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Preface
In October 2018 I went through the go/no­go evaluation for my PhD studies. For this evaluation I wrote
an extensive report on the results of my first year. Since I spent most of that year reviewing literature, the
majority of that report consisted of a literature survey on visual obstacle avoidance, primarily focused
on the practical implementation on small drones. While the report was only intended for my evaluation,
I have started getting requests from MSc students to view my literature survey and it has recently had
its first citation in an MSc thesis. Since this survey might also be of help to other people in the field of
visual obstacle avoidance, I have decided to make this literature review public.

This technical report is an extract from my original go/no­go report, from which my personal in­
formation has been removed. The rest of the document remains unchanged, except for the removal
of copyrighted images, the fixing of occasional typos, and minor corrections after having been peer
reviewed. I hope that reading this report will be as useful to you as the writing of it was to me.

Tom van Dijk
Delft, March 2020
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1
Problem statement

With a growing number of drones, the risk of collision with other air traffic or fixed obstacles increases.
New safety measures are required to keep the operation of Unmanned Aerial Vehicles (UAVs) safe.
One of these measures is the use of a Collision Avoidance System (CAS), a system that helps the
drone autonomously detect and avoid obstacles.

The design of a Collision Avoidance System is a complex task with many smaller subproblems, as
illustrated by Albaker and Rahim [1]. How should the drone sense nearby obstacles? When is there a
risk of collision? What should the drone do when a conflict is detected? All of these questions need to
be answered to develop a functional Collision Avoidance System. However, all of these subproblems
– except the sensing of obstacles – only concern the behavior of the vehicle. They can be solved
independently of the target platform as long as it can perform the required maneuvers; it does not
matter whether it is a UAV or a larger vehicle.

The sensing of the environment, on the other hand, is the only subproblem that places requirements
on the hardware, specifically the sensors that should be carried by the UAV. It is the hardware that sets
UAVs apart from other vehicles. Unlike autonomous cars, other ground­based vehicles or larger aircraft,
UAVs have only a small payload capacity. It is therefore not practical to carry large or heavy sensors
such as LIDAR or radar for obstacle avoidance. Instead, obstacle avoidance on UAVs requires clever
use of lightweight sensors: cameras, microphones or antennae. This literature survey will therefore
focus on the sensing of the environment.

Out of the sensors mentioned above – cameras, microphones and antennae – cameras are the only
ones that can detect nearly all ground­based obstacles and other air traffic; microphones and antennae
are limited to detection of sources of noise or radio signals1. Therefore, this review will focus on the
visual detection of obstacles.

The field of computer vision is well­developed; it may already be possible to find an adequate solu­
tion for visual obstacle detection using existing stereo vision methods like Semiglobal Matching (SGM)
[22]. These methods, however, only use a fraction of the information present in the images to estimate
depth – the disparity. Other cues such as the apparent size of known objects are completely ignored.
The use of appearance cues for depth estimation is a relatively new development driven largely by
the advent of Deep Learning, which allows these cues to be learned from large, labeled datasets. As
long as the UAV’s operational environment is similar to this training dataset it should be possible to use
appearance cues in a CAS. However, this is difficult to guarantee and may require a prohibitively large
training set.

Self­Supervised Learningmay provide a solution to this problem. After training on an initial dataset,
the UAV will continue to collect new training samples during operation. This allows it to ‘adapt’ to
its operational environment and to learn new depth cues that are relevant in that environment. Self­
Supervised Learning for depth map estimation is a young field, the first practical examples started to
appear around 2016 (e.g. [16]). Most of the current literature is focused on automotive applications
or on datasets captured at eye­level. It is still an open question whether Self­Supervised Learning
techniques can be used for visual obstacle avoidance on UAVs.
1They could be used to detect reflections of sound or radio waves – this is the working principle behind ultrasonic ranging
and radar – but since these are active measurements the power consumption is assumed to be too large for use on UAVs.
Additionally, in the case of ultrasonic measurements the range might be too short.
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2
Literature review

This chapter presents an overview of relevant literature for visual obstacle avoidance. The review
consists of two parts: section 2.1 presents an overview of obstacle avoidance systems and their com­
ponents, paying special attention to the visual detection of obstacles. Then, section 2.2 takes a closer
look at the use of neural networks for depth estimation.

2.1. Obstacle Avoidance
Practical Collision Avoidance Systems (CAS) need to solve a number of subproblems in order to detect
and avoid obstacles. An overview of the tasks involved and possible solutions is given in [1, 41]. In
general, a CAS contains the following elements:

• Sensing of the environment

• Conflict detection

• Avoidance maneuver: planning and execution

The system should have some way to sense potential obstacles in its environment. In this review,
sensing will be primarily performed through vision, but other sensors could also be used to detect
obstacles. Communication with other aircraft also falls under this element. Conflict detection is used
to decide whether an evasive maneuver should be performed. It usually requires a method to predict
future states of the UAV and of detected obstacles or aircraft and a threshold or minimum safe region
that should stay free of obstacles. When the conflict detection indicates that a collision is imminent,
an escape maneuver has to be performed to avoid this potential collision. Depending on the method,
this maneuver can be performed using simple rules, planned by optimizing some cost function or even
performed in collaboration with other aircraft (e.g. TCAS).

The elements listed above are typical for the avoidance of other vehicles but can also be used for
the avoidance of static obstacles. In this case, the conflict detection is often skipped or simplified since
only the UAV itself is moving; instead it is often performed implicitly during the planning of the escape
maneuver around the obstacle.

Subsections 2.1.1 and 2.1.2 take a closer look at the sensing of the environment and planning of
escape maneuvers. Conflict detection is not considered for now as this review is primarily aimed at the
avoidance of static obstacles. Subsection 2.1.3 will briefly highlight the literature (or lack thereof) on
the performance evaluation of Collision Avoidance Systems.

2.1.1. Sensing
The goal of sensing is to detect and locate nearby obstacles. The range of sensors that could be used
for obstacle detection is large, but a number of these can be ruled out for usage on UAVs because of
their weight or power requirements. This subsection will focus on the visual detection of obstacles.

The localization of obstacles through vision can be split into two parts: estimation of the bearing
towards the obstacle and estimation of the distance. As long as the obstacle can be reliably found in

3
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Figure 2.1: Stereo vision uses the disparity 𝑑 to estimate the depth 𝑧 towards obstacles. The camera baseline 𝐵 and focal length
𝑓 are constant and obtained through calibration.

the image, estimation of the bearing is fairly straightforward. The position of the obstacle in the image
is a direct result of its bearing relative to the camera and this relation can be inverted.

Estimation of the distance towards the obstacle is more complicated. Since the obstacle is projected
onto the image plane, the depth information is lost. Other cues need to be used to estimate the distance
towards the obstacle. These cues can be broadly split into three categories:

• Stereo vision

• Optical flow

• Appearance

Stereo vision uses two images taken at the same time from different locations, optical flow uses two
images taken at different times and appearance is based on single images. The next subsections take
a closer look at these depth estimation methods.

2.1.1.1. Stereo vision
Stereo vision uses images taken at the same time from different viewpoints to estimate depth. The dif­
ference in viewpoints causes the obstacle to appear in different positions in the images. The difference
in these positions – the disparity – is inversely related to the depth of the object.

An example of depth estimation using stereo vision is shown in Figure 2.1 for an obstacle at distance
𝑧 observed using a stereo camera with focal length 𝑓 and baseline𝐵. Using equal triangles, the disparity
of the obstacle is:

𝑑 = 𝐵 𝑓 𝑧−1 (2.1)

This equation can be solved for 𝑧 to find a distance estimate 𝑧̂ given a disparity 𝑑:

𝑧̂ = 𝐵 𝑓 𝑑−1 (2.2)

The camera parameters 𝐵 and 𝑓 are found beforehand through calibration.
The main challenge of stereo vision is to find this disparity; it is often difficult to find out which pixels

in the images belong to the same point in the world. A first way to categorize stereo vision algorithms is
to make a distinction between sparse and dense algorithms. Sparse algorithms estimate the disparity
of a small number of highly recognizable points in the images. The disparity accuracy tends to be
good as these points are easy to match, but because only a small number of points is considered
the resulting depth map can contain large holes, especially in environments with little texture. Sparse
stereo algorithms are therefore a poor choice for obstacle detection, but they sometimes appear as
part of Visual Odometry (VO) or Simultaneous Localization and Mapping (SLAM) algorithms. Dense
algorithms, on the other hand, estimate the depth for the entire image. They should therefore be able
to estimate the distance towards all obstacles in view.
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(a) Matching cost computation. The matching cost is calculated per pixel for all disparities under consideration. In this example the
pixel difference is used as matching cost. Shown are difference images at three different disparities, where white indicates a low
matching cost and black a high cost. In the left image, the disparity is roughly equal to the true disparity of the background: the
background has a low matching cost (white). In the middle image, the disparity is close to that of the head; in the right image it is
close to that of the lamp.

(b) Cost aggregation. Sometimes individual pixels can be hard to match. In this case, information on neighboring pixels can make
the matching task easier. In this example, the matching cost images are convolved with a 3×3 averaging filter to take nearby pixels
into account.

(c) Disparity optimization. Using the aggregated matching cost, the per­pixel disparity can be found through optimization. In this
example, the per­pixel argmax over the disparities is used. This is a form of local optimization as the pixel disparities can be found
independently.

(d) Disparity refinement. Post­processing is used to clean up the disparity map from the previous step. In this example, a median
filter is used to remove outliers.

Figure 2.2: Example of the block matching stereo algorithm broken down into the four steps described by Scharstein and Szeliski
[50]. Input image: Tsukaba, Middlebury Stereo Vision Dataset 2001 [50] courtesy of the University of Tsukuba.
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In [50], Scharstein and Szeliski present an extensive taxonomy of dense stereo vision algorithms.
According to the authors, most dense stereo vision algorithms perform the following steps to find a
disparity map:

1. Matching cost computation

2. Cost aggregation

3. Disparity optimization

4. Disparity refinement

An example of these four steps is shown in Figure 2.2 for the block matching algorithm.
An important distinction can be made between global and local algorithms, which differ in the way

the disparity optimization is performed. Global algorithms try to optimize a single cost function that
depends on all pixel disparities. These algorithms can produce accurate depth maps even for scarcely
textured scenes, but tend to be slower than local algorithms. Local algorithms independently optimize
the disparities of pixels or small regions. These algorithms are easier to parallelize and typically faster,
but less accurate.

An in­depth review of stereo vision methods is out of scope for this report. While it is important
to understand the way these stereo vision algorithms work, their run­time performance and accuracy
are perhaps more relevant for their use on UAVs. These are difficult to predict from first principles and
are instead measured on benchmarks, of which the Middlebury Stereo benchmark1 [50] and the KITTI
Stereo benchmark2 [34] are commonly­used examples.

In [56], Tippetts et al. perform an extensive review of stereo vision algorithms for resource­limited
systems. The authors collected run­time and accuracy measurements for a large number of algorithms
and use these to produce scatterplots of their performance. Where possible, the run­times were nor­
malized based on the hardware for which they were reported. The article provides an excellent starting
point for the selection of stereo algorithms, its only downside being that it was written in 2012 and that
it is therefore not fully up­to­date.

A similar review was performed for this literature study, so that algorithms published after 2012
could also be included. Run­time and accuracy measures were obtained from the Middlebury and
KITTI benchmarks. Run­time figures were not normalized, as the majority of methods are evaluated
on similar platforms (CPU­based methods on an unspecified 2.5GHz processor, GPU­based methods
on an NVIDIA Titan X). The main focus of this comparison is on algorithms for which code is publicly
available. The results are shown in Figure 2.3.

The following conclusions are drawn from these results: first of all, there exist close­to­optimal
stereo vision algorithms for which code is publicly available. This means that it is not necessary to
write an own implementation of a state­of­the­art algorithm. Secondly: from the CPU­based methods,
ELAS [17] and SGM/SGBM variants [22] are still among the best performers. The inclusion of SGBM
in OpenCV makes this an ideal algorithm for initial development. Thirdly: the use of a GPU can sig­
nificantly increase performance, mainly in terms of accuracy. However, it is currently unclear how this
performance improvement weighs up against the increase in weight and power consumption of such a
platform. The 250W power required by the NVIDIA Titan X is quite high for a UAV, and the performance
benefit seen in the benchmarks might be significantly smaller on an embedded GPU.

1http://vision.middlebury.edu/stereo/
2http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

http://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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(a) Platforms and performance on the Middlebury benchmark.
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(b) Platforms and performance on the KITTI benchmark.
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(c) Code availability on the Middlebury benchmark.
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(d) Code availability on the KITTI benchmark.
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Figure 2.3: Scatterplots of accuracy versus runtime performance on the Middlebury1 and KITTI2 stereo vision benchmarks. Run­
time on the Middlebury benchmark is measured in seconds per Giga Disparity Evaluations (GDE), which is found by multiplying
the image width, height and maximum number of disparities. Data obtained on 27/11/2017. a, b: Methods running on the GPU
tend to perform better than those running on the CPU. On the Middlebury benchmark they perform better in terms of accuracy,
while on the KITTI benchmark they also outperform CPU methods in terms of runtime – perhaps because runtime performance
is more important for automotive applications than for the static pictures of Middlebury. c, d: While code is not available for every
method, there are enough close­to­optimal algorithms for which source code has been published. e, f : These methods should
be considered first when choosing a stereo vision algorithm, as they perform well and their code is publicly available. Popular
choices are ELAS [17] and SGM/SGBM [22]; the latter is also included in OpenCV.
1: https://vision.middlebury.edu/stereo/ [50]
2: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo (CC BY­NC­SA 3.0)

https://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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(b) Sensitivity vs. distance. The sensitivity is defined as −d𝑧/d𝑑,
i.e. the distance error for a 1 px error in the disparity estimate.

Figure 2.4: Maximum range of stereo vision. As the distance increases, the sensitivity to stereo matching errors increases
quadratically. Example plots generated for a camera with baseline 𝐵 = 20 cm and focal length 𝑓 = 400px. Best­case disparity
errors are in the order of 0.5px to 0.1px [43] depending on the algorithm.

On a higher level, stereo vision has the advantage over other depth cues that its depth estimate
is based on the baseline between the two cameras. This is an advantage because the baseline is
constant and easy to measure or calibrate. In comparison, the distance between successive images
for optical flow is often unknown; it has to be estimated and therefore leads to more uncertainty in
the distance estimate. Appearance cues have a similar disadvantage, the size of certain cues in the
environment is not exactly known, also leading to uncertainty in the depth estimate.

Stereo vision also has limitations. First of all it requires two or more cameras. The resulting weight
will be larger for this setup than for depth estimation based on optical flow or appearance cues.

Secondly, the range of stereo vision is limited, although not as badly as commonly thought [43]. As
the distance to obstacles increases, the disparity decreases inversely (see Figure 2.4). This means
that for far­away objects the disparity hardly changes with distance. As a result, the sensitivity to
measurement errors d𝑧̂/d𝑑 increases with distance until it becomes impractically large:

d𝑧̂
d𝑑 = −𝐵 𝑓 𝑑

−2 (2.3)

= − 𝑧2
𝐵 𝑓 (2.4)

This growing uncertainty limits the maximum range of stereo vision. The disparity errors are the result
of incorrect matching of pixels in the input images and are typically independent of distance. If the
stereo algorithm only searches for discrete disparities, these errors will be in the order of 0.5px at best.
Stereo algorithms for long­range distances therefore need to estimate subpixel disparities. According
to Pinggera et al., it is possible to reach a consistent error limit of 0.1px under real­world conditions
[43]. The sensitivity to measurement errors can also be reduced by increasing the baseline 𝐵 or focal
length 𝑓 of the cameras.

Finally, the matching of features between the input images is often a weak point of stereo vision. As
a result, it may perform badly with the following obstacles: textureless surfaces, finely or repetitively
textured surfaces, textures oriented parallel to the baseline, reflections and transparency. Furthermore,
depending on the algorithm, slanted surfaces and occlusions can be problematic.

2.1.1.2. Optical flow
Optical flow tracks the movement of image features over time. In a static environment, the shift of these
features depends on the movement of the camera and the distance to the features; in general, features
further away from the camera will move less than those that are nearby. If the movement of the camera
is known, the distance to the features can be obtained. When only the rotation is known the distance
cannot be found; however it is still possible to estimate the time­to­contact, which is sufficient for some
forms of obstacle avoidance.
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Figure 2.5: Optical flow for forward motion. The image position 𝑢 of an obstacle located at (𝑥, 𝑧) changes as the UAV moves
forward with a velocity of −𝑧̇.

Figure 2.5 shows an example of optical flow and its use for depth estimation. The example assumes
forward motion3 at a known velocity without rotation of the camera. Given the obstacle’s position (𝑥, 𝑧)
and the camera’s focal length 𝑓, its image position 𝑢 can be found using equal triangles:

𝑢 = 𝑥 𝑓 𝑧−1 (2.5)

Taking the time derivative produces the instantaneous optical flow 𝑢̇ of the obstacle or feature:

𝑢̇ = −𝑥 𝑓 𝑧−2 𝑧̇ (2.6)
= −𝑢 𝑧−1 𝑧̇ (2.7)

In practice, however, the optical flow is estimated between two images separated by a time interval Δ𝑡.
The result is a shift in position Δ𝑢 instead of the flow 𝑢̇:

Δ𝑢 ≈ 𝑢̇ Δ𝑡 (2.8)
≈ −𝑢 𝑧−1 𝑧̇ Δ𝑡 (2.9)

The depth 𝑧̂ can be found by solving this equation for 𝑧:

𝑧̂ = −𝑢 𝑧̇ Δ𝑡 Δ𝑢−1 ∀Δ𝑢 ≠ 0 ⟹ ∀𝑢 ≠ 0 (2.10)

and, if velocity 𝑧̇ is not available, the time­to­contact 𝜏 is found using:

𝜏 = 𝑧̂/𝑧̇ (2.11)
= −𝑢 Δ𝑡 Δ𝑢−1 (2.12)

Note, however, that from Equation 2.7 and 2.9 it follows that the flow 𝑢̇ and shift Δ𝑢 will be zero in the
center of the image where 𝑢 is zero (the Focus­of­Expansion). It is therefore not possible to estimate
depth at the Focus­of­Expansion as the result is undefined.

The main problem of optical flow is not the estimation of depth but the tracking of features between
images. It is therefore very similar to stereo vision. The main difference, however, is that stereo vision
only searches for matches along one dimension, while optical flow is two­dimensional. Optical flow is
therefore more difficult to compute.

As in stereo vision, a distinction can be made between sparse and dense optical flow algorithms.
Sparse algorithms track highly recognizable points, typically corners. Sparse tracking is frequently
found in VO or SLAM. Like sparse stereo vision, sparse optical flow is not suitable for obstacle detection
as it may leave large holes in the depth map. Dense algorithms estimate optical flow for the complete
image and are therefore better suited for obstacle detection.
3Optical flow from sideways or vertical motion has slightly different characteristics, but will not be explained here to keep the
explanation short. A forward­facing camera is the most relevant example for obstacle avoidance.
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An overview of optical flow techniques is presented in [2]. The survey is similar to [50] in that it
breaks down the algorithms into a few key components. According to Baker et al., most dense optical
flow algorithms perform a global optimization (i.e. for all pixels at the same time) of the following energy
function: 𝐸data +𝜆𝐸prior, where the data term 𝐸data follows from the content of the images (similar to the
matching cost in stereo vision) and the prior term 𝐸prior encodes assumptions of the flow field such as
its smoothness [2]. The final component of a dense optical flow algorithm is the optimization algorithm.

An in­depth overview of optical flow algorithms is again beyond the scope of this report. Instead,
existing optical flow algorithms are compared by benchmark results. The results are obtained from
Baker et al., 2011 [2] (the more up­to­date Middlebury website4 unfortunately does not report run­times)
and from the KITTI optical flow 2015 benchmark5 [34]. The results are shown in Figure 2.6.

The KITTI results show that code is available for fast and accurate optical flow estimation on GPUs.
Code for the best performing CPU­based algorithms is not available; SPyNet [45] might be used as an
equally fast alternative, but it has a higher error percentage than the best­performing algorithms. The
other CPU­based algorithms for which code is available have run­times larger than one second. While
it may be possible to reduce their run­times by, for instance, lowering the resolution of the images, there
is no guarantee that they will run fast enough for practical use in obstacle avoidance. From the results
of Baker et al., 2011 only FOLKI has a run­time of one second, while the others are in the order of ten
seconds or more.

Compared to stereo vision, themain advantage of optical flow is that it only requires a single camera,
which saves weight. However, optical flow also has a number of disadvantages. First of all, if a metric
depth estimation is required, the velocity of the UAV should be known. Estimation of this velocity is not
trivial and uncertainties in this estimate are an additional source of error for depth estimation.

A second problem is that the optical flow approaches zero near the FoE. By definition the FoE lies
in the direction of travel, exactly the place where obstacles should be detected. Since the flow needs
to be inverted to estimate distance, this makes the depth estimate extremely sensitive to measurement
errors in shift Δ𝑢. This is demonstrated with the sensitivity d𝑧̂/dΔ𝑢, i.e. the error in the distance estimate
for a 1 px error in Δ𝑢, which is found by differentiating Equation 2.10 with respect to Δ𝑢:

d𝑧̂
dΔ𝑢 = 𝑢 𝑧̇ Δ𝑡 Δ𝑢

−2 (2.13)

= 𝑧2
𝑧̇ 𝑢 Δ𝑡 (2.14)

For reference, the best average end­point errors in the KITTI optical flow 2012 benchmark6 [18] lie in
the order of 1 px. The expected flow and sensitivity are shown in Figure 2.7 for a drone traveling at
10m/s. The conclusion drawn from this figure is that it may be difficult to get an adequate measurement
range near the FoE, as the sensitivity to measurement errors rapidly increases for |𝑢| < 100px.

Equation 2.14 suggests a few ways to reduce the sensitivity to errors. First of all, the UAV can fly
faster; this results in larger flow vectors relative to the measurement error. Secondly, the frame rate can
be reduced, this will also increase the size of the flow vectors. Note, however, that there is an upper
limit to Δ𝑡 as the resulting Δ𝑢 should remain small enough that features remain in view. The frame rate
should also remain high enough to detect obstacles in time. Finally, the sensitivity can be reduced by
using a higher­resolution camera or a zoom lens, as 𝑢 will be larger (note that the sensitivity does not
depend on the camera’s focal length).

The final disadvantage of optical flow is that it requires sufficient texture to match pixels between
successive images. Like stereo vision, it can produce incorrect results for textureless surfaces, finely
or repetitively textured surfaces, reflections and transparency.

Not mentioned in this review is scene flow, the 3D equivalent of optical flow. The result of scene
flow is a 3­dimensional velocity vector for each pixel, together with a depth or disparity. A review of this
field is left for future work.

4http://vision.middlebury.edu/flow/
5http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
6http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow

http://vision.middlebury.edu/flow/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=flow
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(a) Platform and performance on the KITTI benchmark.
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(b) Code availability of the methods reviewed in Baker et al., 2011.
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(c) Code availability on the KITTI benchmark.
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(e) Best performing methods on the KITTI benchmark for which
code is available.

Figure 2.6: Scatterplots of dense optical flow estimation accuracy and run­time performance. Data is obtained from Baker
et al., 20111 [2] and the KITTI optical flow 2015 benchmark2 [34] (data obtained on 28/08/2018). a: GPU­based methods
tend to have lower runtimes and error percentages than CPU­based algorithms. (Platform information is not available for Baker
et al., 2011). b, c: Of the methods listed in Baker et al., 2011, source code is not available for the best performing ones. This
is slightly better for the KITTI benchmark. d, e: These are the best performing methods for which code is publicly available.
GPU­based methods perform significantly better than CPU­based ones. There is little overlap between Baker et al., 2011 and
KITTI in terms of algorithms, but note that there is a 7­year gap between the two benchmarks. The algorithm by Brox et al. is
included in OpenCV [4]. For the other methods code is available, but it might take more work to integrate these into research
code.
1: Baker et al., 2011 [2] (CC BY­NC 2.0)
2: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow (CC BY­NC­SA 3.0)

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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(a) Expected optical flow Δ𝑢 as a function of image position 𝑢 for
three obstacle distances 𝑧.
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(b) Sensitivity to measurement errors in Δ𝑢 as a function of image
position 𝑢 for three obstacle distances 𝑧.
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(c) Expected optical flow Δ𝑢 as a function of obstacle distance 𝑧
for four image positions 𝑢.

0 20 40 60 80 100

Distance [m]

0

20

40

60

80

100

S
en

si
tiv

ity
 [m

/p
x]

u = 1px
u = 10px
u = 100px
u = 400px

(d) Sensitivity to measurement errors in Δ𝑢 as a function of obsta­
cle distance 𝑧 for four image positions 𝑢.

Figure 2.7: Example of expected optical flow and sensitivity to measurement errors in Δ𝑢. Data generated for a camera traveling
at 10m/s with an optical flow algorithm running at 10Hz (Δ𝑡 = 0.1 s). Plot b shows that the sensitivity to errors strongly increases
near the center of the image and approaches infinity at the Focus­of­Expansion (FoE). Plot d shows that obstacles near the FoE
(𝑢 = 1px) can only be detected at short ranges where the sensitivity to measurement errors is low, while the range is significantly
larger near the edge of the image (𝑢 = 400px).
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2.1.1.3. Appearance
Unlike stereo vision or optical flow, appearance cues can be found inside a single image. As humans
we are already familiar with appearance­based cues because we use them all the time, such as when
looking at photographs. Photographs do not contain disparities since they are flat, nor do they produce
optical flow as they do not move. Still, it is possible to estimate depth from these images; this is the
field of monocular depth estimation.

‘Appearance’ is not really a single cue, as is the case for stereo vision which relies entirely on
disparities or optical flow which results only from the flow vectors. Instead, appearance cues are a
collection of image features that depend in one way or another on depth. An extensive treatment of
depth cues used by humans can be found in [19]. The following is a non­exhaustive list of appearance
cues:

• Occlusion. Nearby objects cover those further away.

• Image size of known objects. Using the focal length of the camera, this can be transformed back
into a distance estimate.

• Different image sizes of similar objects. The objects that appear smaller in the image are further
away.

• Perspective. Parallel lines in the environment appear to converge in the image, their distance
provides an indication of depth.

• Vertical image position. Objects that appear higher in the image are further away.

• Texture gradient. Surface textures will appear more fine­grained if they are further away.

• Light and shadow. This cue is especially relevant for surface relief. Light typically comes from
above, brighter regions are assumed to face upwards.

• Atmospheric haze. Far­away objects take on a blue­ish tint.

• Sky segmentation. The sky is infinitely far away.

Most of these cues require knowledge about the environment, such as the presence of a flat ground or
parallel lines, knowledge about the size of objects, and so on. This makes appearance­based depth
estimationmore difficult to implement than stereo vision or optical flow. If it is even possible to implement
some of these cues, this quickly leads to rather ad­hoc solutions. For this reason, appearance­based
cues have seen relatively little use in computer vision until recently.

One of the first practical examples of monocular depth estimation for arbitrary outdoor images is
Saxena et al.’s Make3D [47, 49], first published in 2006. The system relies on a combination of super­
pixel segmentation and hand­crafted features. These are fed into a Markov Random Field (MRF) to
model the relations between the regions in the image. Another example of monocular depth estimation
using classical machine learning methods, this time based on the texture gradient cue, is given in [58].

The field of monocular depth estimation really took off with the arrival of Deep Learning. Using
Convolutional Neural Networks (CNNs), it is no longer necessary to develop feature descriptors by
hand. Instead, these features and the relations between them are learned from a large dataset of
example images. Eigen et al. are the first to use a CNN for monocular depth estimation in [8, 9]. Their
network is trained on color images labeled with the true depth map obtained with a Kinect (NYU Depth
v2) or LIDAR (KITTI). The first example of Self­Supervised Learning for depth estimation is published
in 2016 by Garg et al. [16]. Instead of training to predict a depth map, their CNN is trained to predict
the other image in a stereo pair. Deep learning has made it possible to use appearance for depth
estimation by taking away the need to manually implement an estimator for these cues. Section 2.2
will go into more detail on Deep Learning for depth estimation.

Appearance­based depth estimation has the advantage that it only requires a single camera. Unlike
optical flow, however, it can work without an estimate of the UAV’s velocity. Secondly, appearance­
based depth estimation relies on different features than stereo vision and optical flow. As a result, ap­
pearance cuesmaywork better for obstacles where the previous algorithms are likely to fail. Appearance­
based depth estimation could therefore be a valuable addition for depth estimation, but this is not yet
proven. Whether obstacle avoidance will truly benefit from appearance cues is still an open question.
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(a) Depth estimation using the known size 𝐿 of an object and its
image size 𝑙.
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(b) Depth estimation using the vertical image position 𝑣 and the
altitude 𝐴 of the UAV.

Figure 2.8: Two examples of depth estimation based on appearance features.

The main disadvantage of appearance­based depth perception is that it is inaccurate, especially
with regards to scale. Monocular depth perception lacks a reliable reference length by which the scene
can be scaled. In stereo vision this is provided by the baseline between the cameras; in optical flow by
the distance between the two images. In monocular depth estimation, the only obvious source of this
information is the known size of objects, but this has to be learned from the training set and may vary
between different object instances.

The depth scale, however, is not the only problem of monocular depth estimation. The relative depth
between objects also suffers from large inaccuracies. This is effectively demonstrated by Smolyanskiy
et al. in [53]. The authors show that the depth map produced byMonoDepth [20] looks visually correct;
however, an overhead view of the resulting point cloud shows that this is clearly not the case. It is not
clear whether this is a limitation of MonoDepth or its training set, or a more fundamental issue with
monocular depth estimation.

Estimating the sensitivity to measurement errors of appearance cues is a bit more difficult than for
stereo vision or optical flow as the cues are not always clearly defined or based on simple geometry.
An attempt is made to model the uncertainty of the two depth cues: the size of known objects in the
image and the vertical position of objects in the image. These examples are shown in Figure 2.8. Using
equal triangles, the image size 𝑙 of an object can be found as follows:

𝑙 = 𝑓 𝐿 𝑧−1 (2.15)

Similarly, given the drone’s height 𝐴 above the terrain, the vertical position 𝑣 in the image is found using:

𝑣 = 𝑓 𝐴 𝑧−1 (2.16)

Note that these equations are exactly the same when 𝐿 = 𝐴 and 𝑙 = 𝑣. For brevity only the first cue
will be discussed in more detail, the results also apply to the second case.

Equation 2.15 can be solved for 𝑧 to produce a depth estimate 𝑧̂:

𝑧̂ = 𝑓 𝐿 𝑙−1 (2.17)

There are two sources of uncertainty in this equation. First of all, there may be a small error in the
length measurement 𝑙 in the image. Sensitivity to this error is found to be:

𝜕𝑧̂
𝜕𝑙 = −𝑓 𝐿 𝑙

−2 (2.18)

= 𝑧2
𝑓 𝐿 (2.19)

While this sensitivity also increases quadratically with distance, its magnitude remains relatively small
compared to the errors of stereo vision or optical flow: when observing an object with size 𝐿 = 10m
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Figure 2.9: Comparison of expected error bounds for selected depth estimation methods.

Table 2.1: Parameters used to generate Figure 2.9. Error bounds 𝜖𝑙, 𝜖𝐿 and 𝜖𝐴 are an educated guess, the bounds 𝜖𝑑 and 𝜖Δ𝑢
are based on literature and the KITTI benchmark.

𝐵 20 cm 𝜖𝑑 0.1px
𝑓 400px 𝜖Δ𝑢 1.0px
𝑧̇ 10m/s 𝜖𝑙 2px
Δ𝑡 0.1 s 𝜖𝐿 3m
𝐿 10m 𝜖𝐴 10m
𝐴 100m

(e.g. a tree, or the length or wingspan of a Cessna 172) at a distance of 100m with a focal length of
𝑓 = 400px, the sensitivity to length measurement errors is only 2.5m/px, compared to ∼ 100m/px for
a stereo camera with baseline 𝐵 = 20 cm and the same focal length.

The second source of error is uncertainty about the object’s true size 𝐿. Sensitivity to these errors
is found as follows:

𝜕𝑧̂
𝜕𝐿 = 𝑓 𝑙

−1 (2.20)

= 𝑧
𝐿 (2.21)

Note that unlike all error sensitivities found before, this one only grows linearly with distance. This sug­
gests that appearance­based depth estimation might have an advantage over stereo vision or optical
flow at longer distances, as long as the error in the image length measurement 𝑙 remains sufficiently
small.

Sensitivity to errors in the image length measurement (Equation 2.19) can be reduced with a larger
focal length 𝑓. There is, however, no way to reduce the sensitivity to errors in 𝐿 (Equation 2.21), as 𝐿
mainly depends on the object that happens to be in front of the UAV.

In the example of the vertical image position, however, 𝐿 is equal to the altitude of the drone. This
altitude is mostly likely larger than the size of objects the drone will encounter, which means this depth
estimation method will be more accurate than using the size of the object. Secondly, the sensitivity to
errors can in this case be reduced by flying higher, thereby increasing 𝐿.

This section on sensing is concluded with a comparison of the expected errors of stereo vision,
optical flow and appearance­based depth estimation. The expected error is calculated by multiplying
the sensitivity (e.g. d𝑧̂/d𝑑) with an estimated upper bound on said error (e.g. 𝜖𝑑 = 0.1px for stereo
vision with subpixel disparities). Note that this is only a first­order approximation of the error, the results
may not be realistic as the expected error approaches or exceeds the true distance 𝑧. A comparison
chart of the depth estimation methods is shown in Figure 2.9. The parameters used to generate this
chart are listed in Table 2.1.

While the results should be taken with a grain of salt, they do highlight the trends found in this
literature review. The error of optical flow is prohibitively large near the center of the image (𝑢 = 1px
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and 100 px), but comparatively decent near the edge of the image (𝑢 = 400px). The error could be
reduced by flying faster, a speed of 10m/s was assumed for this comparison. Stereo vision appears to
be the best choice in this scenario for obstacles up to a distance of ∼ 80m. Unlike optical flow, however,
this depth estimate should also be accurate near the center of the image. The result plotted here is
based on a stereo vision algorithm that can estimate subpixel disparities. Finally, at larger distances
the depth estimate based on the vertical position of objects performs best, due to its predominantly
linear increase in sensitivity to measurement errors.

2.1.2. Avoidance
When an obstacle is detected along the UAV’s direction of travel, it should perform an avoidancemaneu­
ver to prevent a collision. There are different ways to handle this, from the very simple and lightweight
reflexive behaviors, to high­level planning in maze­like environments.

The execution of an avoidance maneuver typically requires the following components: 1) motion
planning, which determines the actions the UAV should take; 2) amap, a representation of the obstacles
in the vicinity of the UAV and 3) odometry, which is often required to accurately perform the planned
maneuver. These components will be briefly discussed in the following subsections.

2.1.2.1. Motion planning
Motion planning determines the action the UAV should take to avoid collisions while moving towards
its goal location. An overview of motion planning and obstacle avoidance algorithms can be found in
[21, 35].

Minguez et al. [35] make a distinction between global planning and local planning (called ‘motion
planning’ and ‘obstacle avoidance’ in their article, these terms will not be used here to avoid confusion
with the overall task of obstacle avoidance). Global planning assumes that the location of all obstacles
is known, the goal is to find a trajectory that optimizes a given performance measure. Local planning
assumes that only obstacles detected by the UAV’s sensors are known. The goal here is to adapt
the current trajectory of the UAV to avoid a collision with nearby obstacles. Local planning has the
disadvantage that it can get trapped in certain situations (mazes for example, but these situations are
unlikely in outdoor flight). However, unlike global planning it can function in unknown environments.
Local planning is therefore the most relevant for UAV obstacle avoidance.

Motion planning algorithms can be broadly divided into the following classes: reactive planning,
planning without dynamics and planning with dynamics. Reactive planning refers to a class of algo­
rithms that prescribe a control input or motion based directly on the presence of obstacles. An example
is the use of potential fields to determine the direction of travel of the UAV: detected obstacles ‘repel’
the drone, preventing a collision. In planning without dynamics the goal is to find a path for the UAV
that guides it past the detected obstacles. This path should also minimize a cost function, setting these
algorithms apart from reactive planning. Once a path is found, it is left to a lower­level controller to
actually follow it. An example is [33] where a Rapidly­exploring Random Tree (RRT) is used to plan a
path through a forest. Planning with dynamics also optimizes a cost function, but includes a dynamic
model of the UAV. Model Predictive Control (MPC) is an example of this. The inclusion of dynamics
ensures that the maneuver can actually be performed, but requires a dynamic model of the UAV to be
available. The use of dynamics is particularly suitable for high­performance manneuvers (e.g. drone
racing), while planning without dynamics is more suitable for general­purpose applications as it does
not require a model.

For brevity this section only lists examples of algorithms. The reader is referred to the cited reviews
for a more extensive overview of methods.

2.1.2.2. Maps
Motion planning requires a map, but the exact function of the map differs per algorithm. At the very
least, themap serves to document the location of nearby obstacles; even reactive planning will need this
information. For more complicated algorithms, the map allows the planning of an avoidance maneuver
around the obstacles. Finally, a map allows multiple observations of obstacles to be combined, which
is the basic idea behind SLAM.

Maps can be made at different levels of detail. Ground robots and autonomous cars often create
highly detailed maps of their immediate surroundings. These types of maps are also applicable to
UAVs flying at low altitudes or indoors, but their creation is computationally intensive. An example of
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Table 2.2: Overview of common properties of map types. This table only lists the typical properties of these maps; exceptions
can likely be found for many entries in this table. Note that combinations of these maps are possible (e.g. a cartesian voxel map
for static obstacles and an EKF for the positions of other aircraft).

Image­space Discretized space (voxels) Continuous space

Cartesian Polar Point cloud Obstacle positions

Computational complexity Low High High High Low
Volumetric 2.5Da Yes Yes Nob Noc
Probabilistic No Occupancy Occupancy Position Position
Dynamic No No No Yes Yes
Single­frame Yes Yes Yes Yes Yes
Multi­frame No Yes No Yes Yes
Reference frame Body World Body Any Any

aVolumetric in horizontal and vertical directions but not in depth.
bIt is possible to fit a mesh on the point cloud or assume a small, fixed volume around each point.
cA fixed volume can be assumed for the obstacle, if known.

less detailed maps for aircraft is the Enhanced Ground Proximity Warning System (EGPWS), which
uses relatively coarse­scaled static maps to prevent terrain collisions on passenger aircraft. Such a
map could also be used on UAVs as a form of geofencing, but this would primarily apply to cruise flight
as such a static map is difficult to keep up to date at a high enough level of detail for take­offs and
landings.

Table 2.2 lists map types that could be used to model the immediate surroundings of the UAV
during flight. The maps are divided into three classes: image­space maps, discretized space maps
and continuous space maps. Image spacemaps are essentially the same as depth maps: they consist
of pixels for which the distance towards the first obstacle is stored. Discretized space maps split the
surroundings of the drone into a collection of discrete cells that can be free or occupied. Thesemaps are
commonly used for range­sensor­based SLAM on indoor robots. Finally, continuous spacemaps do not
discretize the space around the UAV, but store a continuous position estimate for each measurement
point. A point cloud is a typical example of this map, but it is also possible to track the position of entire
objects.

The table furthermore lists the following properties: computational complexity gives an indication
of the amount of processing power and memory required to build and maintain the map. Single­frame
maps are relatively lightweight, as are filter­based maps if they have small covariance matrices (e.g. an
EKF of obstacle positions). Maps that are constructed from multiple image frames tend to require more
processing and memory. The next properties describe the information a map may contain: volumetric
maps describe non­zero volumes of space, such as voxels. On the other hand, non­volumetric maps
such as point clouds model obstacles using infinitesimally small points. Additional processing (e.g.
mesh­ or surface fitting, or expanding the points by a certain volume) of these maps is required before
they can be used to test for collisions. Probabilistic maps can explicitly model uncertainty; either in
the occupancy of parts of the environment, or in the position estimate of points or obstacles. Dynamic
maps can also model the velocities of obstacles. Continuous­space maps are particularly suitable for
this, as they can be updated over multiple frames without introducing quantization errors by storing
intermediate states into a discretized map.

In principle all of the maps in Table 2.2 can successfully be used on UAVs, but it depends on the
application which map is the most suitable. The most important decision is whether the map should
combine multiple measurements (multi­frame) or represent only a single measurement (single­frame).
Combining multiple measurements allows the drone to map large and complex environments; it is
therefore particularly suited for indoor operations but its use is limited to larger drones as the underlying
algorithms can be computationally intensive. Cartesian voxel maps are a common choice for this
application (e.g. [32, 51]). If the environment is simple enough that it can be captured in a single
measurement, then image­space maps are a logical choice as these require very little processing to
create and because other map types do not provide additional advantages if they do not fuse multiple
measurements. An example of the use of an image­space map for UAV obstacle avoidance is found
in [33]. For the avoidance of other aircraft, a continuous­space map is a good choice as such a map is
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easy to update and can also model the velocity of the other aircraft. An Extended Kalman Filter (EKF)
with the states of the detected aircraft is an example of such a map.

2.1.2.3. Odometry
To perform all but the most basic avoidance maneuvers, the UAV will need an estimate of its velocity.
Outdoors GPS is often available, but reflections can make it inaccurate in densely built areas. Indoors,
GPS is not available for navigation so a different solution needs to be found.

A common solution for GPS­less flight is Visual Odometry (VO), where a camera is used to estimate
the velocity of the drone. The simplest methods directly transform the optical flow from a bottom­
facing camera into a velocity estimate; this is commonly combined with sonar measurements to provide
a sense of scale. More complex VO algorithms are closely related to SLAM but lack loop closure
capabilities. These algorithms often estimate the UAV’s pose relative to a keyframe. The use of a
keyframe instead of the integration of velocities prevents drift over time; errors only accumulate when
new keyframes are created.

VO algorithms can be separated into dense and sparse algorithms, and direct and indirect methods.
A good description of these categories is provided in the introduction of [12]. The dense and sparse
attributes are similar to those in stereo vision and optical flow: sparse algorithms only track a small
number of keypoints, while dense algorithms use the entire input image. Direct and indirect refers to
the way that keypoints are matched or tracked: direct methods rely only on the intensities of neighboring
pixels, while indirect methods first need to construct feature descriptors.

Both monocular, stereo and RGB­D vision can be used for VO. Stereo and RGB­D have the advan­
tage that the map can be initialized from a single observation; this is not the case for monocular VO as
one observation can only provide the bearing of the keypoints. Since a depth map is already required
for obstacle avoidance, it should also be used for VO.

Another design consideration is the use of an Inertial Measurement Unit (IMU). IMUs measure ac­
celerations and angular velocities, which can be integrated to track the drone’s pose. Additionally, it can
provide an estimate of the gravity vector. The IMU typically has a higher update rate than the camera
and is also not sensitive to the appearance of the environment. The integration of small measurement
errors, however, causes the pose estimate to drift over time – especially in the horizontal plane [61]. It
is therefore not practical to rely solely on the IMU, it needs to be fused with other measurements like
VO. There are two approaches to the fusion of IMU data with VO: tight coupling and loose coupling.
With tight coupling, the IMU measurements are used in the same filter that performs the visual pose
estimation, for instance in the update step of an EKF. With loose coupling, the vision­based pose esti­
mate is calculated separately, after which a second filter is used to fuse it with the IMU measurement.
Tight coupling produces more accurate results, but loose coupling might be easier to implement with
existing autopilot filters. A second use of the IMU is in feature tracking. The IMU can be used to predict
the next position of keypoints; this estimate can reduce the search space for tracking. An example of
this principle can be found in [46].

An overview of VO methods is presented in Table 2.3. UAV obstacle avoidance applications should
prefer methods that use stereo or RGB­D input together with the IMU.

2.1.3. Performance evaluation
Once a Collision Avoidance System (CAS) has been implemented, its performance should be evalu­
ated. The literature review on this subject can be kept brief: hardly any literature exists on this topic.
Most articles on obstacle avoidance demonstrate their method in an example application, but there is
no common benchmark on which they can be compared.

A first step towards such a benchmark was taken in [39]. One of the core ideas of this paper is that
the obstacle avoidance task can be split into smaller subtasks that can be evaluated independently. For
instance, the accuracy of obstacle detection can be evaluated independently from the UAV’s motion
planning algorithm or state estimator.

The main difficulty in the development of a benchmark is to find suitable metrics to describe the
avoidance problem: the metrics should be chosen such that different environments with the same
metrics (e.g. obstacle density, typical obstacle size) result in the same behavior. It should be possible
to predict the performance of an obstacle avoidance system when all relevant metrics of the target
environment are available. Such a benchmark would be extremely valuable both for UAVs and other
types of robots.
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A similar lack of benchmarks exists for robot navigation. A proposal for a navigation benchmark is
found in [54], perhaps this paper can also serve as inspiration for an obstacle avoidance benchmark.

2.2. Deep Learning for depth perception
Because of strict weight constraints, UAV obstacle detection is strongly dependent on vision. While
earlier vision algorithms had to be designed and tuned by hand, the arrival of Deep Learning allows
depth estimation to be learned from large datasets. This section presents an overview of recent liter­
ature and developments in the field of depth perception. Since the first application of a Convolutional
Neural Network (CNN) for depth perception in 2014 [9] this field has been rapidly evolving. This is also
illustrated by the articles cited in this section, as the majority of them were uploaded to ArXiv between
June 2018 and now. Each month, roughly ten new relevant papers appear on ArXiv.

Section 2.2.1 describes different depth perception tasks. Section 2.2.2 will discuss the training of
these networks including a brief overview of commonly used datasets. Finally, section 2.2.3 presents
some works on the analysis of networks after they have been trained.

2.2.1. Problems in depth perception
While the goal of depth perception is clear – the estimation of a depth map from input images – there
are a few ways this problem is formulated in literature. The most common problem that is solved in
literature is depth prediction: generating a depth map using only one or more input images. A second
problem in literature is that of depth completion. In this case, a partial depth map is already available,
such as the depth towards VO or SLAM keypoints. The goal of the neural network is then to fill in the
missing parts of the depth map. Finally, recent literature has shifted towards the combination of depth
perception with other tasks in the same network. For instance, a single network performs both depth
estimation and object segmentation. The next subsections look more closely at these problems.

2.2.1.1. Depth prediction
The goal of depth prediction is the estimation of a depth map given only one or more RGB images.
The field of monocular depth prediction uses only one image for its depth estimate. The first CNN
for monocular depth prediction was presented in 2014 by Eigen et al. [9]. This network was trained
on images labeled with true depth maps. Because these maps are hard to obtain, Garg et al. [16]
developed the first network that used unsupervised learning. Training is performed by predicting the
other image from a stereo pair; it is no longer necessary to collect true depth maps. Godard et al. [20]
proposed further improvements to this technique. The recently published PyD­Net (July 2018) can run
at ∼2Hz on a Raspberry Pi 3 CPU and still produce competitive results [44].

While methods [16, 20] do not require true depth labels, they still need to use a stereo camera to
collect training data for monocular vision. As a result, these methods cannot be used for on­board train­
ing of monocular vision. An alternative to these approaches is to train on monocular image sequences.
Examples of this approach are [24, 59, 65].

While it may seem redundant at first, it is also possible to perform depth prediction on stereo images.
The advantage of this over ‘normal’ stereo vision methods such as SGM is that the neural network can
also learn to include appearance cues. These provide additional depth information that is not provided
by just the disparities. An example of deep learning for stereo vision is found in [64], where Self­
Supervised Learning (SSL) is used to learn stereo vision from scratch. After training, the network can
compete with existing state­of­the­art algorithms.

Compared to monocular vision, stereo vision has the advantage that a reliable reference distance
is available: the baseline between the two cameras. As a result, depth estimates from stereo vision are
more accurate than those from monocular vision. This point is strongly argued by Smolyanskiy et al.,
who state that any application that relies on accurate depth estimates and that can carry more than
one camera should do so [53]. The use of a stereo camera should be possible on all UAVs as even the
∼20g DelFly can carry a small stereo camera. The only reason the preliminary work in chapter 3 still
looks at monocular vision is that this allows appearance cues to be examined in isolation from disparity
or flow cues.
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2.2.1.2. Depth completion
Where depth prediction uses only RGB images, depth completion assumes that some sparse depth
information is available. This information can come, for instance, from the depth of VO keypoints. In
literature, LIDAR is also commonly mentioned as a source of sparse depth measurements.

Ma and Karaman [30] implement a network that uses sparse depth information and then compare its
performance to monocular depth estimation. They come to the interesting conclusion that even a depth
map generated from only 20 sparse depth measurements without RGB images already has a higher
accuracy than the monocular depth estimation networks of [8, 27]. Note that this comparison is based
on scale­aware metrics; the scale­invariant error [9] is not reported so it is not possible to say whether
the relative distances are incorrect or that the monocular methods only suffer from a scaling error.
Nevertheless, the experiments show that sparse depth measurements can be a valuable addition for
depth estimation. The authors also check whether the use of RGB images in addition to sparse depth
estimates leads to further accuracy improvements: this is primarily the case for low numbers of depth
measurements, at higher numbers there is also an increase in accuracy but it is small. The work of
Ma and Karaman is continued in [31]; other recent examples of depth completion are [6, 23, 60]. No
examples were found where sparse depth completion is combined with or compared to stereo vision.

The good results from depth completion lead to an interesting design choice: is it better to perform
depth prediction and use the results for VO, or to use VO to collect sparse measurements and use
these to estimate a depth map? A third option has also appeared in recent literature: use a single
network to predict both depth and pose from image sequences.

2.2.1.3. Combined tasks: depth, pose, flow, segmentation, ...
Recently a growing number of articles is appearing on networks that combine depth estimation with
other tasks. Common combinations are depth with pose, segmentation and/or optical flow. There are
a few potential advantages to combining these techniques in a single network: if filters can be shared
between tasks, this might lead to a lower total number of parameters. Secondly, combining multiple
tasks can potentially improve learning as the depth estimation is encouraged to use the (intermediate)
results of, for instance, object segmentation and vice versa. A review of these networks is left for future
work; it is therefore not possible to confirm these advantages in this report.

2.2.2. Training
Training is an essential component of Deep Learning. For depth estimation, two types of training are
common in literature: supervised and unsupervised (also called self­supervised). Earlier examples of
monocular depth estimation (e.g. [9]) rely on supervised learning. The network is trained to replicate
a true depth map that belongs to the input image. This depth map is typically obtained using a LIDAR
sensor or an RGB­D sensor (e.g. Microsoft’s Kinect). An advantage of supervised learning is that in
most cases a true depth value is available for every pixel. The major disadvantage, however, is that
it requires an additional sensor to capture the true depth of the scene. For this reason, supervised
learning cannot be used on­board a UAV; all training has to be performed offline.

In unsupervised learning, the true depth map is not available. Instead, unsupervised learning often
depends on a reconstruction error, where for instance the other images in a stereo pair are predicted
and compared to the true images (e.g. [16]). The advantage of unsupervised learning is that the training
data is easier to collect. Since no additional sensor is required, learning can also be performed online,
allowing the UAV to adapt to its environment during operation. ‘Unsupervised learning’ is a bit of a
misnomer as the methods primarily rely on supervised training methods. The argument to call them
unsupervised is that no labeled data has to be provided from an external source. Unsupervised learning
is the same as Self­Supervised Learning (SSL), but this term does not introduce ambiguity about the
learning method, while it still makes it sufficiently clear that the supervision is already provided by the
input data. Therefore, only ‘SSL’ will be used in this report.

Recent articles have started to use Generative Adversarial Networks (GANs) for depth perception
(e.g. [5, 42]). In the GAN framework, a second network (the discriminator) is trained to distinguish the
network’s output from the training label. The depth perception network (the generator) and discriminator
are trained in alternation. In this framework the discriminator essentially replaces the loss function, but
unlike the loss function it is trained specifically for the (last version of) the generator network and can
therefore provide a more precise measure of its performance.

GANs can be used in both supervised and self­supervised settings. In the former ([5]), it compares
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the generated and true depth maps; in the latter ([42]) it compares reconstructed and true images. In
both papers the accuracy exceeds that of common benchmark papers.

The (off­line) training of a neural network requires an appropriate dataset. The use of publicly
available dataset also allows a quantitative comparison between methods. Commonly used datasets
are the KITTI stereo dataset7 and the NYUv2 dataset8 [52]. The KITTI dataset is aimed at automotive
applications; the images are obtained from a stereo camera and LIDAR mounted on the front of a car.
The NYUv2 dataset contains RGB­D images captured in indoor environments. Other frequently­used
datasets are Make3D9 [47–49] and the Cityscapes dataset10 [7].

Instead of using data captured in the real world, it is also possible to generate these from a sim­
ulation. Examples of generated datasets are vKITTI11 [15] and Synthia12. Training data can also be
generated during closed­loop simulation. An example of this is Microsoft’s AirSim13 for UAVs and au­
tonomous cars. An advantage of simulation is that the actual depth of all pixels is directly available.
The disadvantage is that the generated images differ from those captured in the real world – the reality
gap. In [63] Zheng et al. propose to use a GAN to reduce the difference between real and simulated
images. The resulting network can outperform [9] but not [16, 20] when subsequently evaluated on
real datasets.

2.2.3. Analysis of trained networks
While there are many articles on deep learning for depth perception, no articles were found on how
the trained networks perform this task. There is a small number of articles that focus on the analysis
of CNNs in general. In [62] Zeiler and Fergus use unpooling and deconvolution operations to map
neuron activities back to the input space. Given an input image, this technique produces an image that
highlights the regions that cause a strong activation of a selected neuron. This technique focuses on
single neurons, but note that [55] argues that it is the space spanned by multiple neurons can be more
informative than individual neuron activations. In a more recent paper Olah et al. [40] present a highly
detailed (interactive) overview of visualization techniques. This article provides a good starting point
for further research into neural network visualization.

The cited papers examine generic CNNs at a rather low level. No articles were found that examine
the high­level behavior of networks for depth perception. How exactly do these networks estimate
depth? This information is essential in order to predict the behavior of these networks on other platforms
– UAVs in this case. Therefore, chapter 3 presents the first steps towards a high­level understanding
of these networks.

7http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
8https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
9http://make3d.cs.cornell.edu/data.html
10https://www.cityscapes­dataset.com/
11http://www.europe.naverlabs.com/Research/Computer­Vision/Proxy­Virtual­Worlds
12http://synthia­dataset.net/
13https://github.com/Microsoft/AirSim

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://make3d.cs.cornell.edu/data.html
https://www.cityscapes-dataset.com/
http://www.europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds
http://synthia-dataset.net/
https://github.com/Microsoft/AirSim
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Figure 3.1: Monocular depth estimation with MonoDepth [20]. Input image: KITTI stereo vision dataset (CC BY­NC­SA 3.0)

Figure 3.2: The MonoDepth network does not transfer well to different viewpoints. The road on the left is seen as a nearby
obstacle. The high­rise building of EWI appears closer than the trees in front of it. Input image: Aanzicht Mekelpark
met studenten by D. Brinkman, © Delft University of Technology, https://repository.tudelft.nl/view/MMP/uuid:
cb952de1­34e8­4db3­a577­9177a62581ed?fullscreen=1.

3.1. Monocular depth perception
The goal of this research is to use SSL to improve obstacle avoidance on UAVs. SSL will be used
for depth estimation as the need to use vision to sense the environment sets UAVs apart from other
vehicles. The first question to be asked is whether SSL­based depth estimation can actually be used
on a UAV. At first sight this may seem obvious: why would it not work on a UAV? However, results
indicate that this might not be as simple as it appears.

This chapter presents experiments performed on the MonoDepth network [20]. MonoDepth is a
Self­Supervised monocular depth estimation network that is trained on the KITTI stereo vision dataset.
The network predicts disparities such that these minimize a reconstruction error between two images
of a stereo pair. On images in the KITTI dataset the network performs quite well (Figure 3.1). However,
when the network is used on images taken from a different viewpoint (Figure 3.2), the accuracy of the
depth map quickly degrades.

23

https://repository.tudelft.nl/view/MMP/uuid:cb952de1-34e8-4db3-a577-9177a62581ed?fullscreen=1
https://repository.tudelft.nl/view/MMP/uuid:cb952de1-34e8-4db3-a577-9177a62581ed?fullscreen=1
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Clearly, a network trained on a dataset of automotive images cannot be transferred directly to a
UAV. Most likely it is possible to get MonoDepth to work on a UAV by training it on a suitable dataset.
However, that does not explain why the network trained on KITTI fails. The results on KITTI images
show that the network can estimate depth, but apparently it does so using image features that do not
work on UAVs. To guarantee correct behavior it is important to know what these features are and under
what circumstances they are learned.

While there is a large and increasing number of articles on monocular depth perception, there is
not a single paper that analyses what these networks actually learn. This experiment is a first step
towards an understanding of monocular depth perception as learned by neural networks. The goals of
this experiment are:

• Provide insight into monocular vision. While useful for UAVs, this insight will also be extremely
valuable for automotive applications. With an understanding of the inner workings of monocular
depth perception, it becomes easier to predict its behavior and to make guarantees about its
correctness.

• Provide insight into the use of monocular vision on UAVs. The results should explain why the
network trained on KITTI does not transfer well. The same experiments can then be performed
on a network trained on a UAV dataset, and the differences can be compared.

• The features learned by MonoDepth might be replicated using simpler, lightweight algorithms.
This would enable the use of monocular vision on embedded hardware and tiny UAVs, perhaps
even the DelFly.

The problem with neural networks like MonoDepth is that they are black boxes. It is difficult to
analyze what is going on inside them. In that respect there is some overlap with human depth per­
ception, which is also difficult to take apart piece­by­piece. For neural networks there are techniques
to visualize the functions of individual neurons, but this is a very low­level form of analysis. Instead,
the experiments presented here will analyze the behavior of the entire network using the time­tested
scientific method: coming up with hypotheses on how the network could estimate depth, then designing
experiments that test whether these hypotheses are true.

So what would be a good hypothesis on the inner workings of MonoDepth? The experiments per­
formed in this chapter test the following points:

• MonoDepth assumes there is a flat ground in front of the vehicle.

• MonoDepth uses color to detect the sky.

• MonoDepth estimates the distance towards obstacles using one or more of the following features:

– Apparent size of known obstacles.
– Vertical position in the image.

MonoDepth is trained on the KITTI dataset, which contains images taken from a forward­facing camera
on a car. The camera has a fixed attitude and height and in the majority of the images there is a free
section of road in front of the car. Rather than detecting the road, MonoDepth can just assume it is
there as this will be true for nearly all images in the training set. It is hypothesized that MonoDepth
assumes the presence of a flat ground rather than detecting it. The ground’s depth estimate will be
‘overwritten’ by any obstacles it detects.

The upper half of the image consists of sky and obstacles. The sky seems easy to detect using its
color or brightness and would result in a large number of correct pixels; it is therefore assumed that
MonoDepth does just that, possibly combined with a prior expectation of seeing the sky in the upper
half of the image.

With the ground and sky detected, the rest of the depth map consists of obstacles. Following the list
of appearance cues in subsubsection 2.1.1.3, likely candidates for depth estimation towards obstacles
are their apparent size and vertical position as both seem relatively easy to measure, although the
former also requires knowledge about the true size of various types of obstacles.
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(a) MonoDepth’s response to a completely white input image. Al­
though there is a hint of a ground surface, the depth map (espe­
cially the top half) contains a lot of garbage.

(b) Addition of a single thin line is enough to make MonoDepth
detect a floor and sky, or at least assume they are there.

Figure 3.3: MonoDepth has strong prior expectations about the presence of a flat ground in the lower half of the image and sky
in the upper half. (Outlines added for visibility, these are not part of the input images.)

Figure 3.4: When the image is flipped vertically, the trees and sky in the lower half of the image are assumed to be closer than
the road in the upper half. If MonoDepth did not have prior expectations about a flat ground, the disparity map would also have
flipped vertically. Input image: KITTI stereo vision dataset (CC BY­NC­SA 3.0)

If MonoDepth indeed assumes the presence of a flat ground, it should be possible to make it ‘see’
a ground surface even if it isn’t actually there. This is attempted in Figure 3.3. First, MonoDepth is
presented with a completely blank input image to see if it will guess the presence of ground and sky.
This is not entirely the case. However, when a thin horizon line is added to the image, MonoDepth is
suddenly able to detect a floor and sky. Since the input image contains no features other than a single
line, these can only come from MonoDepth’s prior expectations.

This prior expectation can also be demonstrated on real photographs, as shown in Figure 3.4. In
this figure, a vertically flipped image from the KITTI dataset is presented to MonoDepth. If MonoDepth
would not assign a high prior probability to the presence and location of the ground and sky, the resulting
depth map would also be a flipped version of the original depth map. This is, however, not the case.
Instead, the resulting depth map still assumes that the lower half of the image is closer than the upper
half, confirming the presence of this bias in the estimation.

It appears that MonoDepth indeed assumes the presence of a flat ground in the lower half of the
image, but does it assume a fixed depth map for the ground or does it detect the horizon in the input
image? The latter would allow the network to correct changes in the pitch of the camera. To test this,
the network is first presented with artificial images based on Figure 3.3, but with the horizon line shifted
to different positions. The result is shown in Figure 3.5 a­c. In these artificial images it seems that
MonoDepth does not use the position of the line for the ground plane, although it does have some
influence on the depth map. This is also tested on real images by cropping different regions from one
of the KITTI images, see Figure 3.5 d­f. The result is different; now the ground plane in the depth
maps ends at the horizon in the input image. Apparently MonoDepth does estimate the position of the
horizon. At the time of writing it is not yet clear how this works. Note that MonoDepth’s correction to the
pitch is not perfect: the depth towards obstacles appears to have changed, especially in Figure 3.5 d.
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(a) Lower horizon line. (b) The original horizon line, aligned with the
horizon in the KITTI images.

(c) Higher horizon line.

(d) Lower horizon line. (e) Original horizon line. (f) Higher horizon line.

Figure 3.5: a­c: The vertical position of the horizon line does not change the ground plane. While it has some influence on the
depth map, the ground plane still seems to end at the same height in the image. d­f : In real images, the extent of the ground
plane matches the position of the horizon. This suggests that MonoDepth has a mechanism to detect the horizon that is not
triggered in images a­c; it is not yet understood how this works. Input images d­f: KITTI stereo vision dataset (CC BY­NC­SA
3.0)

(a) When the artificial horizon line is tilted, the ground surface re­
mains flat in the depth map. There are some artefacts where the
line is above the assumed horizon.

(b) Even though the input image is tilted, the road surface appears
more­or­less flat in the disparity map. Also notice the trees that are
vertical in the disparity map but clearly tilted in the input image.

Figure 3.6: Both in artificial and real images MonoDepth does not appear to detect roll motions and will still assume a flat road
surface and vertically oriented obstacles. Input image b: KITTI stereo vision dataset (CC BY­NC­SA 3.0)
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(a) Original image. (b) Blue sky. No difference in the depth map.

(c) Black sky. The sky appears further away, there are some
artifacts around the traffic light.

(d) Red sky. The sky appears further away.

Figure 3.7: Sensitivity to sky color. There is no perceivable difference between the depth maps for white and blue sky, colors
that naturally occur in the training dataset. There is some difference when the sky is made black or red, but the effect remains
relatively small. Input image: KITTI stereo vision dataset (CC BY­NC­SA 3.0)

Does MonoDepth also detect roll angles? This is tested by rotating the input images, the result
is shown in Figure 3.6. It appears that MonoDepth does not detect the roll angle of the camera: the
ground surface still appears flat. Also note the tree trunks that appear vertical in the depth map even
though they are clearly tilted in the input image. This seems another example of MonoDepth assuming
the presence of certain features rather than actually observing them.

The second hypothesis is that MonoDepth detects the sky using color segmentation. While this
sounds plausible, Figure 3.1 already hints that this is not entirely true: in the depth map the sky appears
closer than the trees that occlude it. Figure 3.4 also shows that there is a prior expectation of the position
of the sky in the upper half of the image; the sky color in the bottom half of the image does not result in
an infinite depth (although its observed depth is further than that of the trees).

In Figure 3.7 the sky is replaced with different colors. The figure shows that unnatural colors have
some effect on the depth estimate, but do not cause large disturbances such as objects appearing
at close distance. These results show that MonoDepth does not detect the sky using (only) color
segmentation. What mechanism it uses instead remains to be found in further research.

The final hypothesis on the workings of MonoDepth concerns the depth estimation of obstacles.
Two options appear likely: the obstacle’s size is used, or its vertical position in the image.

Figure 3.8 provides a first clue. The image shows that MonoDepth’s perception of obstacles is
easy to trigger: black rectangles are already shown as obstacles in the depth map. More importantly,
however, is how it determined the distance towards the rectangles: the rectangles are the same size
in the image but at different vertical positions. They are placed at different depths, which suggests that
the vertical position had a strong influence on this estimate.

Further evidence towards this conclusion is presented in Figure 3.9. In this figure, three scenarios
are presented to the network: the real­life scenario in which one car is smaller and higher in the image,
one where the car is only smaller, and one where it is only placed at a higher position. In all cases, the
vertical position of the car appears to control the depth estimate.

A final clue can be found back in Figure 3.5 d where the camera pitch was changed. When the
camera is pitched up, the obstacles move downwards in the image. In the resulting depth map, the
obstacles appear closer.
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Figure 3.8: MonoDepth’s depth perception can easily be triggered using simple visual features. Notice how the right rectangle
appears to be further away than the left, even though they are the same size.

Figure 3.9: MonoDepth’s depth estimation depends on the vertical position of objects in the image, not their apparent size. Top:
the cars are assigned the same disparity, even though the car on the right has a smaller apparent size. Middle: the right car is
smaller and positioned higher in the image (as would be the case in real images), it is correctly estimated to be further away.
Bottom: the car on the right has the same apparent size as the one on the left. Still, it is indicated to be further away as its vertical
position in the image is higher. Cars: KITTI stereo vision dataset (CC BY­NC­SA 3.0)
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There are a few possible reasons why the vertical position is used as the main cue for depth. First of
all, it might be easier for a CNN to measure the vertical position than the scale of obstacles because the
convolution operation is translation­invariant but not scale invariant. Secondly, since the camera is fixed
at a nearly constant height and attitude, distance estimates based on the vertical image position may
be more accurate than estimates based on the scale as the latter depend on the real­world dimensions
of the obstacle which can contain large variations.

What do these results mean for the use of MonoDepth on a UAV? The strong assumption of a flat
ground in front of the camera is not compatible with the large pitch and roll angles expected on a UAV.
The same holds for the use of vertical image position to estimate the depth towards obstacles: this
assumes a constant height above the ground and a constant pitch angle. In conclusion, MonoDepth
trained on the KITTI dataset can not be directly transferred to a UAV. Training on a suitable dataset
for UAVs should reveal whether these problems come from the use of the KITTI dataset for training or
whether they are more fundamental.

The ideas in this section were developed together with Guido de Croon. In 2019 we published a
conference paper on this topic at the International Conference on Computer Vision:

Tom van Dijk and Guido de Croon. How Do Neural Networks See Depth in Single Images?
In The IEEE International Conference on Computer Vision (ICCV), October 2019. http:
//openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_
Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html

http://openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/html/van_Dijk_How_Do_Neural_Networks_See_Depth_in_Single_Images_ICCV_2019_paper.html
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Figure 3.10: Parrot Bebop 2 with SLAMDunk stopping in front of an obstacle using SGBM and OptiTrack. (March 2018.)

3.2. Flight tests
Flight tests were performed to get more practical experience with visual obstacle avoidance. The sys­
tem uses a combination of stereo vision and visual odometry for obstacle avoidance, even in GPS­less
environments. These flight tests were performed as part of the Percevite project (www.percevite.
org).

3.2.1. Stop­before­obstacle with OptiTrack
The first task towards obstacle avoidance was the implementation of visual obstacle detection on the
Parrot SLAMDunk. This work started with a review on stereo vision and optical flow (subsection 2.1.1).
The review showed that SGBM [22] still belongs to the best­performing algorithms. An implementation
of SGBM was already present on the SLAMDunk and performed better than the OpenCV implementa­
tion due to its use of the GPU.

The depth map obtained from SGBM is then used as follows: a Region of Interest (ROI) is cropped
from the center of the image where the view is not occluded by rotors or other parts of the drone. Of
this region, the 5th percentile of depth values is calculated. The use of the 5th percentile instead of
the minimum value adds some robustness to noise, at the cost of missing tiny obstacles (although this
has not been a problem in practice). The 5th­percentile distance is sent to the autopilot as the distance
to the nearest obstacle in front of the UAV. Additionally, the number of valid pixels (pixels for which a
disparity can be found without ambiguity) is sent to the autopilot; if this value is too low the UAV is not
allowed to move forward.

The movement logic is implemented as a Paparazzi1 autopilot module (but general enough to be
ported to other autopilots). The movement of the UAV is controlled using a waypoint; this waypoint
can only be moved within the region that is observed to be free of obstacles with a sufficient safety
margin. Since the waypoint is always in a safe region, this should prevent collisions when used in a
static environment, provided that the drone can maintain its position without drift. At this stage, the
OptiTrack system inside the TU Delft Cyberzoo was used for position feedback, so there was no drift
present.

The full system was successfully demonstrated in March 2018 in the Cyberzoo (Figure 3.10). The
code developed for the SLAMDunk/ROS is published at https://github.com/tomvand/percevite_
slamdunk, the Paparazzi module is published at https://github.com/tomvand/paparazzi/
tree/percevite.
1http://wiki.paparazziuav.org/wiki/Main_Page

www.percevite.org
www.percevite.org
https://github.com/tomvand/percevite_slamdunk
https://github.com/tomvand/percevite_slamdunk
https://github.com/tomvand/paparazzi/tree/percevite
https://github.com/tomvand/paparazzi/tree/percevite
http://wiki.paparazziuav.org/wiki/Main_Page
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Figure 3.11: Body­frame velocities estimated using embedded Visual Odometer (eVO) compared to the ground­truth from Opti­
Track. The figure shows both the raw estimates (eVO) and the velocity estimates after fusion with the accelerometer readings
(INS). In general the estimate of eVO corresponds well to the OptiTrack measurements and appears to be less noisy (this may
depend on the OptiTrack calibration and lighting conditions in the Cyberzoo). The INS estimates have a slight bias (especially in
the y axis) that comes from the accelerometer. Possibly the SLAMDunk is not placed exactly above the Center­of­Gravity (CoG)
of the drone.

3.2.2. Implementation of ‘embedded Visual Odometry’
While the system of March 2018 worked, its dependency on OptiTrack was a strong limitation. Work on
VO started with a review of existing methods (subsubsection 2.1.2.3). Out of the reviewed methods,
the following were evaluated on the SLAMDunk: ORB­SLAM22 [36], OKVIS3 [28] and SVO24 [14].
However, all of these packages had performance issues either in terms of run­time (ORB­SLAM2,
OKVIS) or drift (SVO2). The optical flow algorithm of the Paparazzi autopilot was also evaluated but
was found to produce poor velocity estimates or cause segmentation faults, leading to a crash of the
autopilot.

Since none of the readily available packages was suitable for use on the SLAMDunk, there was no
other choice but to implement a lightweight alternative. Encouraged by the results of [32], the embedded
Visual Odometer (eVO) algorithm by Sanfourche et al. [46] was selected. The algorithm is a relatively
straightforward implementation of VO using the Perspective­3­Point (P3P) algorithm. P3P is used to
compute the UAV’s pose relative to a single keyframe of 3D points; these 3D points are obtained using
the depth map of SGBM. The run­time of eVO is reduced by using a fixed position for the points in the
keyframe; these are not further refined when new measurements arrive. Secondly, the gyroscope is
used to predict the next positions of the keypoints, thereby lowering the search region for the optical flow
algorithm. My implementation of eVO is published at https://github.com/tomvand/openevo
(and https://github.com/tomvand/openevo­ros for the ROS wrapper). This implementation
does not reach the run­times reported in [46], but still runs at a rate of ∼ 5 − 10Hz on the SLAMDunk.
2https://github.com/raulmur/ORB_SLAM2
3https://github.com/ethz­asl/okvis_ros
4http://rpg.ifi.uzh.ch/svo2.html

https://github.com/tomvand/openevo
https://github.com/tomvand/openevo-ros
https://github.com/raulmur/ORB_SLAM2
https://github.com/ethz-asl/okvis_ros
http://rpg.ifi.uzh.ch/svo2.html
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Figure 3.12: UAV trajectory estimated using eVO as input to the INS, compared to the ground truth captured using the OptiTrack
system. The starting position of the UAV is indicated by the circle at (0, 0). The final position error was 50 cm after a flight of
60 s.

Figure 3.13: Stop­before­obstacle using eVO. (July 2018.)
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The velocity estimates from eVO are sent to Paparazzi, where the horizontal EKF combines the ve­
locities with accelerometer measurements to get a final estimate of the UAV’s velocity and position. The
world position and angular rates – also estimated by eVO – are currently unused. The eVO algorithm
was tested inside the Cyberzoo and found to be surprisingly robust: it was able to follow the drone’s
trajectory even when no textured panels were placed around the edge of the Cyberzoo. Test flight
results are shown in Figure 3.11 and 3.12. The drone could successfully navigate between waypoints
and stop in front of obstacles (Figure 3.13).

3.2.3. Outdoor test flights
Outdoor test flights allowed eVO and SGBM to be tested in real outdoor environments with natural
obstacles and lighting and under windy conditions. The velocity estimate of eVO was found accurate
enough for the UAV to maintain its position under windy conditions. SGBM was able to reliably detect
obstacles, although it produced a few false positive detections when facing the sun. Tests of the full
obstacle avoidance system were performed by sending the drone towards obstacles. In most of the
cases the drone stopped successfully in front of the obstacle (Figure 3.14).

A second goal of the outdoor flights was to add GPS to the position estimate of the drone. The
use of GPS allows the UAV to follow pre­programmed trajectories and is more in line with the target
applications. Fusion of GPS with eVO velocity estimates was successfully demonstrated during short
test flights. Longer GPS trajectories were however not tested because of battery limitations.

During the outdoor tests the ground­truth position of the drone could not be recorded, most test
flights are instead recorded as videos of the UAV combined with logs of its internal estimates. The
outdoor tests were very successful; during the week the UAV only crashed once, possibly as the result
of human error instead of an algorithm failure.

The collision avoidance system described here was used in the International Micro Air Vehicle (IMAV)
competition 2018, where the ENAC/TU DELFT Team Paparazzi reached first place in the outdoor
competition. http://www.imavs.org/imav­2018­awards/

Figure 3.14: Outdoor stop­before­obstacle tests at ENAC. (August 2018.)

http://www.imavs.org/imav-2018-awards/
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