general result we therefore have:t1

And this proves that the random function can indeed be considered to be white noise for

(158)

z(t)
.α→∞

5.5 The auto-covariance of the output of a linear system: the white
noise case.

In this section we will show how to compute the auto-covariance of the output:
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when the input is a white noise random function with auto-covariance matrix:

(159)

z(t)

(160) .

The matrix is called the spectral density matrix of the random function . It will beSzz(t) z(t)
assumed that the input is uncorrelated with the initial state vector :z(t) x(t0)

Then, according to (76), the following propagation law applies:

(161)

(162)

Substitution of (160) into (162) gives after the change of variable :τ1 τ2 τ

If , then . In this case the inner integral of (163)

(163)

t1 ≥ t2 τ2 t1 ≤ 0 and τ2 t0 ≥ 0 for τ2 ∈ [t0, t2]
can be evaluated using property (137) of the impulse function. The result reads

. We therefore have for :Φ (t1,τ2)G(τ2)Szz (τ2) t1 ≥ t2

The corresponding result for the case follows by replacing in the integral of (164) by

(164)

t2≥ t1 t2
. Hence, the propagation law for the auto-covariance of the output of a linear system drivent1

by white noise, reads:

(165) .
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Example 63

Let be defined as:x(t)

with the auto-covariance function of the white noise input given as:

(166)

z(t)

If we apply the propagation law (165) to (166) we get with (167) for the auto-covariance

(167)

function of the output :x(t)

(168)

Note that this result is identical to the result one would get if the limit were taken ofα→∞
times the auto-covariance function of (102) in Section 5.3.3.1

2
α σxx(t1,t2)

Example 64

Let be defined as:x(t)

with the auto-covariance function of the white noise input given as:

(169)

z(t)

Application of the propagation law (165) to (169) gives with (170):

(170)

Hence, the variance of reads:

(171)

x(t)
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Compare this result with (124) in Section 5.3.3.

(172)

Example 65

Let be defined through the differential equation:x(t)

(173)

The output reads then:x(t)

It is assumed that the input is uncorrelated with the initial state . If we apply

(174)

z(t) x(t0)
propagation law (76) to (174), the auto-covariance function of the output follows as:x(t)

(175)

The double integral of (175) transforms into a single integral if is a white noise randomz(t)
function. Let us assume that the input is a white noise random function with auto-z(t)
covariance function:

Then (175) simplifies, according to (165), to:

(176)

If , equation (177) may be written as:

(177)

t2≥ t1

Solving for the integral gives:

(178)
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This shows that if the variance of the initial state equals:x(t0)

the auto-covariance function of the output becomes:

(179)

x(t)

The corresponding result for the case follows by interchanging in the right-

(180)

t1≥ t2 t1 and t2
hand side of (180). Hence, we have shown that if satifies (173) and (179), and if thex(t)
input is uncorrelated with the initial state and satisfies (176), then the auto-covariancez(t)
function of the output equals the exponential:x(t)

This is an important result. It shows that a random function having an exponential as its

(181)

x(t)
auto-covariance function, can be thought of as being generated by the first-order differential
equation (173) with a white noise input .z(t)

The propagation law for the auto-covariance of the output of a linear system driven by white
noise is given by (165). This law is written as an integral equation. It is also possible,
however, to write this propagation law as a linear matrix differential equation. In order to
show this, we first consider the variance matrix of . The variance matrix of followsx(t) x(t)
by setting in (165) equals to t:t1 and t2

We will now transform this integral equation into a linear matrix differential equation. Taking

(182)

the time-derivative of (182) gives:

Recall that the transition matrix satisfies (see equation (93) in Section 4.6):

(183)

Equation (183) may therefore be written as:
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(184)

And by substituting (182) into (184) we obtain:

(185) .

This is a linear matrix differential equation for the variance matrix of . OnceQxx(t,t) x(t)
(185) has been solved for , the auto-covariance matrix of can be computed fromQxx(t,t) x(t)

as:Qxx(t,t)

(186) .

Example 66

Let be defined through the differential equation:x(t)

(187)

The input is assumed to be white noise, which is uncorrelated with the initial state .z(t) x(t0)
The auto-covariance of is given as:z(t)

According to (185) the variance of satisfies:

(188)

σ2
x(t) x(t)

The solution of this differential equation reads:

(189)
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For the auto-covariance function we have according to (186):

(190)

σxx(t1,t2)

(191)

Substitution of (190) into (191) gives then:

(192)

This shows that if , then:σ2
x(t0) σ2

Compare this result with (181) in Section 5.4.

(193)

Example 67

Let be defined through the second-order differential equation:x(t)

The input is assumed to be white noise, with auto-covariance function:

(194)

z(t)

The initial conditions of (194) are assumed to be constant. Hence:

(195)

We are asked to derive the variance of the output . First, we write the second-

(196)

σxx(t,t) x(t)
order scalar differential equation (194) as a first-order vector differential equation. To put
(194) into a state vector form, we define the two-dimensional state vector as:
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The state vector form of (194) follows then as:

(197)

(198)

Two methods can now be used for deriving the auto-covariance of the output of (198). The
first method makes use of the integral form (165) of the propagation law for the auto-
covariance, the second is based on the linear matrix differential equation (185). We will
consider both methods.

First method

In order to make use of (165), we first need to find the matrix exponential of the system
matrix:

Since:

(199)

it follows that:

(200)

With the initial state vector of (198) being constant, the variance matrix of the output follows
according to (165) as:
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Integration gives:

or

(201)

Hence, the required variance-function of the output of (194) reads:x(t)

(202)

Second method

According to (185), the linear matrix differential equation for the variance matrix of the
output of the state equation (198) reads:

(203)

This matrix equation contains three independent scalar equations:

These equations may be put into state vector form as:

(204)
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In order to solve this state equation, we first need to find the matrix exponential of the

(205)

system matrix:

(206)

We will use the Jordan canonical form (see Section 4.8.2) for the derivation of the matrix
exponential of F. The eigenvalues of the system matrix F follow from solving the
characteristic equation:

This gives:

or

Hence, the three distinct eigenvalues of the system matrix F are:

The corresponding eigenvectors are obtained by solving . Ordering

(207)

tα (F λαI3) tα 0, α 1,2,3
the eigenvectors so obtained by columns, the matrix T of eigenvectors becomes:

(208)
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Its inverse reads:

Hence, the matrix exponential of F follows from (207), (208) and (209) as:

(209)

(210)

Since the initial state vector of (205) equals zero (see (196)), it follows with (210) that the
solution of the state equation (205) satisfies:

Integration gives:

or finally:

(211)

Compare this result with that of (201).
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5.6 Random polynomial equations of motion

In Section 3.2 polynomial equations of motion were derived for respectively: a stationary
object, an object that moves with constant velocity and an object that moves with constant
acceleration. As a result we were able to derive a one-to-one, linear relationship between the
state vector at an arbitrary time instant t and the state vector at the initial epoch .x(t) x(t0) t0
The fact that this relationship is one-to-one implies that knowledge of x at any one particular
time-instant is sufficient for the exact determination of the complete time history of . Butx(t)
one will agree that this is not very realistic for most practical applications. It is for instance
highly unlikely that a ship sailing at cruising speed, will indeed move with an exactly
constant velocity. It is more likely that the ship sails with a velocity that can be considered
constant on the average. But the velocity will nevertheless be subject to random changes from
time-instant to time-instant. For a ship sailing at cruising speed, it seems therefore more
realistic to model the ship’s acceleration as a random function with zero mean. The expected
erratic behaviour of acceleration should then be reflected in the choice of the auto-covariance
function of acceleration.

In this section we will develop the random polynomial equations of motion that correspond
with, respectively, zero-mean velocity and zero-mean acceleration. As in Section 3.2 we will
develop the random polynomial equations of motion only for the single coordinate function

. The development for the other coordinate functions is similar.u(t)

5.6.1 Random constants as input

Zero-mean velocity

If we assume the initial position to be a random variable and velocity to be a random
function, the random position variable follows as (compare with equation (4) in Section 3.2):

(212) .

If we model velocity as a zero-mean random function:

(213)

the mean of the random position variable becomes:

(214)

Note that the deterministic relation (5) in Section 3.2 is now replaced by the expectation of
. We will assume that the velocity input of (212) is a random constant:u(t)

(215) .
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We will also assume that velocity is uncorrelated with the initial position . Applicationu(t0)
of propagation law (76) to (212) gives then, with (215), for the variance of :u(t)

or

(216) .

Zero-mean acceleration

If we assume the initial position and the initial velocity to be random variables, and
acceleration to be a random function, the random position and velocity variables follow as
(compare with equation (11) in Section 3.2):

(217) .

If we model acceleration as a zero-mean random function:

the mean of position and velocity becomes:

(218)

(219)

Compare this with equation (12) in Section 3.2.

We will assume that the acceleration input to (217) is a random constant:

(220) .

We will also assume that acceleration is uncorrelated with and . Application ofu(t0) u̇(t0)
propagation law (76) to (217) gives then, with (220), for the variance matrix of :(u(t),u̇(t))
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or:

(221) .

Note that the last matrix of (221) is singular: it has rank 1. This is a direct consequence of
the random constant assumption (220).

5.6.2 White noise as input

Velocity as white noise

We will now assume that velocity is a white-noise random function with spectral density :qu̇

(222) .

We also assume that velocity is uncorrelated with the initial position u(t0). Application of
propagation law (165) to (212) gives then, with (222), for the variance of u(t):

or:

(223) .

Compare this result with (216) and note the difference.
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Acceleration as white noise

We assume that acceleration is a white noise random function with spectral density :qü

(224) .

We also assume that acceleration is uncorrelated with . Application ofu(t0) and u̇(t0)
propagation law (165) to (217) gives then, with (224), for the variance matrix of :(u(t),u̇(t))

or:

(225) .

Compare this result with (221) and note the difference.

5.6.3 Exponentially correlated noise as input

In Section 5.6.2 the random functions were modelled as white noise. This is a realistic
assumption if for a particular application it is believed that velocity or acceleration behave in
a highly erratic manner. There are applications, however, for which the white noise
assumption is not realistic. For instance, an object navigating a straight-line constant velocity
course may be acted upon by zero-mean random forces that are correlated in time (e.g., surge
and sway, atmospheric turbulence). As a result the acceleration at time t will be correlated
with the acceleration at time for sufficiently small . In this section we will thereforet τ τ
consider velocity and acceleration as being correlated in time. We will assume that the
exponential can be used as a representative model for the correlations in time.

Exponentially correlated velocity

We assume that velocity is a random function with auto-covariance function:
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(226) .

We also assume that velocity is uncorrelated with the initial position . Application ofu(t0)
propagation law (76) to (212) gives then, with (226), for the variance of :u(t)

or

(227) .

There are two limiting cases of interest. First, we consider long time intervals:

Then, since:

(228)

the variance function of becomes:u(t)

(229) .

This shows, when we compare (229) with (223), that for time intervals that are large(t t0)
compared with the correlation length , the contribution of random velocity is essentially1/α
that of white noise. This is also clear from Figure 5.8. This figure shows the exponential
auto-covariance function on three different time scales. In Figure 5.8b the time scale has been
stretched considerably with respect to that of Figure 5.8a. As a result the auto-covariance
function exhibits an impulse-like behaviour.
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Figure 5.8: The exponential auto-covariance function.

Figure 5.9 shows the relationship between (227) and (223) for some decreasing values of the
correlation length . It was assumed that . Note that the1/α t0 0, σuu(t0,t0) 0 and σ2 1

2
αqu̇

position variance in case of correlated velocity is always smaller than the position variance in
case of white noise velocity.

Figure 5.9: Graph of (223) and graphs of (227) for different values of .α

The second limiting case of interest concerns short time intervals:

Then, using the expansion:

(230)
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it follows from (227) that:

(231) .

This shows that for time intervals that are small compared to the correlation length(t t0)
, the contribution of random velocity is essentially that of a random constant. Compare1/α

(231) with (216), and see also Figure 5.8c. Hence, this result reflects the fact that for
sufficiently short time intervals, the object moves essentially with a random, but constant,
velocity.

Exponentially correlated acceleration

We assume that acceleration is a random function with auto-covariance function:

(232) .

We also assume that acceleration is uncorrelated with and . Application ofu(t0) u̇(t0)
propagation law (76) to (217) gives then with (232) for the variance matrix of :(u(t) , u̇(t))

or (verify this yourself):
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Again two limiting cases are of interest. First, for long time intervals the(t t0) 1/α,
variance contribution of acceleration becomes:

(234) .

Compare this result with (225). Second, for short time intervals, , the variance(t t0) 1/α
contribution of acceleration becomes:

(235) .

Compare this result with (221).

5.7 Summary

In this chapter we introduced some elementary concepts of the theory of random functions. In
particular, attention was given to the extremely important propagation laws for the cross-
covariance and auto-covariance of the output of a linear, time-varying state-equation. These
propagation laws for random functions generalize in a natural way the well-known
propagation laws for random vectors. We have seen that in its most general form, the
propagation law for the auto-covariance consists of a double integral. This double integral,
however, simplifies to a single integral if the input can be considered to be a white noise
random function. It was shown that the white-noise random function can be seen as the
continuous counterpart of a discrete sequence of uncorrelated random variables. As a
preparation for the next chapter, we also introduced the random polynomial equations of
motion. As inputs we considered random constants, white noise random functions and
exponentially correlated random functons. It was shown how the model of exponentially
correlated random functions can be used to approximate white noise inputs and inputs that are
random constants. This is achieved through a suitable choice of the correlation length in1/α
relation to the time interval considered. This is an important result, which shows the
flexibility of the model of exponentially correlated random functions.



6 Recursive least-squares: the dynamic case

6.1 Introduction: filter divergence

In Chapter 3 we considered the partitioned model:

(1)

together with the transition equation:

The combination of (1) and (2) led to the partitioned model (see (28) in Section 3.3):

(2)

(3)

It was on the basis of this model, that we developed in Chapter 3 two methods for recursively
predicting and filtering the time-varying state vector . The essence of recursive estimation isxt

that there is no need to store past measurements for the purpose of computing present least-
squares estimates. Hence, recursion enables us to keep track of the time process by means ofxt

an efficient computation of the corresponding best estimates. As was pointed out in Chapter 3,
the transition equation (2) implies that knowledge of x at any particular time instant is sufficient
for the determination of the complete time history of . In other words, equation (2) impliesx (t)
that the time-varying state vector can be parameterized in terms of one single vector ,x (t) x (t0)
for all times t. It will be clear that this is a rather stringent assumption, which will not be
realistic for most practical applications. In the present chapter this assumption will therefore be
relaxed considerably. It will be assumed that the dynamics of can be modelled through thex (t)
linear, time-varying state equation:

This implies that the transition equation (2) will be replaced by the solution of (4):

(4)

Note that the difference between (5) and our earlier transition equation (2) is given by:

(5)
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See also Figure 6.1.

(6)

Figure 6.1: Trajectory of x(t) = φ (t,t0)x(t0) d(t,t0).

Now, if the transition equation (2) is replaced by (5), then the partitioned model (3) gets replaced
by 1):

It will be clear that the information content of the discrete set of observables is not

(7)

y, i 0,1, ,
enough for the simultaneous estimation of both and the . What we need isxt di , t , i 0,1 ,
information about the difference vectors . That is, we need to have some information availabledi , t

about the input of (6), in order to be able to relate the state vectors of the various epochsz(t)
with one another. One way to tackle this problem is to assume the input to be identicallyz(t)
zero. Then also the difference vectors are zero and (7) reduces to (3). But as was pointed outdi , t

earlier, the zero-input assumption is too stringent for most practical applications. In fact, an
unwarranted zero-input assumption will result in what is known as filter divergence. One speaks
of filter divergence, when the error in the estimated state vector grows without bound. In order
to explain the phenomenon of filter divergence, let us assume that the least-squares estimator of

is computed on the basis of model (3). The estimator reads then:xt

(8)

1 We have used the notation di,t instead of d(ti,t).
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This estimator is unbiased if model (3) holds true. It is, however, a biased estimator if di , t ≠0
and model (7) holds true. If the expectation is taken of (8), we get with (7):

or

This shows that if . The second term on the right-hand side of (9) describes

(9)

E x̂
t k

≠xt di , t ≠0
the bias of the estimator . It is the bias in the filtered estimator if . If the bias in thex̂

t k
t tk

filtered estimator has the tendency to grow as k gets larger, the separation between andE x̂
k k

increases and the filtered estimator is said to diverge. The following example illustrates thisxk

phenomenon of divergence.

Example 67

We are asked to estimate the one-dimensional position of a particle. Position measurements are
carried out at times . The position observables are uncorrelated and all haveti , i 0,1 ,2 , ,k u

i
the same variance . The position of the particle at time is related to its position at timeσ2 tk tk 1

and its velocity as:

Let us assume that the velocity of the particle is so small that we decide to ignore it in (10).

(10)

u̇t

The corresponding model of our choice reads then:

Based on this model, we obtain the filtered position estimator as:

(11)

This estimator is unbiased if model (11) holds true. It is however a biased estimator if the

(12)

velocity of the particle cannot be ignored. Let us now investigate the effect of the neglectedu̇ t

velocity on the filtered position estimator (12). If the expectation is taken of (12), we get with:

that:
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Now assume that the velocity is indeed small, but constant. Then we have in case of uniform

(13)

u̇ t

sampling, , that:ti t0 i T

Substitution of (14) into (13) gives:

(14)

(15)

This result shows that the bias in the filtered position estimator increases as k gets larger. Hence,
the mean of diverges from the actual value . In order to remedy this problem ofû

k k
uk

divergence, one might be inclined to include velocity as an unknown but constant parameter in
model (11). In this case, however, one may end up with the same problem of divergence due to
unmodelled constant accelerations.

We have seen that the zero-input assumption is too stringent for most practical applications, and
that an unwarranted zero-input assumption leads to the serious problem of filter divergence. So
what to do? It will be clear that the solution to the problem depends on the information we
believe to have available about the input . Let us therefore assume for the moment that thez(t)
continuous input is observable. If the continuous input is observable, we may alsoz(t) z(t)
consider the difference vector of (6) observable, and construct with (5) and (6) for all t,d (t , t0)
the observation equations:

These observation equations together with (1) will allow us then to estimate the state vector

(16)

x (t)
for all times t. The supposition of this approach is of course that one has sensors at one’s
disposal that observe the input on a continuous basis. In some applications this is indeed thez(t)
case. For instance, if the input equals velocity or acceleration, speedometers orz(t)
accelerometers could be available for observing on a continuous basis. Still, in a majorityz(t)
of applications, no sensors are available for actually observing the input . Hence, it seemsz(t)
that we are confronted with a dilemma. It seems that either we have to assume that the inputz(t)
is identically zero and fall back on the transition equation (2). Or, that we have to assume that
the input is unknown and rely safely on the partitioned model (1). Both approaches havez(t)
their drawbacks. In the first approach filter divergence is likely to occur, especially over longer
time spans. And in the second approach, the drawback is that we have no means to estimatex (t)
other than at the discrete time instants . In this chapter, our solution to the aboveti , i 0,1,
described dilemma will be the following. We will assume that, even in the absence of sensors
that actually observe , we can still treat the input as being observable. This approach isz(t) z(t)
motivated by the fact that in most applications the input can be modelled as a zero-meanz(t)
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random function. For a ship sailing at cruising speed for instance, one may model the ship’s
acceleration as a random function with zero mean. For this case we will then consider the zero-
mean value of acceleration as the sample value of the input and use the auto-variancez(t)
function of acceleration for the modelling of the dispersion of the input. With this approach
equation (16) is interpreted as an observation equation and used together with (1) for the least-
squares estimation of the state vector for all times t.x (t)

6.2 The dynamic model of observation equations

In this section we will formulate the observation equations for the dynamic model. As a start we
will assume that the time-varying state vector can be modelled as:xt

We also assume that the input can be treated as being observable and that its auto-covariance

(17)

matrix is given as:

This implies that the difference vector:

(18)

is also observable, and that its variance matrix is given as 2:

(19)

It should be noted that the are mutually uncorrelated:

(20)

d
i
, i 1,2, ,

This can bee seen as follows. If we apply the propagation law for the auto-covariance to (19) we

(21)

get:

With the change of variable , this may be written as:τ τ2 τ1

2 We have used the notation instead of Qdd(ti,ti).Qdi
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or after substitution of (18) as:

But if the two intervals and are disjunct, then are both

(22)

[ ti 1 , ti ] [ tj 1 , tj ] τ2 ti and τ2 ti 1

positive or both negative. This implies that the inner integral of (22) vanishes due to the impulse
function and that (21) indeed holds true. We are now in the position to formulate theδ (τ)
appropriate observation equations for the dynamic model. The observation equations themselves
follow from combining (17) and (19). And the corresponding dispersion follows from (20) and
(21). The dynamic model of observation equations reads therefore:

(23) .

6.3 Recursive prediction and filtering

In this section we will generalize the results of Sections 3.4 and 3.5. This will be done by taking
into account the dynamic model of observation equations (23). The complete partitioned model
of observation equations, on the basis of which the state vector will be estimated, reads therefore:

This model is based on (1) and (23). Our objective is now to derive an algorithm for the

(24)

recursive computation of the best estimate . We therefore consider as a first step modelx̂k k of xk

(24) with the exception of and . The solution of this model is then given by the vector ofd
k

y
k

estimates . The solution of the complete model (24) follows from solving( x̂
0 k 1

, x̂
1 k 1

, , x̂
k 1 k 1

)
in a second step the model:



Recursive least-squares: the dynamic case 215

(25)

The solution of this model is given by the vector of estimators . The( x̂
0 k
, x̂

1 k
, , x̂

k 1 k
, x̂

k k
)

structure of the design matrix of (25) reveals that the , do not contribute tox̂
i k 1

, i 0,1 ,k 2
the solution of . That is, the estimators only depend onxk 1 and xk x̂

k 1 k
and x̂

k k
of xk 1 and xk

. Hence, the estimators can be derived from solving the model:x̂
k 1 k 1

, d
k
and y

k
x̂

k 1 k
and x̂

k k

But the solution of this model can again be obtained in two steps. We first consider:

(26)

(27)
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Note that the design matrix of this model is square and of full rank. The redundancy equals
therefore zero, and (27) may be solved by simply inverting the design matrix. Since:

The solution of (27) follows as:

(28)

The result shows how the predicted estimator can be expressed in terms of the filteredx̂
k k 1

estimator and the vector . The time-update equations read therefore:x̂
k 1 k 1

d
k

(29) .

Compare this result with the time-update equations of (45) in Section 3.4. Note that the above
result reduces to that of (45) in Section 3.4, if is identically zero. This corresponds to the cased

k
that the input is assumed to be identically zero. The time-update equations (29) are formulatedz

t
for the discrete time instant . This is the time instant that the next observable becomestk y

k
available. But in fact one may formulate the time-update equations for the complete time interval

. The continuous time-update equations read therefore:( tk 1 , tk )

(30) .

See also Figure 6.2.
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Figure 6.2: A continuous time-update Φk,k 1 x̂k 1 k 1
.

The above time-update equations followed from solving model (27). The complete solution of
model (26) follows now from solving in a second step the model:

The solution of this model is given by the vector of estimators . Again we note that(x̂
k 1 k

, x̂
k k
)

the structure of the design matrix of (31) is such that the estimator of will only dependx̂
k k

xk

on and . Hence the estimator can be derived from solving the model:x̂
k k 1

y
k

x̂
k k

But this model is identical to model (46) in Section 3.4. Hence, the solution of (32) is identical

(32)

to (48) in Section 3.4 and reads:

(33) .

These are the measurement-update equations. If we write model (32) in terms of condition
equations and solve this model, we get as in (50) in Section 3.5 the alternative measurement-
update equations:
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in which is the variance matrix of the predicted residuals. When we compare the recursiveQvk

prediction and filtering results of this section with the results of Section 3.4 and 3.5, we note that
the only difference lies in the way the time-update computations are performed.

Example 68

We are asked to determine the one-dimensioned position of a particle. Position measurements
are carried out at the discrete time instants . The observables are assumed to beti, i 0,1,2,... x

i
uncorrelated and all have the same variance . We will start with the assumption that theσ2

x

particle has a zero-velocity, i.e., that its position is constant. The corresponding model reads then:

From this the filtered position estimator and its variance follow as:

(35)

x̂
k k

Note that the variance of the filtered position estimator gets smaller as k gets larger. And in the
limit we have:

(37) .

See also Figure 6.3.

Fig. 6.3.: The variance .σ2
x̂k k

σ2
x/ (k 1) for σ2

x 1

Also the gain gets smaller as k gets larger. And in the limit we have:Kk 1/ (k 1)
(38)
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This implies that, as k gets larger less weight is given to the new position observable . Thatx
k

is, the contribution of the new position observable to the filtered position estimatorx
k

x̂
k k

diminishes for increasing k. This is of course completely justified as long as the model (35) is
valid. Let us now assume that the velocity of the particle is not zero, but zero on the average.
The position of the particle is then constant on the average, although it may nevertheless change
from time instant to time instant. Would we now still base our filter computations on model (35),
we would end up for large k with a filtered position-estimator that is insensitive to the position
observable . Hence, the filtered position estimate will then be unable to follow anyx

k
x̂k k

position changes of the particle. As a consequence filter divergence is likely to occur. We
therefore have to modify model (35) in order to make the filtered position estimator morex̂

k k
responsive to position changes of the particle. If we believe that the particle moves with a
velocity that is zero on the average, it seems realistic to model velocity as a zero-mean random
function. Let us therefore model velocity as a zero-mean random function, with the followingẋ k

auto-covariance function:

(39) .

The spectral density should be chosen such that it reflects the expected erratic behaviour ofq ẋ

velocity. The variance contribution of velocity to position follows from applying with (39) the
propagation law to:

as:

Our modified model follows now from combining the observation equations and

(40)

E d
i

xi xi 1

(40) with (35). The result reads:

(41)

Unfortunately, no analytical solution of model (41) can be given. The computer was therefore
used for the computation of the variances of respectively and . They are given in Tablex̂

k k 1
x̂

k k
6.1 for the case .σ2

x 1, qẋ 1/4 and ti ti 1 1
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k σ2
x̂k k 1

σ2
x̂k k

k σ2
x̂k k 1

σ2
x̂k k

0
1
2
3
4
5
6
7

-
1.25
0.806
0.696
0.660
0.648
0.643
0.641

1
0.556
0.446
0.410
0.398
0.393
0.391
0.391

9
8
10
11
12
13
14
15

0.641
0.641
0.640
0.640
0.640
0.640
0.640
0.640

0.391
0.390
0.390
0.390
0.390
0.390
0.390
0.390

Table 6.1: The variances .σ2
x̂k k 1

and σ2
x̂k k

for σ2
x 1, qẋ 1/4, ti ti 1 1

A plot of the results of Table 6.1 is given in Figure 6.4.

Figure 6.4: The variances σ2
x̂k k 1

and σ2
x̂k k

for σ2
x 1, σ2

d 1/4.

When we look at the results of Table 6.1 or at the plot of Fig. 6.4, we note that the variance of
the filtered position estimator does not seem to go to zero for increasing k. This in contrastx̂k k

to (37). In fact it seems that for both and converge to a non-zero constant value:k→∞ σ2
x̂k k 1

σ2
x̂k k

This would imply that in the limit the loss of precision due to prediction is exactly equal to the

(42)

gain in precision due to filtering:

We will now prove analytically that (42) and (43) indeed hold true. We will first consider the

(43)

variance of the filtered estimator. From:
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see (29) and (30) it follows that:

Now, if the variance matrix of the filtered estimator is constant in the limit, then:

(44)

and (44) may be written as:

For our present example this implies:

(45)

This equation can be rewritten as the quadratic equation:

(46)

This equation has two roots, a positive one and a negative one. Since only the positive

(47)

σ2
x̂k k

≥ 0
root is valid. It reads:

(48)
.

The limiting value of the variance of the predicted estimator follows with (48) from
as:σ2

x̂k k 1
1 σ2

x̂k 1 k 1
1 σ2

d

(49) .

And from (48) and (49) it follows that:

(50) .

The numerical results (42) and (43) are now easily verified with (48), (49) and (50) (do this
yourself). Another two examples of (48), (49) and (50) are given in Figure 6.5. Note that as σ2

d

gets larger, the limiting values of both and , and the difference get larger.σ2
xk k

σ2
xk k 1

(σ2
xk k 1

σ2
x̂k k 1

)
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Figure 6.5: The variances σ2
x̂k k 1

and σ2
x̂k k

for (a) σ2
x 1,σ2

d 0.5; and (b) σ2
x 1,σ2

d 1.

It is also of interest to find the limiting value of the gain. Since:

it follows with (48) that:

(51) .

This shows that the limiting value of the gain is non-zero (compare with (38)) and that it is
uniquely determined by the ratio . Note that the limiting value of the gain gets smaller ifσ2

x /σ
2
d

the ratio gets larger. This can be explained as follows. If gets larger or getsσ2
x /σ

2
d σ2

x σ2
d

smaller, then there is less confidence in the position observable but more confidence in thex
k

dynamic model. In this case the filtered position estimator needs to be less responsive to the new
position observable and thus the gain will be smaller.

Model (41) has been formulated for the case that velocity is assumed to be zero on the average.
In that case the sample values of the are taken to be zero and the spectral density isd

i
qẋ

chosen so as to reflect the expected erratic behaviour of velocity. We will now consider two
different but related situations. First, we consider the situation where we really have a sensor
available that measures velocity on a continuous basis. Our observables are the discrete position
observables and the continuous velocity observable . In this case our estimationx

i
, i 0,1,..., ẋ

t
can again be based on model (41). The assumptions on the basis of which model (41) is
formulated are now, however, fundamentally different. First of all, no assumption needs to be
made about the mean value of velocity. Since velocity is measured on a continuous basis, model
(41) is now valid for every velocity profile of the particle. Also, the spectral density shouldqẋ

now describe the precision of the velocity sensor and not the expected erratic behaviour of
velocity. And finally, the sample values of the are now not set to zero, but of course givend

i
as the integrated velocity measurements.
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Let us now consider the situation where we have a sensor available that measures velocity on
a discrete-time basis. Our observables are then the discrete position observables andx

i
, i 0,1,...

the discrete velocity observables . It will be clear that these observables are notẋ
i
, i 1,2,...

sufficient for the estimation of position for all times t. We therefore assume in addition that the
unknown velocity of the particle is constant. Then:

and

(52)

Substitution of (52) and (53) into (41) gives:

(53)

or

(54)

This shows that the constant, but unknown, velocity model can be obtained from (41).
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Example 69

Consider Figure 6.6. A ship follows an unknown trajectory. Our objective is to compute, on a
real-time basis, the best estimate of the ships’s position ut, vt. For this purpose we assume that
the ship is equipped with two accelerometers that observe on a continuous basis the accelerations

. The autocovariance functions of acceleration are given as:ü t and v̈t

(55)
.

Figure 6.6: Positioning of a ship.

Thus, we assume the measurement errors of the two accelerometers to behave as white noise and
to be uncorrelated with . It will be clear that acceleration information alone is not sufficientü

t
v̈

t
for the recovery of the ship’s trajectory. We therefore also assume that at successive discrete
time instances azimuth ai and distance measurements li are carried out. Theseti, i 0,1,...
measurements are carried out from a known point with coordinates u=0, v=0. The variances and
covariances of the azimuth and distance observables are given as:

(56)

In order to formulate the complete partitioned model of observation equations, we first start with
the discrete observation equations for azimuth and distance. These nonlinear observation
equations parameterized in terms of the cartesian coordinates ui, vi read:
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The corresponding linearized observation equations read:

(57)

This may also be written as:

(58)

(59) .

Let us now consider the observation equations for the observed accelerations. We will only
consider the accelerations along the u-axis. The development for the acceleration along the v-axis
goes along identical lines. The position ui and velocity follow from acceleration as:u̇ i ü i

If we define the observable random vector of integrated acceleration as:

(60)

d
i
(d

u,i
,d

u̇,i
)

the corresponding linear observation equations follow with (55) from (60) and (61) as:

(61)

(62) .
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(6
3)
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(6
4)
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With (59) and (62) we are now in the position to formulate the complete partitioned model of
linearized observation equations for all times ti. The complete model is given on the pages 226
and 227. It is on the basis of this model that the recursive estimation of position and velocity can
be carried out.

The recursive algorithm has to be initialized. Note that in the present example, initialization
cannot be based on only the azimuth and distance observable of time t0. Their information
content is namely not sufficient for the determination of both position and velocity at time t0. For
the present example, initialization has therefore to be based on the observables:

(65)

There are two ways for using these eight observables for the initialization. In the first approach
one solves for the eight state vector elements:

(66)

by using the first eight observation equations of model (63). Since these observation equations
are linearized, an iteration has to be performed to solve for the corresponding state vector
elements. After iteration we obtain as a result of the initialization the state vector estimates,

with their corresponding variance-covariance matrix.û0 1, û0 1, v̂0 1, v̂0 1, û1 1, û1 1, v̂1 1, v̂1 1

The alternative approach to initialization is based on the fact that there exists a one-to-one
relationship between the first eight observables of (65) and the eight state vector elements of (66)
(note that the redundancy of the first eight observation equations of (63) equals zero). The
position estimators may therefore be computed directly from the azimuth and distance
observables as:

For the first velocity estimators we can make use of (60) and (61), This gives:

(67)

or after substitution of (67):

(68)
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In order to obtain the variances and covariances of the position and velocity estimators of (67)

(69)

and (69), we first have to linearize (67) and (69). this gives:

(70)

Note that the matrix of (70) is the inverse of the design matrix of the first eight observation
equations of (63). For the approximate values needed in (70) one may take the sample values
of . The variances and covariances of the position and velocity estimators followa

0
, l

0
, a

1
and l

1
now from applying with (56) the propagation law to (70). This concludes the initialization phase.
The first step after initialization is prediction. For the present example this implies that we have
to time-propagate the filtered state vector to the next time instant t2. This(û

1 1
, û

1 1
, v̂

1 1
, v̂

1 1
)

is done with the linear time-update equations:
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(71)

The variance matrix of the predicted estimator follows from applying the propagation law to (71)
as:
(72) .

The variance matrix of the filtered estimator was computed in the initialization phase as:x̂
1 1

(73)
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and is given as:Qd2

(74)

Note that if , then the variance matrix of (73) simplifies to:σ2
li

(l 0
i )

2σ2
ai

Qx̂1 1

(75)

In that case the position and velocity estimators along the u-axis are and remain uncorrelated
with the correponding position and velocity estimators along the v-axis. The next step after
prediction is filtering. This implies for the present example that we have to solve the linearized
model:

(76)

The corresponding measurement-update equation gives then the solution for the filtered estimate
with corresponding variance matrix . Note that since (76) is ax̂2 2 (û2 2, û2 2, v̂2 2, v̂2 2) Qx̂2 2
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linearized model one has to perform an iteration. As starting values for the approximate values
one may take (compare with our earlier discussion in Section 2.4):

(77)

After model (76) has been solved, the whole cycle of prediction and filtering is performed again.
To conclude this example one final remark is in order. Up to now it was assumed that the ship
was equipped with two accelerometers. In that case the trajectory of the ship is allowed to take
any form. Now assume that no accelerometers are available. In that case the same recursive
algorithm as described above can be applied, provided that some additional assumptions are
satisfied. First of all, one will have to assume that the ship moves with an acceleration that is
zero on the average. The sample values of the di are then taken to be zero. And secondly, the
spectral densities and will now have to correspond with the expected erratic behaviour ofqü qv̈

the ship’s acceleration and not with the measurement precision of the accelerometers.

6.4 State vector augmentation

In the previous section the general time-update and measurement-update equations were derived
for the recursive prediction and filtering of the time-varying state vector x(t). One of the starting
assumptions in the development of the resursive estimation algorithms was that the variance
matrix of the vector of observables has to be of a block-diagonal form, see the dispersion of
model (24) in Section 6.3. In particular was assumed that:

(78)

In Section 6.2 it was shown that (78) holds true if the input is modelled as a white-noisez
t

random function, see (18) in Section 6.2. But as was pointed out in Section 5.6.3 there do exist
particular applications for which the white-noise assumption is not realistic. In some applications
it is more realistic to model the input as being correlated in time. Correlation in time, however,
will affect the structure of the variance matrix of the vector of observables. That is, it will then
not be in a block-diagonal form anymore. And this has as a consequence that the recursive
algorithms of the previous section will not be applicable anymore. It thus seems that recursive
estimation is impossible if correlations in time are present. Fortunately, there is one way out of
this dilemma, namely when the correlations in time are of exponential form. In this section we
will show that if the input is exponentially correlated in time, a modification of the dynamic
model through an augmentation of the state vector is possible, such that (78) still holds true but
now for an augmented dynamics vector . The idea is based on the result of Example 65 ind
Section 5.5. In this example it was shown that an exponentially correlated random function can
be thought of as being generated by a first-order differential equation driven by white-noise. We
will consider the two cases of exponentially correlated zero-mean velocity and exponentially
correlated zero-mean acceleration.
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6.4.1 Exponentially correlated zero-mean velocity

Consider a particle that moves with an exponentially correlated velocity that is zero on theu̇(t)
average. Velocity will then be modelled as a zero-mean random function with auto-covariance
function:

The corresponding dynamic model of observation equations reads then:

(79)

In this case, however, (78) will fail to hold true. Based on the result of Example 65 in Section

(80)

5.5, we therefore model the zero-mean random velocity as:u̇(t)

with

(81)

With (81) and (82) we are now in a position to formulate a dynamic model for which (78)

(82)

indeed holds true. In order to show this we first put (81) into a first-order state vector form:

(83)

This is a linear, time-invariant state equation. The matrix-exponential of the system matrix F
reads (verify this yourself):

The solution of the linear, time-invariant state equation (83) reads therefore:

(84)

(85) .

It is this relation which replaces (212) in Section 5.6.1 when the zero-mean velocity is
exponentially corrrelated. Note that with (see (82)), the expectationE u̇(t0) 0 and E z(t) 0
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of (85) indeed satisfies (213) and (214) in Section 5.6.1. The variance matrix of position and
velocity follows with (82) from (85) as:

or as:

.

(86)

Note that the variance function of (86) is indeed identical to (227) in Section 5.6.3. Againσ2
u(t)

there are two limiting cases of interest. First, for long time-intervals , we have:(t t0) >> 1

α

(87) .

This result agrees with (229) in Section 5.6.3. Secondly, for short time-intervals , we(t t0) << 1

α
have:

(88) .

And this result agrees with (231) in Section 5.6.3.
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6.4.2 Exponentially correlated zero-mean acceleration

Consider a particle that moves with an exponentially correlated acceleration that is zero onü(t)
the average. In order to obtain a dynamic model such that (78) holds true, we model the zero-
mean random acceleration as:ü(t)

with

(89)

The first-order state vector form of (89) reads:

(90)

And the matrix exponential of the system matrix F reads (verify this yourself):

(91)

(92)

The solution of the linear, time-invariant state equation (91) reads therefore:

(93) .
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It is this relation which replaces (217) in Section 5.6.1 when the zero-mean acceleration is
exponentially correlated. Note that with , see (90), the expectation ofE u̇(t0) 0 and E z(t) 0
(93) indeed satisfies (218) and (219) in Section 5.6.1. The variance matrix of position, velocity
and acceleration follows with (90) and (93) as (verify this yourself), formula (94).

(94)

with

Verify yourself that the variance matrix of position and velocity of (94) is identical to (233) in
Section 5.6.3.
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Example 70

Consider again the situation of Example 69. But now assume that the ship sails with an
exponentially correlated acceleration that is zero on the average, Then the dynamic model (62)
in Section 6.3 needs to be modified using the results of (93) and (94). The augmented dynamic
model reads then:

In this case the sample values of the are taken to be zero. And atd
i

(d
u,i
, d

u̇,i
, d

ü,i
)

initialization is treated as an observable with a sample value of zero and variance (seeü(t0) σ2

(90)).

Example 71

In Example 69 the choice was made to parameterize the models in terms of cartesian coordinates
see (63). This resulted in nonlinear observation equations for the azimuth and distance
observables (see (57)), but in a linear dynamic model (see (62)). In the present example a
different parameterization will be used. Instead of using a fixed i-frame, we will now
parameterize with respect to a rotating b-frame such that the observation equations for the
azimuth and distance observables will become linear. This will have as a consequence that now
the dynamic model will take a nonlinear form.
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Figure 6.7: The i-frame and b-frame.

Consider Figure 6.7. The position, velocity and acceleration of the ship in the rotating b-frame
read:

where

(96)

(97)

As state vector elements we will take: . The observation equations for azimuthx, vx, ϕ and vy

and distance will then take the following linear form:

Let us now consider the corresponding state equation. We have according to Table 4.1 for

(98)

velocity and acceleration:

and

This shows that if the acceleration is considered as input, the first-order state equation mayRbir̈i

be written as:
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or in the components as:

(99)

x, vx, ϕ and vy

This is a nonlinear, time-invariant state equation.

(100)

6.5 Summary

In this chapter we developed the general least-squares prediction and filtering formulae for the
recursive estimation of a time-varying state vector x(t). It was shown that the measurement-
update equations are identical to the ones developed in Chapter 3. The time-update equations
differ, however, from those of Chapter 3. This difference is due to the way the dynamics of the
system are modelled. In the present chapter the input z(t) was included in the dynamic model.
It was shown that an unwarranted zero-input assumption may lead to filter divergence. It is
therefore expedient to model inputs that can be considered to be zero on the average, as zero-
mean random functions. This leads to a more flexible dynamic model, with the zero-input
assumption as special case. It was also shown how to augment the dynamic model in case the
input cannot be treated as white noise. Augmentation is possible if the input is exponentially
correlated in time.
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h
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inertial navigation 118
iteration 33, 63

k
Kronecker symbol 174

l
least squares 13
- estimates 19
- estimators 19
- recursive, A-form 46, 87
- recursive, B-form 54, 90
- residual 14, 55
- weighted 16
linearization 27, 63

m
matrix exponential 138
- Jordan canonical form 142
- Taylor’s series 138
mean; see expectation
mean value stationary 155
measurement update 47, 55, 88, 90, 217

n
Newton’s laws 111

o
observation equation 5, 19
- linearized 28

p
predicted residual 48, 55
prediction 80

r
random constant 175, 220
random function 153
- auto-variance 155, 156, 170
- cross-covariance 155, 156, 163
- mean 155, 163

s
smoothing 81
spectral density 188, 191
state augmentation 232
state equation 120
- linear(ized) 126, 132, 136
state transition matrix; see
transition matrix
state vector 119

t
Taylor’s theorem 27
time update 88, 216
time-invariant system 121
time-varying system 120
transition matrix 73, 133
- properties 78, 135

v
variance 19, 20
variance update 47, 55

w
weight matrix 16, 21
weighted least squares; see
least squares
white noise 183, 186, 188, 203
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least-squares solution is said to be recursive when the method of computation 
enables sequential, rather than batch, processing of the measurement data. 
The recursive equations enable the updating of parameter estimates for 
new observations without the need to store all past observations. Methods 
of recursive least-squares estimation are therefore particularly useful for 
applications in which the time-varying parameters need to be instantly 
determined. Important examples of such applications can be found in the fields 
of real-time kinematic positioning, navigation and guidance, or multivariate 
time series analysis. The goal of this book is therefore to convey the necessary 
knowledge to be able to process sequentially collected measurements for the 
purpose of estimating time-varying parameters. 

When determining time-varying parameters from sequentially collected 
measurement data, one can discriminate between three types of estimation 
problems: filtering, prediction and smoothing. Filtering aims at the determination 
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this book will be on recursive least-squares filtering. The theory is worked out for 
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In this case only the measurement-update equations apply. State-space models 
for dynamic systems are discussed so as to include time-varying parameters. 
This includes their linearization and the construction of the state trans matrix. 
Elements from the theory of random functions are used to describe the 
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