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PREFACE

PREFACE TO THE FIRST EDITION
This book presents a teaching text on airplane performance. This field has to do with the transla-
tional motion of flight vehicles, in which we study such questions as maximum flight speed, maxi-
mum rate of climb, range, and takeoff distances. A number of books on the dynamics of flight have
appeared in the last decades, aimed at a variety of subjects.
Concerning the treatment of the capability of airplanes to perform specific maneuvers and their
operational tasks, most of the existing books are of limited scope. However, the technological de-
velopments and the growing importance for all airplane types to function economically have in-
troduced the need for a comprehensive, modern book on the principles and practice of airplane
performance prediction suited for use as a primary text in undergraduate engineering courses. The
present book is intended to fulfill that need.
The book is a description of the regular courses on airplane performance as have been taught for
many years by the author at the Faculty of Aerospace Engineering of Delft University of Technology
(TUD), The Netherlands, and at the Faculty of Applied Sciences of the Brussels Free University
(VUB), Belgium.
In the text, three fairly well-defined parts may be distinguished. The first part comprises the chap-
ters 1 to 7, which deal with some basic concepts of the airplane and its motion, the properties of the
atmosphere, and the general equations of motion. Furthermore, these supporting chapters include
the basics of the generation of aerodynamic forces and moments, the operating principles of the
air data instruments and their application to flight, some fundamental aspects and operating char-
acteristics of airplane propulsion systems, and the theory of the propeller. These subjects represent
the required background knowledge necessary for the subsequent analysis of the performance of
powered and un-powered airplanes. The second part is formed by the chapters 8 to 13, where es-
pecially are discussed the classical methods of predicting the performance values of airplanes that
pertain to a given point of time or a given point on the flight path (point performance). To illus-
trate the applications of the theory in practical problems, numerous worked examples, employing
the SI-system of units and notation, are included in these chapters. The last part of the main text
(chapters 14 to 16) is devoted to giving an account of the most common techniques used for esti-
mating the performance items that are related to the course of the flight (integral performance). To
analyze the performance of aircraft in chapters 8 to 16, use is made of both analytical and graphical
techniques.
In order to provide a clear understanding of the fundamental equations of motion, the essentials
of Newtonian mechanics are described in Appendix A. Fundamentals concepts to switch between
different axis systems are discussed in Appendix B. Appendix C reviews one-dimensional steady
flow equations, the knowledge of which is a prerequisite for an appreciation of the aerodynamics
and the many technical aspects of atmospheric flight. In Appendix D, a table of values is given
for the International Standard Atmosphere up to an altitude of 32 km. Finally, Appendix E lists a

xi
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number of conversion factors between English and metric units, and between technical units and
the equivalent SI units. References to the literature are indicated in the text and listed at the end of
the book. In addition, a few more general references have been included.
My special thanks are due to the late Mr. Dirk M. van Paassen, who was a colleague in much of the
preparation of the material presented, and without whose cooperation this book could not have
been written.

Delft, The Netherlands
May 2007 G.J.J. Ruijgrok

PREFACE TO THE SECOND EDITION
In this second edition, apart from a few minor adjustments, all the material from the first edition
has been retained and the errors found in the first edition have been rectified.

Delft, The Netherlands
August 2009 G.J.J. Ruijgrok

PREFACE TO THE THIRD EDITION
Over the past decades there has been a huge increase in the number of Unmanned Aerial Vehicles
(UAV). Small UAVs typically make use of batteries as energy source to power electric motors, which
drive propellers or rotors. This development in electric propulsion is not limited to small UAVs.
The potential for hybrid-electric or even full-electric commercial aircraft has received a great deal
of attention in recent years. The industry is currently in the process of adopting the “more-electric”
aircraft in which secondary aircraft systems (pneumatic and hydraulic) are replaced by electric sys-
tems. Various recent studies highlight the potential of (partly) using electric power for propulsion.
This opens a realm of new propulsion system architectures and even new aircraft configurations.
Chapter 6, which describes fundamental aspects and operating principles of airplane propulsion
systems, is extended to account for these developments in (hybrid-)electric propulsion. The book
has been extended with Appendix B that gives a thorough treatment on how to switch between dif-
ferent axis systems. Each individual chapter has been extended with a limited number of exercises
to test the knowledge of the reader. A synthetic recap of the equations of motion describing the
most generic case of unsteady flight of a powered airplane has been added to Chapter 3. Lastly,
several minor corrections have been made throughout the text and the formulas, and the book has
been given a new layout.
In future editions, the book may be further extended by including detailed solutions to all or part
of the provided exercises, and by including the treatment of numerical flight path simulation. The
latter would complement the analytical and graphical techniques already presented in the current
version, enabling the reader to address more complex performance optimization scenarios, such
as those involving environmental conditions and operational constraints.

Delft, The Netherlands
November 2025 M. Voskuijl, C. Varriale



1
BASIC CONCEPTS

1.1. INTRODUCTION
This course book deals with performance prediction of aircraft. By performance we understand
certain extremes of quantities that are related to the translational motion of the vehicle, such as:
rate of climb, flight regime, takeoff and landing distance, range and endurance, turning rate, etc.
In this book the subject matter is limited to that class of aircraft known as airplanes. An airplane
may be defined as a mechanically driven fixed-wing aircraft, heavier than air, which is supported
by the reaction forces caused by the airflow against the surface of its body. Moreover, the attention
is devoted to the examination of the performance of existing airplanes so that - in principle - perti-
nent airplane data are available. This means that the problem of designing an airplane that meets
specified performance requirements, will not be discussed.
As a simplification, performance will be represented by the translational motion of the airplane as
a response to the external forces acting on the center of mass of the airplane. The prerequisite for
this treatment is the assumption that the airplane is regarded a rigid body.
Another important idealization may be the assumption of an airplane flying over an Earth that is
considered to be non-rotating and flat. The different approximations will be discussed in some
detail in subsequent sections of this chapter.

1.2. THE AIRPLANE IS REGARDED A RIGID BODY
In this book we shall limit our analyses to rigid airplanes. In the case of rigidity, the motion of an
airplane can be divided into a translational and a rotational motion.
As illustrated by Fig. 1.1, a rigid airplane has six degrees of freedom; the three components of the
linear velocity and the three components of the angular velocity, acting along and about the X Y
and Z axes, respectively, where the origin of the axis system coincides with the center of mass of
the airplane (see Appendix A).
The displacement of the airplane can be determined by treating the airplane as a point mass located
at the center of mass, customarily referred to as the center of gravity (abbreviation: c.g.).

1
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Figure 1.1 Division of airplane motion

The rotation of the airplane depends on the moments about the center of gravity. The effects the
moments have on the rotation of the airplane are studied in the field of aeronautics, called stability
and control. The subjects stability and control concern the abilities to maintain and to change
prescribed flight conditions, respectively.

Since throughout this book the emphasis is on the computation of airplane performance, we can
limit our considerations to the effects that the application of the external forces and moments have
on the displacement of the center of gravity of the airplane.

According to its definition, the center of gravity of an airplane is the point through which the resul-
tant of the partial weights acts, independent of the attitude of the airplane.

The location of the center of gravity in longitudinal direction can be found by measuring the reac-
tion forces N1 and N2 in the ground-based situation Fig. 1.2.

Figure 1.2 Determination of center of gravity
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Figure 1.3 Loading graph Figure 1.4 Center of gravity moment envelope

The sum of the loads at each wheel is equal to the weight of the airplane:

W = N1 +N2

The sum of the moments of the loads at each wheel equals the weight multiplied by the distance
between the center of gravity and the reference line:

N1X1 +N2X2 =W Xz

From the latter equality we obtain

Xz = N1X1 +N2X2

W
(1.1)

In order to determine the location of the center of gravity in vertical direction, weighing must be
executed at inclined airplane positions.
To ensure safe and convenient operations, every pilot has to be aware of the airplane weight, as well
as the way this weight is distributed in the airplane, in order to make sure that allowable weight and
approved center of gravity limits are not exceeded.
A typical light airplane loading graph and center of gravity moment envelope are sketched in Fig. 1.3
and Fig. 1.4.
For a properly loaded airplane the actual weight and moment values must fall within the lines in-
dicating forward and aft center of gravity.

1.3. APPLICATION OF NEWTON’S LAW WITH RESPECT TO AN AXIS SYS-
TEM ATTACHED TO THE EARTH

The translational motion of a rigid body with constant mass is described by Newton’s second law of
motion:

F = M a (1.2)
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where F is the vector sum of all external forces acting on the body, M is its mass, and a is the
absolute acceleration. Eq. 1.2 must be written down with respect to an inertial frame of reference,
that is to say, an axis system in a state of complete rest, or any coordinate system which translates
with uniform velocity relative to the frame at rest.
According to the analysis in Appendix A we can apply Eq. 1.2 in a coordinate system attached to the
Earth if two apparent forces are added to the force F ,

F −Mωe × [ωe × (R +h)]−M (2ωe ×V ) = M ar (1.3)

where ωe is the Earth’s angular velocity (about 7.29×10−5 rad/s), R is the Earth’s radius vector, h is
the height above the surface of the Earth, V is the velocity of the body with respect to the Earth, and
ar is the acceleration relative to the Earth.
The second term of the left-hand side of Eq. 1.3 is a centrifugal force,

Ft =−Mωe × [ωe × (R +h)] =−M ar (1.4)

where at is a centripetal acceleration. The last term is a Coriolis force,

Fc =−M (2ωe ×V ) =−M ac (1.5)

where ac is the Coriolis acceleration.
In deriving Eq. 1.3, the assumption is made that the Earth translates with a constant velocity along
a straight line. This idealization of the Earth’s translational motion may be correct since our perfor-
mance analyses normally deal with small time intervals, that is, small with respect to the period of
revolution of the Earth around the Sun.
By expressing the Eq. 1.4 and Eq. 1.5 in trigonometric form, we obtain for the magnitude of the
centrifugal force:

Ft = Mω2
e (R +h)cosθ (1.6)

and for the Coriolis force:

Fc = M2ωeV sinφ (1.7)

In the latter expressions the angle θ is latitude, positive in the Northern Hemisphere and negative
in the Southern. The angle φ defines the direction of the velocity relative to the Polar axis. The
forces and geometry used in Eq. 1.7 and Eq. 1.6 are depicted in Fig. 1.5. It is interesting to note that
the radius to the North Pole is somewhat larger than the radius to the South Pole. This deviation
from the sphere is indicated as the pear shape of the Earth.
The centrifugal force is directed perpendicular to the Earth’s Polar axis and points out from the
Earth along a line intersecting the axis of rotation. At a position in the equator plane (θ = 0deg)
and near the Earth’s surface we obtain for the magnitude of the centripetal acceleration, using the
approximation that the Earth may be regarded a sphere with a radius Re = 6371km

at =ω2
e Re =

(
7.29×10−5)2 ×6371×103 = 0.034m/s2

Eq. 1.7 shows that at a given velocity, the Coriolis acceleration, ac , has its maximum value when the
velocity is directed perpendicular to the polar axis (φ= 90deg).
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Figure 1.5 Forces due to the rotation of the Earth

To illustrate the Coriolis force in more detail, the effect of a vertical velocity, a northward velocity,
and an eastward velocity is considered successively in Fig. 1.6, where the body is in a point on the
Earth’s surface. It follows from Eq. 1.5 that a body moving vertically upward appears to an axis
system referenced to the rotating Earth to be forced to the west by

Fc = M2ωeV sin(90−θ)

When the body has a northward velocity, the Coriolis force becomes

Fc = M2ωeV sin(θ)

In this case the body is subject to an eastward force. Fig. 1.6, finally, shows that a body with an
eastward velocity appears to be forced outward from the Earth. It is seen from Eq. 1.5 that now the
Coriolis force is not dependent on latitude:

Fc = M2ωeV (1.8)

This force can be resolved into a component directed upward along the radius vector of the Earth,
and a southward component.
In order to provide an idea of the degree of importance of the Coriolis acceleration, assume a body
with a velocity of 2000 km/hr to the east. Then,

ac = 2ωeV = 2×7.29×10−5 2000

3.6
= 0.081m/s2

Anticipating the discussion on gravitation in the following section, it can be noticed here that in
comparison with the acceleration of gravity (g = 9.81m/s2 at the Earth’s surface) the centripetal
accelerations as well as the Coriolis accelerations are very small.
From the numerical examples given before it will also be clear that the effects of rotation of the
Earth on the motion of a body may only become of interest in the study of high-altitude and high-
velocity vehicles. This means that these effects are negligible for most airplane operations, which
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westward force due 
to vertical velocity

eastward force due 
to North velocity

force due to 
East velocity

Figure 1.6 Coriolis forces

are executed at lower altitudes and at relatively low airspeeds. The latter conditions are evident
from Fig. 1.7, where flight altitudes and airspeeds are shown for typical airplane types. Especially
the layer below 20 km is an important region to aeronautics since most airplane operations are
executed in this atmospheric shell.

1.4. GRAVITATION
Newton’s law of gravitation states that any two particles attract one another with a force of magni-
tude :

F = µM1M2

R2 (1.9)

where M1 M2are the masses of the particles, R is the distance between them and µ is a proportion-
ality factor, known as the universal gravitational constant. The force F acts along the line joining
the particles. Accordingly, if M is the mass of a particle outside the Earth, and Me the mass of the
Earth, the gravitational force Fg on the particle is given by Fig. 1.8.

Fg = µMe M

(Re +h)2 (1.10)

This equation says that the gravitational force due to the Earth is the same as if all mass Me were
concentrated at the center of the Earth. To derive Eq. 1.10 the assumption must be made that the
Earth can be considered a sphere (mean radius Re = 6371km), of which the density is a function of
the distance to the center only.
As shown in Fig. 1.8, the gravity force or weight W of a body is actually the vector sum of the grav-
itational force Fg and the centrifugal force Ft due to the rotation of the Earth about its Polar axis.
Therefore, the gravity force does not point exactly to the center of the Earth.
The centrifugal force in Fig. 1.8 results from the choice of an earthbound rotating frame of reference
and is given by Eq. 1.6, repeated below,
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Figure 1.7 Typical flight velocities and altitudes.
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Figure 1.8 Components of gravity force

Ft = Mω2
e (R +h)cosθ (1.11)

The gravity force per unit mass is the acceleration of gravity, g = W
M . The sea-level value of g may

be given by, from Eq. 1.10 and Eq. 1.11, and Fig. 1.8,

g = µMe

R2
e

−ω2
e Re cos2θ (1.12)

At the Equator the centrifugal force is a maximum. There we get for the acceleration of gravity at
the Earth’s surface, using µ = 6.67×10−11 m3/(kgs2), Me = 5.98×10−24 kg, Re = 6.371×106 m, and
we = 7.29×10−5/s.

g = µMe

R2
e

−ω2
e Re = 9.827−0.034 = 9.793m/s2

Because of the variation of the centrifugal force with latitude, the above value of g increases grad-
ually to 9.827 m/s2 at the Poles (θ = 90deg) At 45 deg geographic latitude the sea-level acceleration
of gravity, denoted g0, becomes

g0 = µMe

R2
e

−ω2
e Re cos2θ = 9.827−0.034×0.5 = 9.81m/s2

At this point, it is worthy to note that in particular for the International Standard Atmosphere (see
Chapter 2) the acceleration of gravity g0 is used and taken as 9.80665 m/s2.
In our applications, mostly, it is possible to ignore the effect of the centrifugal force when consid-
ering the variation of g with height. Then, it follows from Eq. 1.10 that the acceleration of gravity
varies inversely as the square of the distance from the center of the Earth.

g = µMe

(Re +h)2 (1.13)

g

g0
= R2

e

(Re +h)2 =
(
1+ h

Re

)−2

(1.14)
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Figure 1.9 Flight around the Earth

Using the first two terms of the binomial expansion we get:

g

g0
= 1−2

h

Re
(1.15)

The latter expression may show that even at the maximum altitudes suitable for atmospheric flight
(h = 60 to 80 km), there is only a slight difference between g and g0. But certainly at the heights
encountered during normal operations (less than 20 km) the actual value of g is very near to its
standard sea-level value (g /g0 = 0.993 at h = 20km).

1.5. THE EFFECT OF CURVATURE OF THE EARTH
Let us consider a body moving at constant speed in a circular orbit of radius Re +h around the
Earth in a plane perpendicular to the Equator plane Fig. 1.9. If we neglect air forces, on the body
act the weight W of the body in a direction approximately toward the center of the Earth and in
the opposite direction an apparent force associated with the circular motion. The latter force is the
familiar centrifugal force C , which is given by Eq. 1.4.

C =−M θ̇× [
θ̇× (Re +h)

]= W

g

V 2

(Re +h)
(1.16)

where θ is the latitude and V is the velocity of the body. The relative importance of the centrifugal
force can be expressed by the ratio:

C

W
= V 2

(Re +h) g
(1.17)

The speed at which the centrifugal force equals the weight of the body is called the circular velocity
Vc :

Vc =
√

(Re +h) g (1.18)
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At sea level (h = 0) we find from Eq. 1.18, using Re = 6371×103 m and g = g0 = 9.80665m/s2, Vc0 =
7904m/s = 28455km/hr.
Since Fig. 1.7 indicates that our analyses mostly will concern airspeeds which are small with respect
to the circular velocity, it follows from Eq. 1.17 that we usually can ignore the effect of the centrifugal
force C ≪W on the motion of the airplane so that the Earth can be regarded as ideally flat.

1.6. COORDINATE-SYSTEMS
To describe the motion of an airplane four coordinate systems, employing right-handed, rectangu-
lar Cartesian axis systems, are used. The origin is denoted by “0” and the axes designated X , Y and
Z . Displacements are positive in the positive senses of the axes and angles are positive in clock-
wise direction when looking along the appropriate axis in the positive direction. Velocities, angular
velocities and accelerations also are positive in these directions.

1. The Earth axis system or ground axis system (Fig. 1.10). Earth axes are denoted by the sub-
script “g”. The origin of this coordinate system is any point on the Earth’s surface. The Xg and
Yg axes lie in the horizontal plane of the Earth. The Xg axis points into an arbitrary direction.
For example, the Xg axis is taken in the direction of flight. The Zg axis points vertically and
positive downward.

2. The moving Earth axis system or local horizon system (Fig. 1.11). The axes are denoted by the
subscript “e”. The origin of the system is taken to be the center of gravity of the airplane. The
Xe , Ye and Ze axes are parallel to the corresponding axes of the Earth axis system. Thus, the
plane formed by the Xe and Ye axes is always parallel to the surface of the Earth.

3. The body axis system or airplane axis system (Fig. 1.12). Body axes are denoted by the sub-
script “b”. The origin of the system is at the center of gravity of the airplane. The Xb axis lies in
the plane of symmetry of the airplane and points out of the nose of the airplane. The Zb axis
is perpendicular to the Xb axis, lies also in the plane of symmetry, and is directed downward
for a normal flight attitude. The Yb axis is directed out of the right wing of the airplane. The
body axes are fixed to the airplane and oriented by reference to some geometrical datum. The
Xb axis coincident with what is called the longitudinal axis of the airplane. The Yb axis usu-
ally is termed transverse or lateral axis and the Zb axis is named normal axis. The rotational
components about Xb , Yb and Zb are called roll, pitch and yaw, respectively.

4. The air-path axis system or flight-path axis system (Fig. 1.13). Air-path axes are denoted by
the subscript “a”. The origin is at the center of gravity of the airplane. The Xa axis lies along
the velocity vector. The Za axis is taken in the plane of symmetry of the airplane, and is
positive downward for a normal airplane attitude. Consequently, the Ya axis is positive to
starboard.

1.7. ANGLES AND VELOCITIES DESCRIBING THE ANGULAR DISPLACE-
MENT OF THE AIRPLANE

In order to describe the attitude of the airplane with respect to the moving Earth axis system, a
number of characteristic angles are used. An approach based on the so called Eulerian angles con-
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Figure 1.10 Earth axis system Figure 1.11 Moving Earth axis system

Figure 1.12 Body axis system Figure 1.13 Air-path axis system

sists of three successive rotations to be applied about the axes of a given coordinate system. Differ-
ent conventions are possible to choose an appropriate sequence of such rotations. The traditional
convention in aerospace engineering is the so called Tait-Bryan convention, according to which the
three rotations are sequentially applied to the third (z), second (y) and first (x) axis of consecutive
coordinate systems.
Two examples are described in the following to express the orientation of the body and air-path
coordinate systems with respect to the moving Earth coordinate system. A visualization of Eulerian
angles corresponding to different sequences is presented in Fig. 1.14.

1. Eulerian angles defining the orientation of the airplane body axes. These angles are:

(a) Angle of yaw ψ; the angle between the projection of the Xb axis on the Xe Ye plane (hor-
izontal plane) and the Xe axis.

(b) Angle of pitch θ; the angle between the Xb axis and its projection on the Xe Ye plane.

(c) Angle of rollφ; the angle between the Xb axis and the intersecting line of the Yb Zb plane
with the Xe Ye plane.

The Eulerian anglesψ,θ andφ are obtained by three defined successive rotations of the mov-
ing Earth axes. This procedure is illustrated in Fig. 1.15. First, we rotate by ψ about Ze , then
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Figure 1.14 Eulerian angles

by θ about Y ′ and finally by φ about Xb . The angle of bankΦ, as shown in Fig. 1.14, may also
be used. This is the angle between the Yb axis and its projection on the Xe Ye plane. The angle
of bank can be written in terms of the angle of roll and the angle of pitch:

sinΦ= sinφsin(90−θ) ⇒ sinΦ= sinφcosθ (1.19)

The Eq. 1.19 follows by applying a theorem from spherical trigonometry in the spherical tri-
angle ABC in Fig. 1.16.

2. Eulerian angles defining the orientation of the air-path axes. These angles are (Fig. 1.14):

(a) Azimuth angle χ; the angle between the projection of the Xa axis on the Xe Ye plane and
the Xe axis.

(b) Flight-path angle γ; the angle between the Xa axis and its projection on the Xe Ye plane.

(c) Aerodynamic angle of roll µ; the angle between theYa axis and the intersecting line of
the XaYa plane with the Xe Ye plane.

The angles χ,γ and µ are also generated by three successive rotations of the moving Earth axes. The
sequence of rotations is indicated in Fig. 1.17. First, we
rotate by χ about Ze , then by γ about Y ′ , and finally by µ about Xa . Of importance is also the
relationship between the air-path axis system and body axis system. Both coordinate systems are
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Figure 1.15 Orientation of body axes to moving Earth axes
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Figure 1.16 Relation between angle of roll, angle of pitch and angle of bank

shown in Fig. 1.18. Since the Za axis lies in the Xb Zb plane (plane of symmetry of the airplane), the
orientation of the air-path axis system with respect to the body axis system is completely defined
by the following two angles:

1. Angle of attack α; the angle between the projection of the Xa axis on the plane of symmetry
of the airplane and the Xb axis.

2. Angle of sideslipβ; the angle between the Xa axis and its projection on the plane of symmetry
of the airplane.

The angle of attack is positive when the aircraft velocity component along the Zb axis is positive.
The angle of sideslip is positive when the aircraft velocity component along the Yb axis is positive.
At this point it is suited to define the components of the airspeed V along the Xb , Yb and Zb axes of
the body axis system as u, v and w , respectively Fig. 1.19. The following relations are apparent:

V 2 = u2 + v2 +w2

u =V cosβcosα

v =V sinβ

w =V cosβsinα

(1.20)

Similarly, the resultant angular velocityΩ can be resolved into the components p, q and r along the
Xb ,Yb and Zb axes, respectively, where

Ω2 = p2 +q2 + r 2 (1.21)

The angular velocity about the Xb axis is the rolling velocity, positive if the right wing drops. The
angular velocity about the Yb axis is the pitching velocity, positive if the nose of the airplane rises.
The angular velocity about the Zb axis, finally, is the yawing velocity, positive if the nose of the
airplane moves to the right (clockwise when observed from above).
In connection with the study of airplane motion, the relations between the angular velocities, p, q,r ,
about the body axes and the time rate of change of the Eulerian angles ψ,θ,φ, may be of impor-
tance.
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Figure 1.17 Orientation of air-path axes to moving Earth axes
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Figure 1.18 Orientation of air-path axes to body axes

Figure 1.19 Components of airspeed

According to the rotations defined in Fig. 1.15, the vectors dψ
dt , dθ

dt , dφ
dt are directed along the Ze , Y ′

and Xb axes, respectively. Fig. 1.20 shows these vectors. Resolving along the body axes leads to the
following relationships between the two sets of angular velocities:

p =−dψ

dt
sinθ+ dφ

dt

q = dψ

dt
cosθ sinφ+ dθ

dt
cosφ

r = dψ

dt
cosθcosφ− dθ

dt
sinφ

(1.22)
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Figure 1.20 Angular velocities about the body axes

and the inverse relationships:

dψ

dt
= 1

cosθ

(
q sinφ+ r cosφ

)
dθ

dt
= q cosφ− r sinφ

dφ

dt
= p + dψ

dt
sinθ = p + (

q sinφ+ r cosφ
)

tanθ

(1.23)

In the presence of wind, the velocity of the airplane with respect to the ground or ground speed
Vg is the vector sum of the speed of the airplane relative to the air V and the wind velocity Vw .
(Fig. 1.21):

−→
Vg =−→

V +−→
Vw (1.24)

Since the airplane is carried along by the wind, the projection of the velocity vector
−→
V on the ground

is at a so-called drift angle with the actual flight track. Fig. 1.22 shows the components of the air-
speed along the axes of the moving Earth axis system. From this figure we obtain:

VXe =V cosγcosχ

VYe =V cosγsinχ

VZe =V sinγ

(1.25)

Note that a positive sign is given to the component of
−→
V in the direction of the negative Ze axis.

Hence we find the components of the ground speed along the axes of the Earth axis system as:
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Figure 1.21 Ground speed Figure 1.22 Components of airspeed

VXg =V cosγcosχ+uw

VYg =V cosγsinχ+ vw

VZg =V sinγ+ww

(1.26)

In Eq. 1.26, wind data are given as uw , vw , ww being the respective components of the wind velocity
in terms of the moving Earth axis system. The positive sense of ww is taken in upward direction.
The above treatment of the angles defining the various axis systems was based on a geometrical
approach. When describing the arbitrary motion of an aircraft, this geometrical approach may
become rather complex. Furthermore, it can be valuable to switch between axis systems when cer-
tain problems are analyzed. An alternative method based on matrix algebra is therefore presented
in Appendix B

1.8. THE AIRPLANE
Fig. 1.23 shows in some detail the overall make-up of a conventional airplane. Basic components
are fuselage, wing, tail assembly, controls, landing gear, and engine (and propeller, in the case of
propeller propulsion).
The fuselage may be seen as the structural component to which the other main parts are connected.
Further, it provides space for crew, passengers, cargo, airplane systems and instrumentation. Gen-
erally, the fuselage is streamlined to reduce its drag. The wing is the principal component to gen-
erate the lift of the airplane by its motion with respect to the surrounding air. The wing may often
be equipped with flaps. These adjustable parts are used to increase lift and drag at low airspeeds.
The tail assembly consists of the vertical and the horizontal stabilizer, which surfaces provide di-
rectional stability in yaw and stability in pitch, respectively. Included in the tail assembly and the
wing are the control surfaces. The usual position of the three primary controls is also illustrated in
Fig. 1.23. Yaw control is provided by the rudder, which is connected with the vertical stabilizer. The
elevators are attached to the horizontal stabilizer and control the pitch of the airplane. Roll control
is provided by deflections of the ailerons which are located near the outer trailing edges of the wing.
Depending on the type of airplane, small auxiliary control surfaces may be installed to the trailing



1.9. FLIGHT TYPES, AIRPLANE CONFIGURATION AND FLIGHT CONDITION

1

19

Figure 1.23 Basic airplane components

edges of the elevators, rudder and ailerons. These movable surfaces are known as trim tabs and are
adjusted by the pilot. As shown in Fig. 1.24, the airflow over the trim tab creates a moment that
holds the primary control surface in the desired position without any help from the pilot.
Tabs may also be used to assist the pilot in the movement of the primary controls; these are known
as balance tabs.
The landing gear or undercarriage supports the airplane while it is in contact with the ground.
Modern airplanes generally are equipped with a tricycle gear, consisting of nose wheel and main
wheels.The landing gear may be retractable, except special forms which include skis for snow and
floats for operations on water (Fig. 1.25).
An important characteristic is the type of propulsion system. The main engine types are the piston
engine (reciprocating engine), and the reaction engine such as turbojet, turboprop and turbofan.
Over the last decades there has been a strong increase in the use of Unmanned Aerial Vehicles
(UAVs), and several developments in the field of electric air mobility (with fixed or rotating wings).
These advanced vehicles are often powered by electromotors. Converting the power of piston en-
gines, electromotors and turboprops into thrust is accomplished by the propeller(s).

1.9. FLIGHT TYPES, AIRPLANE CONFIGURATION AND FLIGHT CONDI-
TION

The typical flight phases encountered by an airplane during a trip over a given travel distance are
illustrated in Fig. 1.26. The takeoff consists of the takeoff run where the airplane is accelerated from
standstill to the liftoff speed, followed by the climb-out to a distance over, say, 10.7 m (35 ft) obsta-
cle. After the takeoff the power of the engine(s) is reduced and the airplane climbs to cruise altitude
at, approximately, constant velocity. The latter conditions hold as much with regard to the descent.
Cruise flight is typically executed in unaccelerated and straight flight. An example of a curved flight
path is the turn and particularly the so-called constant-altitude banked turn, where the airplane is
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Figure 1.24 Balance and trim tab

Figure 1.25 Landing gear types

inclined about the longitudinal axis. This type of turn is the usual manner in which the flight path
heading is changed, for example, in the holding maneuver. As depicted in Fig. 1.26, during holding
the airplane remains within a specified airspace whilst awaiting further clearance for the approach
flight to the airport runway. The final flight phase, naturally, is the landing, proceeding from the
steady approach flight so as to clear the screen height at the beginning of the runway and to come
to rest on the runway at the end of the ground run. Just like the takeoff, the landing is a case of
unsteady airplane motion.
In the various flight phases, usually, the airplane is controlled in such a manner that the instanta-
neous motion satisfies certain conditions. This leads to well-defined flight types, such as:

• Gliding flight: flight in which the thrust is zero.

• Steady flight: flight in which the forces and moments acting on the airplane do not vary in
time, neither in magnitude nor in direction.

• Non-sideslipping flight: flight in which the velocity vector is parallel to the plane of symmetry
of the airplane (angle of sideslip is zero).

• Straight flight: flight in which the center of gravity of the airplane travels along a straight line.
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Figure 1.26 Typical flight phases

Figure 1.27 Example of airplane configuration

• Symmetric flight: flight in which both the angle of sideslip is zero and the plane of symmetry
of the airplane is perpendicular to the horizontal plane of the Earth.

At this point, it is useful to emphasize that symmetric flight, and in particular steady symmetric
flight forms the basis of considerations on the performance of airplanes during most of their time
of flying. In this connection, it may be clear that at best an airplane can perform a quasi-steady
flight due to the consumption of engine fuel (for propulsion systems that do not completely rely on
battery electric power) and/or the variation of atmospheric conditions.
The term airplane configuration or airplane condition indicates the description of the external
shape of the airplane and any parameter affecting the motion of the airplane which is characterized
by the fact that it remains constant during a certain period of time. Examples of airplane configura-
tion elements are (Fig. 1.27) landing gear position, flap angle, speed-brake and spoiler deflections,
and number of operative engines.
The estimation of airplane performance may be treated by considering the airplane in a given con-
figuration which is related to a particular flight phase, such as takeoff configuration, cruise config-
uration and landing configuration.
The term flight condition is the group of variables, which defines the motion of the airplane at each
instant of the flight. A description of the flight condition will comprise airplane weight, altitude,
atmospheric conditions, airspeed, power setting and control surface deflections.

1.10. FORCES ON THE AIRPLANE
Practically, there are two different kinds of external forces that act on an airplane in flight, gravity
forces and aerodynamic forces.
Gravity forces are related to the mass of a body and act from a distance. A common example is, of
course, the weight of the airplane.
Aerodynamic forces are developed through application of Newton’s third law of motion, which
states that for every action there is an equal and opposite reaction (Appendix A). Therefore, essen-
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Figure 1.28 Aerodynamic force and components

tial to the generation of an aerodynamic force is the occurrence of relative motion between body
and medium.
In this course book we shall use the symbol R to denote the aerodynamic force produced by the
interaction between the air and the outer surface of the airplane. When resolved into components
along the air-path axes, the vector force R delivers the lift, drag, and side force. The lift, designated
by the symbol L, is the component along the negative Za axis. The major portion of the lift arises
from the airflow around the wing. The drag D and side force S are the components of the aero-
dynamic force R along the negative Xa axis and Ya axis, respectively. A side force or cross force
appears only when the airplane is in sideslipping flight. Fig. 1.28 shows the aerodynamic force R in
the case of symmetric flight. In this type of flight the motion is in the geometric plane of symmetry
so that besides the Xb axis, also the Xa axis lies in the plane of symmetry of the airplane. When
studying rotational motion in symmetric flight it may be useful to employ the tangential force T
and the normal force N being the components of R along the negative Xb axis and Zb axis, respec-
tively. As can be seen from Fig. 1.28 the components L and D , and the components N and T are
related by the expressions:

L = N cosα−T sinα

D = N sinα+T cosα

N = L cosα+D sinα

T =−L sinα+D cosα

(1.27)

The driving force of the propulsion system is also an aerodynamic force. This force is called the
thrust and also given the symbol T . As indicated in Fig. 1.29, the thrust acts in forward direction
along a working line which makes a fixed angle ηwith the longitudinal axis of the airplane (Xb axis).
The type of flight considered in Fig. 1.29 represents the case of steady symmetric flight. Maintaining
this type of flight requires that the vector sum of the forces acting on the airplane is zero:

−→
R +−→

T +−→
X = 0 (1.28)
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Figure 1.29 Forces In steady symmetric flight

The general definitions of the various angles used in Fig. 1.29, i.e., the angle of attack α, the flight-
path angle γ and the angle of pitch θ have been given in Section 1.7.

1.11. SI-SYSTEM OF UNITS
Throughout this book the International System of Units (Système International d’Unités) is used.
This system has been adopted by many countries as the recommended system of units for weights
and measures. According to the publications of the International Organization for Standardization
(ISO) there are seven basic units, which are tabulated in Tab. 1.1. Although the SI-unit of tempera-
ture is the Kelvin (K), also the Celsius (◦C) or centigrade scale is used. Since the unit degree Celsius
is exactly equal to the unit Kelvin, the temperature expressed in degrees Celsius can be readily con-
verted to the absolute temperature in Kelvin by the following relationship:

T ◦C = T K−273.15 (1.29)

From the basic units in Tab. 1.1, the units of a wide range of quantities can be derived, whereby
the product and/or quotient of any number of basic units forms the resultant unit of the derived
quantity. The units of some of the more common quantities are listed in Tab. 1.2.
To obtain multiples or decimal fractions of the units, standard prefixes are used, which are collected
in Tab. 1.3.
In order to prevent errors in calculations, it is strongly recommended that in computations only
SI-units are used and not their multiples or decimal fractions.
It should be mentioned that, though becoming obsolete, in engineering practice frequently the so-
called technical system of units is used. In this system the quantity force, having also the name
kilogram, is a basic unit instead of mass. In order to distinguish both kilograms, in the technical
system the quantity force is (often) denoted as kilogram-force (abbreviation: kgf). The following
relation is defined: 1 kgf = 9.80665 N. Some technical units and corresponding SI-units are given in
Tab. 1.4.
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Table 1.1 Basic SI-units

quantity name of unit symbol

length meter m
mass kilogram kg
time second s
temperature kelvin K
electric current ampere A
luminous intensity candela cd
amount of substance mole mol

Table 1.2 Derived SI-units

quantity name of unit symbol definition

force newton N kg·m/s2

pressure pascal Pa N/m2

work (energy) joule J J = N·m
power watt W J/s
velocity meter per second V m/s
acceleration meter per second squared a m/s2

moment of force newton meter M N·m
density kilogram per unit cubic meter ρ kg/m3

In Appendix E a number of conversion factors are collected, arranged according to subject cate-
gories.

1.12. PROBLEMS
1. The weight and center of gravity of a general aviation airplane with a tricycle landing gear are

determined by measuring the loads at each wheel when it is stationary on the ground. The
nose gear is located 1.3 m from the nose of the airplane and the weighing scale underneath
the nose gear indicates 146 kg. The scales at each main gear, which are located 2.7 m from
the nose of the airplane, measure 227 kg. Calculate the total mass and the center of gravity
position of this airplane.

2. For commercial airplanes operating at relatively low airspeeds in the lower atmosphere, an
axis system attached to the Earth can be idealized as an inertial frame of reference. List which
assumptions have to be made to consider an axis system attached to the Earth as an inertial
frame of reference.

3. The sea level gravitational acceleration g0 defined in the International Standard Atmosphere
is 9.80665 m/s2. Based on this value, calculate the gravitational acceleration at 30 km altitude.

4. An airplane is in a long distance cruise flight at 11 km altitude. Since it is following the curva-
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Table 1.3 Standard multiples and decimal fractions

multiple/fraction prefix symbol

1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto H
10 deca da
10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ

10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a

Table 1.4 Systems of units

quantity technical system metric English SI-system

length m ft m
time s s s
force kgf lbf kg·m/s2(newton)
mass kgf·s2/m lbf·s2/ft (slug) kg
pressure kgf/m2 lbf/ft2 N/m2

work (energy) kgf·m lbf·ft kg·m2/s2= N·m(joule)
power kgf·m/s lbf·ft/s kg·m2/s3= J/s (watt)
density kgf·s2/m4 lbf·s2/ft4 kg/m3
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ture of the Earth, it is in fact in a circular motion. The airplane has a weight of 300000 N and
a constant airspeed of 250 m/s. Calculate the centrifugal force (which is an “apparent force”)
as a result of this circular motion. Express your result as a percentage of the total airplane
weight.

5. List four coordinate systems which are used to describe the motion of airplanes.

6. Explain the difference between the bank angleΦ and the angle of roll φ.

7. Which two angles can be used to define the orientation of the air-path axis system with re-
spect to the body axis system?

8. Airplanes are equipped with control surfaces. In some cases trim tabs are installed on one or
more of the control surfaces. What is the function of a trim tab?

9. Which control surfaces are used to control the roll motion of a conventional airplane?

10. Select the correct answer. The lift vector is by definition:

(a) Perpendicular to the surface of the Earth (parallel to the Z -axes of the Earth axes system
and the Moving Earth axes system)

(b) Parallel to the Z -axis of the body axis system but in the opposite direction (positive up)

(c) Parallel to the Z -axis of the air path axis system but in the opposite direction (positive
up)
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THE ATMOSPHERE

2.1. NATURE OF THE ATMOSPHERE
The atmosphere is the gaseous shell surrounding to Earth. Atmospheric air consists of a mixture of
gases with a total mass of about 5.3×1018 kg, which is about one millionth of the mass of the Earth.
The normal constituents of air in the lower part of the atmosphere are listed in Tab. 2.1, where also
are given their concentrations and molecular masses.
The molecular mass of a substance may be defined as the mass of one kmol of the substance. The
kmol is an amount of matter of a system which holds as many elementary particles (molecules,
atoms, etc.) as there are atoms in precisely 12 kg of the isotope 12C. This number amounts to
6.02257×1026/kmol and is called Avogadro’s number. Chiefly nitrogen and oxygen in the ratio of
four-fifths nitrogen to one-fifth oxygen represent 99% of the total volume of all component gases.
Though the volume percentages of carbon dioxide and methane are very small, their presence is
especially significant to the temperature at the Earth’s surface because these constituents are more
absorptive of terrestrial then of solar radiations. They, therefore, are responsible for what is known
as the greenhouse or blanketing effect, that is, an elevation of the mean temperature in the lower
part of the atmosphere.
In addition to the constant constituents there is always a certain amount of water in the atmo-
sphere, which exists in three states; gaseous (water vapor), liquid (rain and clouds), and solid (snow
and hail). The presence of water is also of significance to the above-mentioned greenhouse effect.
The proportion of water vapor varies with place on Earth (latitude and longitude), time of day and
time of year. On the whole the highest humidity occurs at sea level and in the neighborhood of the
Equator.
With respect to the chemical composition, the atmosphere may be classified into the homosphere
and the heterosphere (Fig. 2.1). The homosphere extends from sea level to an altitude of about
90 km. Apart from water vapor and ozone, in the homosphere the composition of the air is essen-
tially constant. Consequently, in this region also the mean molecular mass of the air (29 kg/kmol)
is constant. In the heterosphere, mainly because of molecular dissociation, the molecular mass
decreases from about 29 kg/kmol at a height of 90 km, to about 18 kg/kmol at 500 km.

27
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Table 2.1 Normal composition of clean atmospheric air near sea level

constituent gas content, percent by volume molecular mass [kg/kmol]

Nitrogen N2 78.084 28.0134
Oxygen O2 20.9476 31.9988
Argon Ar 0.934 39.948

Carbon dioxide CO2 0.0314 44.00995
Neon Ne 0.001818 20.183

Helium He 0.000524 4.0026
Methane CH4 0.0002 16.04303
Krypton Kr 0.000114 83.80

Sulfur dioxide SO2 0 to 0.0001 64.0628
Hydrogen H2 0.00005 2.01594

Nitrous oxide N2O 0.00005 44.0128
Xenon Xe 0.0000087 131.30
Ozone O3 0 to 0.000007 47.9982

Nitrogen dioxide NO2 0 to 0.000002 46.0055
Iodine I2 0 to 0.000001 253.8088

Water vapor H2O variable 18.0

The atmospheric conditions, temperature, pressure, and density, depend strongly on height. For
an analysis of these quantities it is appropriate to divide the atmosphere into five layers based on
the vertical distribution of the air temperature. The typical variation of the average temperature
with altitude is also sketched in Fig. 2.1.
In ascending order, we distinguish the troposphere, the stratosphere, the mesosphere, the thermo-
sphere, and the exosphere. The dividing planes between the next four layers are called tropopause,
stratopause, and mesopause.
The lowest region of the atmosphere, the troposphere, is characterized by a decreasing temperature
with increasing altitude. In this layer the phenomena occur which we call the weather, i.e., the local
state of temperature, pressure, humidity, cloudiness, wind, and precipitation. The troposphere
extends to about 8 km at the Poles and approximately to 17 km at the Equator.
At middle-latitude the tropopause lies at a height of about 11 km, where the average temperature
decreases from roughly 15 ◦C at sea level to −56 ◦C at the tropopause. In the stratosphere, at first,
there is a nearly constant temperature of about −56 ◦C up to an altitude of about 20 km. This layer
may be called the lower stratosphere. Above 20 km we have the upper stratosphere, where the tem-
perature increases to a maximum value of 0 ◦C at an altitude of about 50 km. This altitude is the
stratopause, sometimes referred to as the ozonepause. It may be remarked that the atmospheric
layer up to 20 km, being of major importance to aviation (see Fig. 1.7), contains approximately 95%
of the total atmospheric mass.
In the mesosphere, reaching from the stratopause to an altitude of 90 km, the temperature de-
creases to a minimum value of about −90 ◦C at the mesopause.
The stratosphere and the mesosphere are of consequence in the sense that continuously there is a
certain amount of ozone. In fact, the temperature increase above 20 km is related to the absorption
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Figure 2.1 Arrangement of atmospheric layers

of ultraviolet radiation, involving ozone formation. Nevertheless, the proportion of ozone is quite
small, the presence of it at these high altitudes is substantial to life on Earth, as it acts as a filter
against solar ultraviolet radiation.
The absorption of solar ultraviolet radiation is caused by the dissociation of molecular oxygen (O2)
into atomic oxygen (O). A portion of the atomic oxygen forms ozone (03) by combination with
molecular oxygen. Finally, ozone and atomic oxygen recombine to form molecular oxygen. The
decomposition of ozone to ordinary oxygen causes heating of the atmosphere. The formation and
destruction of ozone is a continuous process, resulting in more or less a constant amount of ozone
in the stratosphere and mesosphere.
In the thermosphere, the temperature increases quickly with increasing altitude until at about
500 km the so-called exospheric temperature is reached. The magnitude of this temperature is de-
pendent on solar activity (Ref. 1).
In the exosphere collisions between molecules are so rare that temperature is only an indication of
the kinetic energy of the air particles.
From 90 km upwards, ionization processes occur, i.e., the generation of ions and the accompanying
free electrons takes place. The ionosphere is therefore also depicted in Fig. 2.1. This is where layer
ionization processes (generation of free electrons and ions) occur due to the absorption of solar
radiation incident in this region.
Depending on electron density, the ionosphere is subdivided into four layers, designated D,E ,F1
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Figure 2.2 Forces acting on an element of air

and F2. Fig. 2.1 shows that the extent of ionization increases with altitude up to approximately
400 km. Also, the ionization varies with solar activity and time of the year.
Finally, it should be mentioned that several classifications exist, each using different heights for the
positions of the dividing planes between the various layers (Ref. 2).

2.2. VARIATION OF PRESSURE WITH ALTITUDE
The weight of the column of air at rest above a unit area will produce a certain pressure at that
surface. The higher one rises in the atmosphere, the smaller will be the weight of the air above the
unit area, and the smaller will be the occurring pressure.
To obtain an expression for pressure as a function of altitude, consider a unit body of air shown in
Fig. 2.2. Summing the forces in vertical direction gives:

p − (
p + dp

)−ρg dh = 0 or dp =−ρg dh (2.1)

where p is pressure, ρ is density, h is geometrical altitude, and g is the acceleration of gravity. The
differential Eq. 2.2 is known as the hydrostatic or aerostatic equation, and shows us that with in-
creasing altitude, the pressure decreases at the rate ρg . The combination of the hydrostatic equa-
tion and the equation of state for air is a suitable starting point to describe the variation of pressure
and density with altitude. Atmospheric air can be assumed to satisfy the equation of state for an
ideal gas, i.e.,

p

ρ
= Ra

M
T (2.2)

In the perfect gas law Eq. 2.2 Ra is the universal gas constant, M is the molecular mass of the gas,
and T is the absolute temperature (expressed in Kelvin). Insertion of Eq. 2.2 into Eq. 2.1 gives

dp =− M p

RaT
g dh or

dp

p
= M g

RaT
dh (2.3)

Integration of Eq. 2.3 from h = 0 (sea level) to an altitude h yields
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∫ p

p0

dp

p
=

∫ h

0

M g

RaT
dh (2.4)

ln
p

p0
=

∫ h

0

M g

RaT
dh (2.5)

Apparently, a calculation of the distribution of atmospheric pressure requires knowledge of:

• the variation of molecular mass with height,

• the variation of acceleration of gravity with height,

• the variation of temperature with height,

• sea level atmospheric pressure p0.

At this point it is appropriate to introduce the geopotential altitude H , which is defined by the
following equation,

H =
∫ H

0
dH = 1

g0

∫ h

0
g dh (2.6)

In this equation, g0 may be taken equal to the standard sea-level value of the acceleration of gravity
(see Section 1.4). Since both H and h are set equal to zero at sea level, the geopotential altitude H
is the height in a uniform gravity field at which the potential energy is the same as at a geometrical
height h in a variable gravity field.
The relationship between air pressure and geopotential altitude is obtained by combining Eq. 2.5
and Eq. 2.6:

ln
p

p0
=−

∫ H

0

M g0

RaT
dH (2.7)

Clearly, the integration is simplified since the acceleration of gravity g0 is independent of altitude.
The adoption of a particular variation of air temperature with geopotential height will enable us
to determine the corresponding pressure ratio variation, provided that the molecular mass M is
constant or a known function of altitude.

2.3. STANDARD ATMOSPHERES
The real atmosphere never remains constant. There is always a considerable variation of temper-
ature, pressure and density at any time, height and place on Earth. Since the performance of air-
planes strongly depends on the atmospheric conditions, it will be obvious that the performance
of an airplane measured at different moments and places must be related to a common reference.
Also, the actual performance of an airplane does not provide a reliable basis of comparison with
other airplanes. No more, the results of calculations can be correlated if not the same atmospheric
conditions are employed.
In order to satisfy the need for standardization, over the years a number of standard atmospheres
have been developed, which all are reflections of what may be expected as mean circumstances.
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Table 2.2 Values of primary constants. cp is the specific heat at constant pressure; cv is the specific heat at constant volume.

constituent gas
sea-level pressure p0 = 101325 N/m2

sea-level temperature T0 = 288.15 K (15 ◦C)
sea-level density ρ0 = 1.225 kg/m3

acceleration of gravity at sea level g0 = 9.80665 m/s2

universal gas constant Ra = 8314.32 J/(K·mol)
ratio of specific heats of air γ= cp /cv = 1.4

Then, from the actual performance of an airplane it is possible to deduce what would have been
the performance of this airplane under the conditions of a given reference atmosphere. The latter
performance data can be compared with those measured at other times and places or can be com-
pared with the performance of some other airplane which has been correspondingly converted to
standard conditions.
The atmospheric model used in this book has been adopted for the derivation of the International
Standard Atmosphere (I.S.A.) in Ref. 3. This reference atmosphere is based on the assumption that
the air is a perfect gas, which is supposed to be devoid of moisture and dust. Also the assumption
is made that the atmosphere is motionless with respect to the Earth.
For the computation of pressure, temperature, density, and other atmospheric properties as func-
tions of altitude, standard conditions are defined at zero-altitude (sea level). Tab. 2.2 lists the values
of primary constants for the International Standard Atmosphere.
The molecular mass of air M follows from Eq. 2.2 using the standard values of pressure, density,
temperature and the universal gas constant as given in Tab. 2.2,

M = ρ0RaT0

p0
= 28.96442kg/kmol.

The specific gas constant of air is determined from the relationship

R = Ra/M = 287.05m2/(s2·K).

As cp = R γ
γ−1 we find

cp = 1004.68m2/(s2·K) and cv = cp /γ= 717.63m2/(s2·K).

The variation of temperature with geopotential altitude is presented in Fig. 2.3. Because it would
be impossible to determine this curve on the basis of fundamental laws of physics, in light of the
many complex phenomena at play, such temperature profile has been determined experimentally
with high-altitude balloon measurements. Fig. 2.3 shows that a sequence of connected layers with
constant temperature gradients can be identified. In the troposphere and the upper part of the
stratosphere the temperature variation can be written as

T = T1 +λ (H −H1) (2.8)
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Figure 2.3 Temperature versus geopotential height (I.S.A.)

where γ = dT /dH is the temperature gradient and T1 is the temperature at height H1, being the
base of the layer. By insertion of Eq. 2.8 into Eq. 2.7 we obtain

ln
p

p1
=−

∫ H

H1

g0

R
[
T1 +γ (H −H1)

] dH =− g0

Rλ
ln[T1 +λ (H −H1)]

∣∣∣H

H1

or

ln
p

p1
=− g0

Rλ
ln

T1 +λ (H −H1)

T1
(2.9)

Thus, the pressure ratio variation with altitude becomes

p

p1
=

[
1+ λ (H −H1)

T1

]− g0
Rλ

(2.10)

The corresponding density ratio variation follows from the equation of state,

ρ

ρ1
= pT1

p1T
=

[
1+ λ (H −H1)

T1

]−[
g0
Rλ+1

]
(2.11)

In the troposphere the height H1 = 0, so that the Eq. 2.10 and Eq. 2.11 reduce to

p

p0
=

[
1+ λH

T0

]− g0
Rλ

(2.12)
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ρ

ρ0
=

[
1+ λH

T0

]−[
g0
Rλ+1

]
(2.13)

In the lower part of the stratosphere the temperature is constant (λ = 0). Now the pressure ratio
is obtained by direct integration of Eq. 2.7 between the height of the tropopause Hs and height H
(H ≤ 20km),

ln
p

ps
=−

∫ H

Hs

g0

RTs
(H −Hs ) (2.14)

p

ps
= e−

g0
RTs

(H−Hs ) (2.15)

In these equations the subscript “s” denotes the condition at the tropopause. From the equation of
state, we find

ρ

ρs
= p

ps

Thus

ρ

ρs
= e−

g0
RTs

(H−Hs ) (2.16)

In order to determine the value of the geometrical height as a function of geopotential altitude, it
is essential to define a relationship between the acceleration of gravity and geometrical height (see
Eq. 2.6).
From the discussion in Section 1.4 we know that the acceleration of gravity is the resultant of the
gravitational force per unit mass and the centrifugal force per unit mass as caused by the Earth’s
rotation. Accordingly, it depends upon height and latitude. However, for our aims the acceleration
of gravity may be obtained with adequate precision by ignoring the centrifugal force and applying
only Newton’s law of gravitation as already noticed in Section 1.4. Then we have the following
expression

g

g0
= R2

e

(Re +h)2 (1.14)

Combining Eq. 2.6 and Eq. 1.14 leads to∫ H

0
dH =

∫ h

0

R2
e

(Re +h)2 dh = R2
e

∫
0h dh

(Re +h)2 (2.17)

Performing the integration in Eq. 2.17 yields the following relationship between geometrical height
and geopotential altitude,

H = R2
e

∫
0h − d(Re +h)−1 = Re h

(Re +h)

or
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Figure 2.4 Variation of pressure, density and temperature In the International Standard Atmosphere

h = Re H

(Re −H)
(2.18)

The preceding equations in this section and the primary constants in Tab. 2.2 are used to calculate
temperature, pressure, density and geometrical height as functions of geopotential altitude. Fig. 2.4
shows how pressure and density in the International Standard Atmosphere vary with height. Nu-
merical values of T , p and ρ are given in the tables in Appendix D. Other quantities listed in Ap-
pendix D are the coefficient of dynamic viscosity µ and the speed of sound c. The coefficient of
dynamic viscosity is a state variable, which determines the shear stress between air layers moving
adjacent to each other at different velocities. The following equation, basically derived from kinetic
theory, is used for the computation of µ,

µ= βT 3/2

T +S
(2.19)

where β is a constant equal to 1.458× 10−6 kg/(ms
p

K), and S is Sutherland’s constant, equal to
110.4 K.
At sea-level the coefficient of dynamic viscosity is: µ= 1.7894×10−5 kg/(ms). The ratio of µ and the
density of air is named kinematic viscosity: ν=µ/ρ. The speed of sound is the rate at which a small
disturbance on the ambient condition travels through the air. The values of c in Appendix D are
calculated from (see Appendix C)
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c =
√
γ

Ra

M
T =√

γRT (2.20)

Its sea-level value becomes: c = 340.294m/s.
Since the temperature gradients are linear, it may be a sufficient approximation to consider dc/dH
as a constant. For example, in the troposphere:

c = c0 + dc

dH
H (2.21)

Insertion of Eq. 2.8 into Eq. 2.20 gives

c = [
γR (T0 +λH)

]1/2 =
[

c0

(
1+ λH

T0

)]1/2

(2.22)

Using the first two terms of the binomial expansion we get

c = c0 + c0λ

2T0
H (2.23)

We thus have in the troposphere:

dc

dH
= c0λ

2T0
=−0.00384/s

2.4. OFF-STANDARD ATMOSPHERES
Off-standard atmospheres are defined by a temperature distribution which is obtained by changing
the temperature of the standard atmosphere with given increment∆T . The resulting temperatures
then are given by

T = TISA +∆T,

where the subscript “ISA” denotes a value in the International Standard Atmosphere. The constant
increases in temperature are referred to the so-called geopotential pressure altitude, Hp . The latter
altitude corresponds to the reading of an airplane altimeter. This instrument measures the actual
air pressure and is calibrated by exposing it to various pressures and marking on the dial the geopo-
tential altitudes that in the International Standard Atmosphere correspond to these pressures (see
also Chapter 5). Thus, when the air temperatures are different from those of the standard atmo-
sphere, the altimeter will also read the geopotential pressure altitude. Apparently, the geopotential
pressure altitude is the geopotential altitude in the International Standard Atmosphere at which
the pressure is equal to the actual pressure. For example, in the case of an altimeter which is cali-
brated according to Eq. 2.12, we have the following relationship between pressure and geopotential
pressure altitude (Hp ≤ 11000m)

Hp =
[(

p

p0

)− Rλ
g0 −1

]
T0

λ
(2.24)

Similarly, for altitudes between 11 and 20 km it follows from Eq. 2.14 that
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Figure 2.5 Relationship between pressure altitude and density altitude

Hp = Hs − RTs

g0
ln

p

p0
(2.25)

Apparently, the altimeter reading furnishes the actual air pressure only. If, in addition, the temper-
ature increment T is known, the air density can be calculated from the equation of state,

p

R
= ρISA ×TISA = ρ (TISA +∆T ) (2.26)

or

ρ = ρISA

1+ ∆T
TISA

(2.27)

Usually, airplane performance data are represented as a function of geopotential pressure altitude
and air temperature, TISA +∆T . Also the so-called geopotential density altitude, hP , may be used.
This is the geopotential altitude in the International Standard Atmosphere at which the density is
equal to the actual air density.
By solving Eq. 2.13 for height we obtain the geopotential density altitude in the troposphere as

Hρ =
[(

ρ

ρ0

)− Rλ
g0+Rλ −1

]
T0

λ
(2.28)

In the lower stratosphere, we find from Eq. 2.16,

Hρ = Hs − RTs

g0
ln

ρ

ρ0
(2.29)

Fig. 2.5 shows the dependence of Hρ with T for given values of Hp . By means of this chart, an
altimeter reading can be converted into density altitude, provided that the actual air temperature
is known.
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Figure 2.6 Saturation vapor pressure of water and ice

2.5. HUMIDITY
An upper limit exists concerning the concentration of water vapor that can be present in a fixed vol-
ume of air. When a given volume contains the maximum amount of water vapor the air is saturated.
By definition, the saturation vapor pressure is the partial pressure at which water vapor can coexist
in equilibrium with liquid water. This maximum value of the vapor pressure emax increases rapidly
with increasing temperature. The solid curves in Fig. 2.6 represent the variation of the saturation
vapor pressure with temperature. This relationship may be approximated by:

emax = 611×10
7.5T

237.3+T water vapor ←→ water

emax = 611×10
9.5T

265.5+T water vapor ←→ ice
(2.30)

In these expressions, T is the temperature in degrees Celsius, and the saturation vapor pressure is
obtained in Pascal (N/m2). From Fig. 2.6 we note that below 0 ◦C water vapor can condense into
ice as well as into supercooled water. Also note that the vapor pressure of supercooled water is
appreciably greater than of ice.
According to Dalton’s law, the pressure p of moist air is the sum of the partial pressure of dry air pd

and the partial pressure of water vapor e,

p = pd +e (2.31)

The following quantities are used to express the amount of water vapor in the atmosphere:

1. absolute humidity, a

2. specific humidity, q

3. mixing ratio, x

4. relative humidity, H .
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Figure 2.7 Absolute humidity for saturated air

Absolute humidity a is the mass of water vapor per cubic meter. Hence, the absolute humidity is
equal to the density of water vapor ρv . Since, just like air, also water vapor follows the perfect gas
law with sufficient approximation, we have

a = ρv = Mv e

RaT
= e

Rv T
(2.32)

In Eq. 2.32 Mv and Rv are the molecular mass and the specific gas constant of water vapor, respec-
tively. As Mv = 18.0kg/kmol (Tab. 2.1), we get

Rv = Ra/Mv = 8314.32/18.0 = 461.90m2/(Ks2)

The absolute humidity is maximum if at the actual temperature the air is saturated (e = emax).
Fig. 2.7 gives the maximum absolute humidity against temperature. This graph shows that at 0 ◦C
the maximum proportion of water vapor is about 0.004 kg per cubic meter, which value increases
to 0.023 kg/m3 at 25 ◦C.
Specific humidity q is the ratio of the density of water vapor to the density of the moist air,

q = ρv

ρd +ρv
(2.33)

where ρd is the density of dry air, which is given by
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Figure 2.8 Specific humidity and mixing ratio for saturated air

ρd = pd

RT
= p −e

RT
. (2.34)

Insertion of Eq. 2.32 and Eq. 2.34 into Eq. 2.33 yields:

q =
e

Rv T
p−e
RT + e

Rv T

=
R

Rv
−e

p −e
(
1− R

Rv

) (2.35)

Using R = 287.05m2/(Ks2) and Rv = 461.90m2/(Ks2) we obtain R/Rv = 0.622. It then follows that

q = 0.622e

p −0.378e
(2.36)

The mixing ratio x is the ratio of the density of water vapor to the density of dry air,

x = ρv /ρd (2.37)

This leads to

x =
e

Rv T
p−e
RT

=
R

Rv
e

p −e
= 0.622e

p −e
(2.38)

The Eq. 2.36 and Eq. 2.38 may be approximated by
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Figure 2.9 Relationship between water vapor pressure, temperature and relative humidity

q = x = 0.662
e

p
(2.39)

For saturated air, the variation of q(= x) is plotted against temperature in Fig. 2.8. Relative humidity
H is defined as the ratio of the actual water vapor pressure to the saturation vapor pressure at that
temperature,

H = 100
e

emax
(2.40)

where H is expressed in percent. As clarified in Fig. 2.9, lines of constant values of relative humidity
can be drawn, starting from the line of 100% relative humidity, which corresponds to the saturation
vapor pressure curves in Fig. 2.6. Evidently, the use of relative humidity requires also a knowledge
of the ambient air temperature to have a physical significance.
Instead of relative humidity, the air temperature in combination with the so-called dew point may
be used to specify the moisture content of the air. As illustrated in Fig. 2.9, the dew point is the
temperature to which moist air must be cooled isobarically, without addition of moisture, until the
saturation point or frost point (if below 0 ◦C) is reached.
The magnitude of the difference between the air temperature and the dew point is an indication
of how much the moist air will have to be cooled to reach saturation and condensation. If the
difference between the actual temperature and the dew point is great, extreme cooling is needed to
achieve saturation, whereas if the difference between the two thermometer readings is small, only
slight cooling is required to saturate the air. Clearly, condensation will produce clouds and several
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forms of precipitation as dew, rain, snow, and so forth. Therefore, the difference between the air
temperature and dew point is also a measure for the height at which cloud formation begins.
Finally, we will examine the influence of water vapor on the density of moist air. According to
Eq. 2.35 we can write

ρ = ρd +ρv = p −e

RT
+ e

Rv T
= p

RT

[
1− e

p

(
1− R

Rv

)]
(2.41)

By insertion of R/Rv = 0.662 into Eq. 2.41 we obtain

ρ = p

RT

(
1−0.378

e

p

)
= p

RTv
(2.42)

where R is the specific gas constant of dry air and Tv is an increased temperature which is called
the virtual temperature and which is used to account for the effect of humidity on the air density.
From Eq. 2.42 it follows that

Tv = T

1−0.378 e
p

(2.43)

Eq. 2.42 and Eq. 2.43 show that, at a given pressure, moist air is somewhat lighter than dry air. This
feature may be of special importance to the thrust or power output of propulsion systems, and thus
to airplane performance.
Most importantly, the humidity content on the atmosphere, together with the chemical compo-
sition of the exhaust gases, has a significant influence on the formation of contrails, which are
deemed to be the biggest anthropogenic source of cirrus clouds, and therefore a significant con-
tributor to the greenhouse effect due to aviation. The formation and persistence of contrails in the
atmosphere is the result of two main processes. First, contrails are formed when the water vapor in
the exhaust of aircraft engines condenses and freeze into ice crystals. This occurs at temperatures
around −38 ◦C at typical cruise altitudes in the upper troposphere or lower stratosphere. Then,
contrails persist if the ambient air is sufficiently cold and humid, allowing the ice crystals to re-
main stable. This occurs if the mixed and cooled exhaust has a partial vapor pressure above the
saturation point with respect to ice.

2.6. VERTICAL MOTION IN THE ATMOSPHERE
Though in all standard atmospheres the air is assumed to be at rest, we all know that the real atmo-
sphere is often in a state of motion. In this section we will therefore consider the vertical displace-
ments of limited masses of air as may occur in the atmosphere.
Since atmospheric pressure decreases with increasing height, the pressure within an isolated mass
of air will also decrease when it is lifted into the surrounding air. Then, also its temperature falls
because some of the heat energy is used in doing the work required for expansion. To describe
this process we may assume that the moving body of air has nearly uniform properties and that its
pressure p∗ equals constantly the pressure p of the surrounding air, but not necessarily T ∗ = T .
Furthermore, it is assumed that no changes of state occur and that the air expands adiabatically.
Then, according to the first law of thermodynamics in Appendix C, the process is described by
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cp dT ∗− 1

ρ∗ dp∗ = 0 (2.44)

where cp is the specific heat at constant pressure of air. By making use of the hydrostatic Eq. 2.1
and noting that dp∗ = dp we find

cp dT ∗+ ρ

ρ∗ g dh = 0 (2.45)

Combination of Eq. 2.45 and the equation of state Eq. 2.2 yields

cp dT ∗+ T ∗

T
g dh = 0 (2.46)

Hence, the rate of temperature fall is

dT ∗

dh
=− g T ∗

cp T
(2.47)

By substitution of g = 9.80665m/s2, cp = 1004.68m2 ·s2 ·K (dry air) and T ∗/T = 1 into Eq. 2.47, we
find for the rate of change of temperature within the rising mass of air

dT ∗

dh
=−0.0098K/m

Thus, if the expansion process is adiabatic the temperature decrease is about 1 kelvin for each 100
meters rise. This lapse rate holds only for dry or unsaturated air, and is known as the dry adiabatic
rate.
The water vapor in the moving body of air also cools as it ascends. When it reaches its saturation
temperature, condensation will take place with any further cooling. The heat which is released by
the condensation is added to the air and the lapse rate is therefore about half the value of the dry
adiabatic rate. The temperature lapse rate for saturated air is denoted, therefore, as the saturation
adiabatic rate. The variation of temperature with altitude according to the dry adiabatic rate is
sketched in Fig. 2.10. From this illustration we can explain what actually can happen when a mass
of unsaturated air is elevated. If the atmosphere has a lapse rate which is less than 1 K/100 m,
the rising air will always be colder, and thus denser, than the surrounding air. As a result, vertical
motion is suppressed so that the moving air will tend to sink back to its initial level. In this case the
atmosphere is said to be in a stable condition.
On the other hand, if the observed lapse rate is greater than 1 K/100 m, the rising air will be con-
stantly warmer, and therefore lighter than the surrounding air. In consequence, the rising air tends
to move away from its initial position. This is known as an unstable condition. In order to explain
the dynamics of lifting and sinking, a moving infinitesimal element of air with dimensions dx, dy
and dh will be considered (Fig. 2.11). If we assume quasi-static motion (p∗ = p)
and the vertical motion involves no friction forces between the element and its environment, New-
ton’s second law furnishes

ρ∗ dx dy dh
dw

dt
= p dx dy −

(
p + dp

dh
dh

)
dx dy −ρ∗g dx dy dh (2.48)
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Figure 2.10 Temperature rates

Figure 2.11 Force diagram
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In this equation w is the vertical velocity of the element of air. Dividing the terms by ρ∗ dx dy dh
gives

dw

dt
=− 1

ρ∗
dp

dh
− g (2.49)

Inserting the hydrostatic Eq. 2.1 and the equation of state Eq. 2.2 into Eq. 2.49, we obtain

dw

dt
= g

(
T ∗

T
−1

)
(2.50)

This result indicates that the vertical velocity tends to increase (unstable condition) if starting from
the original level, the ratio T ∗/T increases. Indeed, this requires that the prevailing lapse rate is
greater than the dry adiabatic rate.
In the special circumstance that the lapse rate in the atmosphere is the same as the dry adiabatic
rate, the temperature within the moving air constantly coincides with the temperature of the sur-
rounding air. Consequently, there is no density difference, and the air will not restore to or displace
from its momentary position. This condition is called neutral equilibrium.
As explained earlier, in the case of moving air which is saturated, the rate of cooling is about 0.5
K/100 m. To examine the stability, now, the actual temperature variation in the atmosphere must
be compared to the saturation adiabatic rate.
When the actual temperature lapse rate lies between that of the dry adiabatic rate and that of the
saturation adiabatic rate, so-called conditional instability prevails (Fig. 2.12). This term expresses
that there is a stable condition for unsaturated air and an unstable condition for saturated air.
Although air normally gets colder as we go up in the atmosphere, the air temperature also can rise
with increasing height. This causes decided atmospheric stability. Then we have a temperature
inversion (negative lapse rate) which may be produced by advection of warm air currents or by
cooling through contact with a cold ground surface.
The vertical movements brought about by unstable atmospheric conditions are called convection.
This type of air currents can emerge near the Earth’s surface when local heating of the ground
causes a lapse rate which is greater than the dry adiabatic rate. The rising air may be used by glider
pilots to gain altitude while gliding (Fig. 2.13a).
The height at which the rising air reaches its saturation temperature is called the convective con-
densation level (Fig. 2.13b). If above this level conditional instability exists, the air may continue its
upward motion thereby cooling at the saturation adiabatic rate. Then condensation of some of the
moisture takes place and clouds may be formed due to the presence of condensation nuclei in the
atmosphere. By reason of this, clouds consist of an enormous amount of droplets of water.
As illustrated in Fig. 2.13a and b, the rapid updrafts due to instability give localized clouds with ver-
tical development. The cooling and condensation needed for cloud formation may also be caused
by slow rising of a whole layer of stable air. For example, due to the horizontal movement of air
(wind) against a mountain or over a front, which is a wedge of cold air moving under the influence
of gravity beneath a warm air mass (Fig. 2.13c). This gives slow condensation processes and there-
fore layer-like clouds. Usually, cloud types are divided into four families according to the regions
where particular forms are found (Fig. 2.14).
The distance from the ground to the base of the clouds is called the ceiling. In the case of fog, which
is a cloud at the Earth’s surface, the ceiling will be at zero altitude.
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Figure 2.12 Conditional Instability

Figure 2.13 Cloud formation
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It is quite obvious that the presence of clouds or fog is extremely important to aviation because
it reduces the pilot’s range of vision from the flight deck. In this respect, also information on the
visibility is included in all aviation weather reports. According to its definition, visibility in a definite
direction is the maximum distance to which prominent suitable objects like trees or houses, located
in that direction and observed against the horizon sky, can be seen.

It is also important to know that water droplets are present in clouds, even when the air temperature
is below freezing point. Only at temperatures below −15 ◦C to −20 ◦C clouds are composed mostly
of ice crystals.

Supercooled water droplets exist in a highly unstable state and when excited will rapidly be trans-
formed into ice. The freezing of water droplets which are intercepted by the airplane results in the
formation of ice on various surfaces of the airplane. Also when the humidity is high and the air tem-
perature is near freezing point, acceleration of the air flow around the wing and propeller blades
may cause sufficient fall of temperature to start the freezing process.

Ice formation has always been a hazard to aviation since it affects the flying characteristics and the
performance of airplanes by loss of lift, added drag, added weight and loss of thrust. Icing can also
stop the air vents, leading to the flight instruments. Modern airplanes are equipped with anti-ice
and deice systems in order to remove ice and prevent the formation of ice on the airframe.

2.7. WIND
Wind is the horizontal movement of air relative to the Earth, and is one of the primary atmospheric
factors affecting airplane performance.

The direction of wind is that direction from which the wind comes. If the wind is blowing from

Figure 2.14 Basic cloud families
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Table 2.3 Beaufort scale

Beaufort number wind velocity (knots) description of wind

0 < 1 calm
1 1-3 light air
2 4-6 light breeze
3 7-10 gentle breeze
4 11-16 moderate
5 17-21 fresh
6 22-27 strong
7 28-33 near gale
8 34-40 gale
9 41-47 strong gale

10 48-55 storm
11 56-63 violent storm
12 > 63 hurricane

the southwest, its direction is indicated as southwest (SW). Fig. 2.15 shows the generally used wind
direction scales.

Wind velocity is reported either in knots or in meters per second. Surface winds may also be ex-
pressed in terms of the Beaufort scale of wind force. Originally, this system was used to estimate
wind velocity by observing its effect on the condition of the sea surface. Tab. 2.3 gives the relation-
ship between Beaufort number and wind speeds as defined for wind at a height of 10 meters above
the ground. The table also includes the description of winds.

As a whole there is a systematic meridional circulation of the atmosphere, which is caused by the
uneven distribution of solar heat over the Earth. Fig. 2.16 represents the general circulation on the
Northern Hemisphere. Equatorial surfaces heat most. This causes the lower air to expand. Owing
to this expansion the sea level pressure at the Equator is reduced and a higher pressure in upper
levels over the Equator is created. Then, at higher elevations air flows from the Equator and in
lower levels toward the Equator.

Due to the rotation of the Earth from west to east, the Coriolis force, (see Section 1.3), deflects the air

Figure 2.15 Wind direction scales
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Figure 2.16 General circulation of Northern Hemisphere

which is moving from the Equator to the right. This leads to a high pressure zone at about latitude
30 , where calm and variable winds occur. The winds blowing Equator-ward become the well-
known Northeast trades in the neighborhood of the Equator. Light winds occur in the equatorial
low pressure zone between the two belts of trade winds.
The cooling in the Polar regions causes the air to contract, resulting in a high pressure at the ground
and a relative low pressure in upper levels. The air moving southward from the North Pole is de-
flected into an easterly flow. The air which is forced Poleward from the high pressure zone at lat-
itude 30 is turned to the west and becomes the familiar prevailing Westerlies. As a result, a low
pressure zone is also found around latitude 60.
Near the Earth’s surface the forces that determine wind direction and wind speed are the force due
to the horizontal pressure gradient, the Coriolis force and the friction force. The latter force arises
from the relative motion between air and ground surface. The magnitude of the wind speed at lower
altitudes is strongly affected by this friction force, which tends to decrease the wind velocity. The
retarding effect of the surface is largest near the ground and remains of significance up to about
1000 meters above ground level. The region where the surface friction occurs may be called the
planetary boundary layer.
Since the Coriolis force is proportional to the wind velocity, this apparent force increases with in-
creasing height. In the so-called surface boundary layer, which reaches to about a height of 100 m,
the Coriolis force is negligible small in comparison with the friction force and the pressure gradient
force. In this layer the wind velocity increases continuously with increasing height, starting from
the zero-velocity boundary value at ground level, whereby the air moves in a direction perpendic-
ular to the isobars.
Above the surface boundary layer the wind speed increases further and wind blowing Poleward is
deflected in an easterly direction under the influence of the Coriolis force. This situation is depicted
in Fig. 2.17, where equilibrium of forces is assumed. The reduction of the wind velocity due to the
friction force and the angle that the wind makes with the isobars depend on the type and roughness
of the ground surface.
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Figure 2.17 Change of wind direction due to Coriolis force

Figure 2.18 The geostrophic wind on the Northern Hemisphere

Above the planetary boundary layer the surface friction is no longer effective. Then, finally, the
wind direction becomes parallel to the isobars. Under these circumstances the Coriolis force is
balanced by the pressure gradient force (Fig. 2.18).
The equation which expresses this condition for straight isobars is the so-called geostrophic wind
equation:

1

ρ

dp

ds
= 2ωeVw sinφ (2.51)

where dp/ds is the horizontal pressure gradient if s is measured across the isobars, Vw is the geo-
strophic wind velocity and φ is latitude.
A qualitative description of the direction of the geostrophic wind is given by the law of Buys-Ballot,
which states that in the Northern Hemisphere, if you face the wind the atmospheric pressure de-
creases toward your right and increases toward your left. In the Southern Hemisphere the opposite
is true.
Information services for air navigation all over the world regularly report meteorological data that
comprise wind directions and velocities at various altitudes. On average, the wind speed increases
up to the tropopause (Fig. 2.19a).
Also the presence of the so-called jet streams in the upper troposphere and lower stratosphere
should be mentioned. These relative strong winds, having velocities of 300 to 400 km/hr, are con-
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a. high altitude b. near the ground

Figure 2.19 Typical wind velocity profiles

centrated within a narrow flow and follow a meandering path at particular latitudes. The increase
in wind velocity with height in the surface boundary layer often is represented by power laws, ac-
cording to the relationship

Vw =V w1

(
h

h1

)n

(2.52)

where V w1 is the average wind velocity at a fixed reference height h. For wind blowing over a rel-
atively smooth surface and in conditions of normal lapse rates, the exponent n is approximately
equal to 1/7 (Ref. 4). Fig. 2.19b displays the form of the wind profile according to Eq. 2.52, using
V w1 = 5m/s at H = 2m.
When the wind blows over a rough surface or when the air flows in layers adjacent to each other
at different speeds, irregular motions in the atmosphere may be induced. The type of small-scale
motion which is superimposed on a basic flow is called turbulence or gustiness. A similar form is
the convective turbulence which is produced in the case of unstable atmospheric conditions.
On an unclouded day the turbulence is not visible so that it will be felt by an airplane without any
visual warning. Under these conditions the term clear-air turbulence is used. In general we can
designate local wind shear at heights near the tropopause as being the most important cause of
clear-air turbulence.

2.8. ATMOSPHERIC FRONTS
In the previous section we have observed that the circulation of the atmosphere is basically the
migration of extensive air masses over long distances.
By air masses are meant far-reaching bodies of air, wherein the atmospheric conditions are approx-
imately consistent at each level, and of which the physical properties originate from the character-
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Figure 2.20 Vertical cross-section through atmospheric fronts

Figure 2.21 Warm front cloud systems

istics of their source regions on Earth.
During its motion, the air has a tendency to maintain its commencing properties, or else is modified
somewhat by the nature of the ground surface over which it travels.
When air masses of different temperature meet each other, a rather thin transition layer or surface
of discontinuity is formed between them. The colder, heavier air moves underneath the warmer
light air, thereby forming a wedge of cold air under the action of gravity (Fig. 2.20). The dividing
plane between the two air masses is called the frontal surface. The intersection of the frontal surface
with the ground surface is called a front.
A front is designated by the relative temperature of the air mass, which moves toward the other.
Thus, if warmer air is displacing colder air, it is called a warm front (Fig. 2.20a). In the same way, a
cold front is a front along which colder air replaces warmer air (Fig. 2.20b).
Logically, a warm front causes higher temperatures at the places over which it proceeds, and a cold
front brings lower temperatures. Each front has its own special quality of cloud, precipitation and
wind conditions.
Fig. 2.21a shows the cloud system in a warm front with the warm air stable. In this case the air
slowly advances over the sloping frontal surface and extensive cloud formation occurs. First cir-
rus clouds come into sight, and then cirrostratus and altostratus, in sequence. Ultimately, nim-
bostratus clouds are developed, and precipitation drops down. Low stratus clouds may cover the
nimbostratus.
The humidity of the cold air is increased to near-saturation by the precipitation, through which
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Figure 2.22 Fast-moving cold front cloud formation

Figure 2.23 Vertical cross-section of clouds In slow moving cold fronts

further cooling during the night may produce fog over large areas. If the warm air is conditionally
unstable, altocumulus and cumulonimbus clouds come after the cirrus forms and thunderstorm
activeness may be encountered ahead of the front, together with convectional showers (Fig. 2.21b).

The wind directions and velocities above and under the frontal surface commonly differ signifi-
cantly. Two types of cold fronts are distinguished, fast-moving cold fronts and stationary or slow-
moving cold fronts. Fig. 2.22a indicates that the motions in a fast-moving cold front consist of
declining movements at both sides of the frontal surface, causing variable surface winds behind
the front. In the warm air ahead of the front upward movements take place.

If the warm air is stable, the sky becomes overcast with altostratus and nimbostratus clouds, from
which rain falls. An unstable condition of the warm air (Fig. 2.22b) leads to the development of
cumulonimbus clouds, thunderstorm activity, and showers along and ahead of the front. The cloud
formation in a slow-moving cold front is of the same kind as in a warm front (Fig. 2.23); warm air
sloping upward delivers altostratus and nimbostratus clouds. Also, there may be sufficient upward
movements in the cold air to produce low stratus clouds behind the front. When the warm air is
conditionally unstable cumulonimbus clouds with thunderstorm activity may arise.

In the case that a cold front meets a warm front, we may have the situation of an occluded front.
The manner in which the occlusion works out depends on the relative temperature of the cold air
masses underlying the two frontal surfaces. In a so-called cold front occlusion (Fig. 2.24a), the air
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Figure 2.24 Occluded fronts

behind the cold front is the colder, and therefore displaces the cool air behind the warm front. On
the other hand, as shown in Fig. 2.24b, in a warm front occlusion the air behind the cold front is
less cold than the air beneath the warm front so that now the cold front climbs over the wedge of
the warm front.
We end this section with the remark that, apparently, an appreciation of the boundaries between air
masses of different characteristics is very important since their frontal disturbances involve special
weather conditions which may cause serious aviation hazards in the form of gusts, low ceilings,
poor visibilities, and ice accretion.

2.9. PROBLEMS
1. The volumetric percentage of CO2 in the atmosphere near sea level is:

(a) Larger than 10%

(b) Between 1% and 10%

(c) Less than 1%

2. What are the names of the lowest two regions of the atmosphere?

3. Is the following statement true or false? The aerostatic equation is derived based on funda-
mental laws of physics.

4. Is the following statement true or false? The temperature lapse with altitude is based on
experimental data.

5. The temperature gradient in the troposphere equals −0.0065 K/m. Find the values of the
temperature, the pressure, the air density and the speed of sound at 5 km altitude. To solve
this question, make use of the primary constants provided in Table 2.2 and equations 2.10
and 2.11.

6. In the lower stratosphere, the temperature is constant (the temperature gradient is zero).
First calculate the values of the temperature, the pressure, the air density and the speed of
sound at the base of the lower stratosphere (11 km). To solve this problem, make use of the
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same information as provided in the previous question. Next, calculate the values of these
variables at 16 km altitude.

7. On a specific day, the atmospheric conditions are such that the temperature is 8 ◦C and the
dew point is 5 ◦C. Do you expect clouds to form at high or low altitude on this day?

8. Gliders can gain height by flying in ascending warm air masses (thermals). In a thermal, is
the lapse rate

(a) smaller than,

(b) equal to or

(c) greater than the dry adiabatic rate?

9. Explain how glider pilots can identify thermals and name one potential cause of these ther-
mals.

10. Is the following statement true or false? Due to the uneven distribution of solar heat over the
Earth, a systemic circulation is present in the atmosphere. Combined with the Coriolis force
as a result of the rotation of the Earth, this results in a certain wind pattern. This general wind
pattern is represented in the International Standard Atmosphere.





3
EQUATIONS OF MOTION

Fundamental derivations of the expression of Newton’s laws in vector form is presented in Ap-
pendix A. In this chapter, those equations are specialized to the case of rigid airplanes of constant
mass, and expressed in the aircraft body axis system. In the case of steady flight, they are conve-
niently expressed in the air-path axis system.

3.1. TRANSLATIONAL MOTION
Newton’s second law of motion can be written as

−→
F = d(M

−→
V )

dt
(3.1)

where F is the resultant of all external forces applied to the body, M is its mass, and V is the linear
velocity vector of the center of gravity of the body relative to an inertial frame of reference.
Starting from Eq. 3.1, in Appendix A the derivation is given of the general equation of translational
motion for an arbitrary deformable body of mass M (see Eq. A.46 of Appendix A). Of course, all
airplanes are flexible, that is, the relative positions of the various parts of the structure change
somewhat under the influence of the forces acting in flight. However, it is very beneficial to the
complexity of the problem to disregard these deformations. This simplification is generally jus-
tified and, as has been mentioned already in Chapter 1, shall also be used here in analyzing the
performance of airplanes.
Assuming a rigid body of constant mass, Eq. 3.1 becomes the familiar form

−→
F = M

d
−→
V

dt
= M−→a (3.2)

According to Appendix A, the rotational motion of a rigid body is governed by

−→
M cg =

d
−→
B cg

dt
(3.3)
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This equation says that the external moment applied to a body is equal to the time derivative of its
angular momentum relative to the center of gravity of the body.
In this section the translational motion of rigid airplanes of constant mass will be described by us-
ing the body axis system. For this purpose the vector Eq. 3.2 is transformed analogously to Eq. A.20
of Appendix A. Then we have

−→
F = M

(
d
−→
V

dt
+−→
Ω ×−→

V

)
(3.4)

where d
−→
V /dt is the time derivative of the velocity vector with respect to the body axis system, and−→

Ω is the angular velocity of the airplane. These two terms clearly represent the change in magnitude
and direction of the velocity vector with respect to aircraft body, and the fact that the aircraft body is
rotating with respect to an inertial reference frame. If the unit vectors in our airplane fixed reference

frame are
−→
i ,

−→
j ,

−→
k and if u, v , w and p, q , r are the components of

−→
V and

−→
Ω along the body axes,

respectively, then

−→
V = u

−→
i + v

−→
j +w

−→
k (3.5)

and

−→
Ω = p

−→
i +q

−→
j + r

−→
k (3.6)

If further the corresponding components of the external force are given by

−→
F = Fx

−→
i +Fy

−→
j +Fz

−→
k (3.7)

we obtain from Eq. 3.4 the following three scalar equations:

Fx = M

(
du

dt
+w q − vr

)
Fy = M

(
dv

dt
+ur −w p

)
Fz = M

(
dw

dt
+ v p −uq

) (3.8)

The resultant external force F includes the aerodynamic force
−→
R , originating from the interaction

between airflow and airplane surfaces, the thrust
−→
T of the propulsive system, and the weight

−→
W of

the airplane,

−→
F =−→

R +−→
T +−→

W (3.9)

We also may consider the so-called resultant aerodynamic force A, being the vector sum of two

constituents; the aerodynamic force
−→
R and the thrust

−→
T ,

−→
A =−→

R +−→
T (3.10)

By reference to Fig. 3.1, we see that the components of the weight along the body axes are:
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Figure 3.1 Components of airplane weight along body axes

Wx =−W sinθ

Wy =W cosθ sinφ

Wz =W cosθcosφ

(3.11)

Now Eq. 3.8 for the translational motion may be written as

−W sinθ+ Ax = M

(
du

dt
+w q − vr

)
W cosθ sinφ+ Ay = M

(
dv

dt
+ur −w p

)
W cosθcosφ+ Az = M

(
dw

dt
+ v p −uq

) (3.12)

where Ax , Ay and Az are the scalar components of the resultant aerodynamic force
−→
A .

3.2. ROTATIONAL MOTION
In order to derive similar expressions for the rotational motion, we will evaluate Eq. A.57 of Ap-
pendix A, which equation describes the total angular momentum relative to the center of gravity of
the airplane as

−→
B cg =

∫
M

−→r × (
−→
Ω ×−→r )dM (3.13)

where−→r is the position vector of a mass element with respect to the center of gravity of the airplane.
Using the following basic law for the vector triple product,

−→r × (
−→
Ω ×−→r ) =−→

Ω × (−→r ·−→r )−−→r × (
−→
Ω ·−→r )

We can rewrite Eq. 3.13 as
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−→
B cg =

∫
M

−→
Ω × (−→r ·−→r )dM −

∫
M

−→r × (
−→
Ω ·−→r )dM (3.14)

If the coordinates of a mass element in the body axis system are x, y , z, then

−→r = x
−→
i + y

−→
j + z

−→
k (3.15)

In terms of the coordinates x, y , z, the dot products in Eq. 3.14 become

−→r ·−→r = x2 + y2 + z2

−→
Ω ·−→r = px +q y + r z

Substituting the latter relations into Eq. 3.14 yields

−→
B cg =−→

Ω

∫
M

(x2 + y2 + z2)dM −
∫

M

−→r (px +q y + r z)dM (3.16)

If we write

−→
B cg = Bx

−→
i +By

−→
j +Bz

−→
k (3.17)

the components of Bc g along the body axes are:

Bx = p
∫

M
(x2 + y2)dM −q

∫
M

x y dM − r
∫

M
xz dM

By =−p
∫

M
y x dM +q

∫
M

(x2 + z2)dM − r
∫

M
y z dM

Bz =−p
∫

M
zx dM −q

∫
M

z y dM + r
∫

M
(x2 + y2)dM

(3.18)

In Eq. 3.18, the so-called moments of inertia of the body appear:

Ix =
∫

M
(y2 + z2)dM

Iy =
∫

M
(x2 + z2)dM

Iz =
∫

M
(x2 + y2)dM

(3.19)

And the products of inertia as well:

Ix y =Iy x =−
∫

M
x y dM

Iy z =Iz y =−
∫

M
y z dM

Ixz =Izx =−
∫

M
xz dM

(3.20)
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Eq. 3.19 and Eq. 3.20 give the nine components of the tensor of inertia I of the body. Hence, we may
write

Bx = pIx +q Ix y + r Ixz

By = pIx y +q Iy + r Iy z

Bz = pIxz +q Iy z + r Iz

(3.21)

Apparently, Eq. 3.13 can also be expressed as the dot product of the tensor

−→
B cg =

∫
M

−→r × (
−→
Ω ×−→r )dM =−→

I ·−→Ω (3.22)

Accordingly, the rotational Eq. A.58 of Appendix A can be expressed as

−→
M cg =

d
−→
B cg

dt
=−→

I · d
−→
Ω

dt
+−→
Ω ×−→

B cg (3.23)

where
−→
M cg is the external (aerodynamic) moment on the airplane, acting about the center of grav-

ity. If
−→
M cg is resolved into its components along the body axes, the following three scalar equations

are obtained:

Mx = dp

dt
Ix + dq

dt
Ix y + dr

dt
Ixz +qBz − r By

My = dp

dt
Ix y + dq

dt
Iy + dr

dt
Iy z + r Bx −pBz

Mz = dp

dt
Ixz + dq

dt
Iy z + dr

dt
Iz +pBy −qBx

(3.24)

These equations are indicated as Euler’s equations of rotational motion, where Mx is the rolling
moment, My the pitching moment, and Mz the yawing moment. For most airplanes the simplifi-
cation can be made that the distribution of the mass of the airplane is symmetric with respect to

the X Y plane. Then: Iy z = Ix y = 0, and the components of
−→
M cg become:

Mx =Ix
dp

dt
+ (

Iz − Iy
)

qr + Ixz

(
dr

dt
+pq

)
My =Iy

dq

dt
+ (Ix − Iz ) pr + Ixz

(
p2 − r 2)

Mz =Iz
dr

dt
+ (

Iy − Ix
)

pq + Ixz

(
dp

dt
−qr

) (3.25)

3.3. UNSTEADY MOTION
The systems of Eq. 3.12 and Eq. 3.25, together with the kinematic relations Eq. 1.22, describe the
motion of a rigid airplane with constant mass. The most general system of dynamic equations of
motion for a rigid airplane of constant mass is expressed in the body axis system as in the following
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Eq. 3.26.

−W sinθ+ Ax =M

(
du

dt
+w q − vr

)
W cosθ sinφ+ Ay =M

(
dv

dt
+ur −w p

)
W cosθcosφ+ Az =M

(
dw

dt
+ v p −uq

)
Mx =Ix

dp

dt
+ (

Iz − Iy
)

qr + Ixz

(
dr

dt
+pq

)
My =Iy

dq

dt
+ (Ix − Iz ) pr + Ixz

(
p2 − r 2)

Mz =Iz
dr

dt
+ (

Iy − Ix
)

pq + Ixz

(
dp

dt
−qr

)

(3.26)

This is a non-linear, first-order system of Ordinary Differential Equations (ODEs) in the unknowns
u, v , w , p, q , r . For it to be solvable, it must be complemented with an adequate set of kinematic
relations, such as those of Eq. 1.22, to express the angular velocities in terms of the Euler angles,
which also appear in the equations. Additionally, the external (aerodynamic and propulsive) forces
and moments must also be expressed in terms of the kinematic and dynamic variables via another
set of equations. The latter are usually referred to as the aerodynamic and propulsive models of the
airplane, and can be obtained from theoretical principles or experiments in the real world or in
simulated environments.
A significantly simplified version of Eq. 3.26 is obtained in the case of accelerated curved symmetric
flight, for which the plane of symmetry of the airplane is continuously in the same vertical plane
with respect to the Earth. In this common scenario, the aircraft flies with wings level, with no net
external lateral force, and no net external roll and yaw moments. This is reflected by the following
Eq. 3.27.

φ= v = p = r = Ay = Mx = Mz = 0 ⇒ dv

dt
= dp

dt
= dr

dt
= 0 (3.27)

The motion is restricted to the Xb Zb plane according to the following system of dynamic and kine-
matic equations.

−W sinθ+ Ax =M

(
du

dt
+w q

)
W cosθ+ Az =M

(
dw

dt
−uq

)
My =Iy

dq

dt

(3.28)

In Appendix B, these equations are obtained in the air-path axis system using a bottom-up ap-
proach and the formalism of rotation matrices.
In a general sense, we have to consider accelerated motion of the airplane on the basis of a detailed
knowledge of the force and moment components (Ax , Ay , Az , Mx , My , Mz ). Such studies make up
the essence of the subject termed flight dynamics. Both, a number of problems in the field of sta-
bility and control, and airplane performance fall under the heading of flight dynamics. Concerning
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airplane performance, for example, the prediction of takeoff and landing distances and the deter-
mination of optimum flight trajectories under circumstances in which the interchange between
kinetic and potential energies is of importance to the computational results, pertain to this class of
questions.

On the other hand, one should remember that during most of its flying time, an airplane can be
assumed to be in quasi-steady motion. Therefore, as a topic of particular interest, in the follow-
ing section the equations describing the most general motion of an airplane in steady flight are
presented.

3.4. THE MOST GENERAL STEADY MOTION
In Section 1.9, steady flight has been defined as the flight in which both magnitude and direction
of forces and moments acting on the airplane remain constant.

Starting from this definition, we can examine the resulting motion, provided that the atmospheric
conditions are independent of flight altitude (poor assumption in case of prolonged flight). Steady
motion requires that the time derivatives of all the variables involved in Eq. 3.12 and Eq. 3.26 are
zero:

du

dt
= dv

dt
= dw

dt
= dp

dt
= dq

dt
= dr

dt
= 0

and

dθ

dt
= dφ

dt
= 0 (3.29)

These conditions lead to the following equilibrium equations:

−W sinθ+ Ax =M(w q − vr )

W cosθ sinφ+ Ay =M(ur −w p)

W cosθcosφ+ Az =M(v p −uq)

Mx =(Iz − Iy )qr + Ixz pq

My =(Ix − Iz )pr + Ixz (p2 − r 2)

Mz =(Iy − Ix )pq + Ixz qr

(3.30)

It follows from the requirements (3.26) that only the angular velocity dψ
dt may have a finite value.

Then, according to the definition of the angle of yaw in Fig. 1.14, the resultant angular velocity of
the airplane is about the vertical axis,

Ω= dψ

dt

For steady motion, the kinematic relations of Eq. 1.22 reduce to (see Fig. 1.20 or apply the method
of Appendix B.
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Figure 3.2 Helicoidal motion

p =− dψ

dt
sinθ

q = dψ

dt
cosθ sinφ

r = dψ

dt
cosθcosφ

(3.31)

It is seen from the Eq. 3.31 that not only the direction, but also the magnitude of the resultant
angular velocity remains unchanged. Expressed in terms of the angles defining the orientation of
the air-path axes, we have

Ω= dχ

dt

and

dγ

dt
= dµ

dt
= 0 (3.32)

Evidently, the flight-path angle γ and the aerodynamic angle of roll µ are also independent of time.
Consequently, the same holds true for the angle of attack α and the angle of sideslip β since at a
given velocity the aerodynamic force solely depends on the attitude of the airplane relative to the
velocity vector, and this orientation is fully determined by the angles α and β.
As shown in Fig. 3.2, the condition that velocity V , angle γ and angular velocity Ω are constants,
implies that the most general steady motion of an airplane is a non-symmetric flight in which the
center of gravity of the airplane travels at constant velocity along a helical path with vertical axis,
having a constant radius and pitch (spiral climb).
In performance considerations, the forces in Eq. 3.30 are conveniently expressed in terms of their
components along the air-path axes. In doing so, we derive for the steady helicoidal motion the
following force equations (Fig. 3.3):
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3

Figure 3.3 Forces acting on the airplane In steady helicoidal motion

−D +T cosαT cosβ−W sinγ= 0

−S −T cosαT sinβ+W cosγsinµ−C cosµ= 0

−L−T sinαT +W cosγcosµ−C sinµ= 0

(3.33)

These equations give the force components along the Xa , Ya and Za axis, respectively. As can be
seen from Fig. 3.3, the sideslip is toward the inner side of the curvilinear path (β> 0).
The thrust angle αT in Eq. 3.33 includes the angle of attack and the fixed inclination η of the thrust
vector to the Xb axis.

αT =α+η (3.34)

The force C is the horizontal centrifugal force, which is given by (see Eq. 1.16)

C = W

g
VΩcosγ= W

g

V 2

R
cos2γ (3.35)

Where R is the radius of curvature (Fig. 3.2). The side force S is the cross component of the aero-
dynamic force R due to the sideslipping motion, and acts along the negative Ya axis at a positive
angle of sideslip. The paramount contributions to the force S originate from the fuselage and the
vertical tailplane. Also the propulsive system may produce a contribution to the side force.

3.5. SPECIAL TYPES OF STEADY FLIGHT

3.5.1. STEADY STRAIGHT NON-SIDESLIPPING FLIGHT
In this particular case all the lateral variables of the most general steady motion are zero: β = 0,
C = 0, S = 0. Insertion of these conditions into Eq. 3.33 teaches us that also the aerodynamic angle
of roll is zero (µ= 0). The force equations (3.30) are then reduced to
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Figure 3.4 Steady straight non-sideslipping flight

−D +T cosαT −W sinγ= 0

−L−T sinαT +W cosγ= 0
(3.36)

In addition, we have the requirement that the moments generated by the aerodynamic forces must
be fully balanced by appropriate settings of the control surfaces (trimmed flight condition where
Mx = My = Mz = 0 ). Use of the controls, of course, will affect the aerodynamic characteristics of
the airplane. However, in considering particular flight types, we shall assume that the contributions
from control surface deflections to lift, drag, and side force are sufficiently small in magnitude so
that they can be neglected. Moreover, because we are primarily concerned with the translational
motion of the airplane, we can usually limit ourselves to the application of the force equations only.

The above-mentioned conclusion that µ= 0 implies that the Ya axis lies in the horizontal plane so
that the plane of symmetry of the airplane coincides with one and the same vertical plane (Fig. 3.4).

Consequently, the motion indicated here concerns steady symmetric flight, which is the basic type
of flight in performance analyses (see also Fig. 1.29).

3.5.2. STEADY STRAIGHT SIDESLIPPING FLIGHT

In this case we have the condition R =∞ and thus C = 0 in Fig. 3.3. Now the equilibrium Eq. 3.33
change into:
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Figure 3.5 Landing in cross wind

−D +T cosαT cosβ−W sinγ= 0

−S −T cosαT sinβ+W cosγsinµ= 0

−L−T sinαT +W cosγcosµ= 0

(3.37)

In this flight type the side force S is mainly balanced by the lateral component of the weight of the
airplane.
Normally, the pilot will always try to avoid sideslipping flight in order to minimize the drag of the
airplane. The intentional application of an angle of sideslip is restricted to the approach prior to the
landing in cross wind, where the combination of sideslip angle and bank angle is used to counteract
the lateral drift of the airplane relative to the runway (Fig. 3.5).
Also during landing approaches of small propeller-driven airplanes and gliders in head wind or still
air, the sideslip provides a means of losing height more rapidly than in the case of symmetric flight,
due to increased drag at large β.

3.5.3. THE FLAT TURN
This type of non-symmetric flight concerns the steady, curved, sideslipping flight in a horizontal
plane without angle of bank (Fig. 3.6). Since the plane of symmetry of the airplane is kept vertical,
the centrifugal force produced by the circling motion is balanced by a component of the thrust and
the side force S, acting along the positive Ya axis. Therefore, in the flat turn, the nose of airplane lies
to the right of the velocity vector (β< 0). From Fig. 3.7 we now get the following force equations:

−D +T cosαT cosβ= 0

−S −T cosαT sinβ−C = 0

−L−T sinαT +W = 0

(3.38)

In the flat turn, the occupants of the airplane are submitted to annoying transversal accelerations.
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Figure 3.6 The flat turn

Figure 3.7 Forces in the flat turn

Moreover, it appears that the radius of curvature in the flat turn is relatively large. Because of this,
the pilot will use this maneuver only to change his pathway over the Earth slowly (Ref. 5). In regular
cases, however, the course of an airplane is always changed by executing a banked turn as will be
discussed in the following. The technique to execute a flat turn is also called skid to turn. It is
frequently used in missile control.

3.5.4. STEADY NON-SIDESLIPPING BANKED TURN
This type of flight is called the true banked or coordinated turn, and is the natural maneuver to
change the pathway of an airplane. In a coordinated turn to the right, the pilot brings the airplane
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Figure 3.8 Forces in the coordinated turn

into an inclined position by banking it to the right. As the condition for a coordinated turn is that
the airplane may not be yawed, the Ya axis and the Yb axis coincide. Then, analogous to Eq. 1.19,
the relation between angle of bank Φ, aerodynamic angle of roll µ, and the flight-path angle γ is
given by

sinΦ= sinµcosγ. (3.39)

Owing to the absence of sideslip the side force S is zero so that the resultant aerodynamic force acts
in the plane of symmetry of the airplane. Accordingly, also the vector sum of the weight W and the
centrifugal force C lies in the plane of symmetry (Fig. 3.8).

The equilibrium equations now read:

T cosαT −D −W sinγ= 0

W cosγsinµ−C cosµ= 0

−T sinαT −L+W cosγcosµ+C sinµ= 0

(3.40)

The second equation of Eq. 3.40 shows that in the coordinated turn the component of the centrifu-
gal force along the Ya axis is balanced solely by a lateral component of the weight of the airplane.
Consequently, the occupants experience only an additional force in a direction perpendicular to
their seats, and there will be no tendency of sliding in a lateral direction.

Often, the system of Eq. 3.40 may be expressed as follows:
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Figure 3.9 Ejection of airplane mass

T cosαT −D −W sinγ= 0

−T sinαT sinµ+L sinµ−C = 0

−T sinαT cosµ−L cosµ+W cosγ= 0

(3.41)

The first of these equations gives again the equilibrium of forces along the Xa- axis. The second
equation gives the summation of the radial forces in the horizontal plane, whilst the third equation
gives the summation of the forces acting perpendicular to the Xa axis in the vertical plane.

3.6. TRANSLATIONAL EQUATION FOR VARIABLE MASS
In considering the motion of an airplane powered by conventional fuel, we have to allow for the fact
that in powered flight the propulsion system consumes fuel, by which the mass of the airplane is
decreasing continually. In case of battery powered electric flight, the mass remains constant. Note
that some special battery types, such as the lithium air battery may even increase in mass during
flight as a result of oxidation.
In order to formulate the equation for translational motion for a rigid airplane ejecting mass, we
consider an airplane in horizontal straight flight that at time t has a mass M and a velocity V relative
to an inertial frame of reference (Fig. 3.9a).
Suppose that at time t +∆t the airplane has a mass M −∆M and a velocity V −∆V .
Further, suppose that mass ∆M , ejected in the time ∆t , has a velocity V f relative to the airplane (
Fig. 3.9b).
By Newton’s second law of motion, the total external force acting on the complete mass system at
time t is equal to the rate of change of linear momentum of the system. In the limit as ∆t tends to
zero we have

F = lim
∆t→0

(M −∆M)(V +∆V )+∆M(V −V f )−MV

∆t
= M

dV

dt
−V f

dM

dt
(3.42)

Thus for an airplane that is losing mass, the equation of motion can be written as

F +V f
dM

dt
= M

dV

dt
(3.43)

The term dM
dt may be replaced by the fuel flow rate, ṁ f

dM

dt
=−ṁ f (3.44)
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where the minus sign indicates that the airplane mass is decreasing. Substitution of Eq. 3.44 into
Eq. 3.43 gives

F −ṁ f V f = M
dV

dt
(3.45)

We conclude that Eq. 3.2 can be used to consider the motion of an airplane in powered flight, pro-
vided that the linear momentum of the fuel flow rate relative to the airplane is included in the entire
external force.

3.7. PROBLEMS
1. Are the following statements true or false?

(a) The body axis system can be a rotating axis system, e.g. when the airplane is performing
a pull-up maneuver or a turn.

(b) A rotating axis system can be considered an inertial frame of reference.

2. Euler’s equations of rotational motion are a function of the moments of inertia (Ix , Iy and Iz )
and the products of inertia (Ix y , Ixz and Iy z ). Which of these six terms can be assumed zero
for conventional airplanes?

3. Explain the difference between the field of aircraft performance and the field of stability and
control.

4. Derive the equations of motion for steady horizontal straight sideslipping flight.

5. A large transport aircraft with turbofan engines is performing a cruise flight at constant al-
titude (11 km) and constant airspeed (250 m/s). At the start, the aircraft has a weight of
3500 kN. The jet velocity of the core of the turbofan equals 550 m/s. The distance flown in
cruise is 7500 km. At the end of the cruise flight, the airplane weight has reduced to 2200 kN.
Compute the external force resulting from the ejection of fuel mass that should be included
when using Newton’s second law of motion for rigid bodies with constant mass.





4
AERODYNAMIC BASIS

4.1. AERODYNAMIC COEFFICIENTS
The aerodynamic forces R and the moment Mcg, acting on a moving airplane are produced by
pressure forces and viscous forces. The pressure forces happen due to the asymmetric pressure
distribution about the wing and the other airplane component parts, whereas the viscous forces
arise because of shear stresses at the outer surface of the airplane.
Fig. 4.1 shows the pressure distribution over a wing section slanted at a normal (low) incidence an-
gle to the free stream in a steady flow. According to Bernoulli’s equation for compressible isentropic
flow in Appendix C, the variation of the static pressure p along a streamline is given by

pt = p

[
1+ γ−1

2

1

γ

ρ

p
V 2

] γ
γ−1 = constant (4.1)

Along the streamline which follows the surface of the wing section, the velocity lowers from the free
stream value ahead of the wing till zero at the stagnation point on the nose of the wing, where the
static pressure becomes equal to the free stream total pressure pt .
Following the streamline from the nose along the upper surface of the wing section, the velocity in-
creases and the local static pressure decreases. At some point the velocity reaches its highest value
and the static pressure its lowest value. Past this point the velocity decreases again and the local
static pressure comes back to the free stream static pressure. Similar variations of local velocity and
pressure occur along the lower surface. Owing to the difference between the amount of upper and
lower surface camber, and also because the wing section is at an angle of incidence, the velocity of
the air flowing over the upper surface is greater than the velocity along the lower surface. Conse-
quently, the pressure on the upper surface will be lower than that acting on the lower surface. As a
result, a resultant force is produced due to shape and angle of attack of the wing section. The sur-
face shear stress τ0 is the force per unit area acting tangentially on the surface of a body due to the
frictional effects between body and surrounding air flow. Fig. 4.2 illustrates the cause of the shear
stress, namely, the fact that the fluid particles adjacent to a solid boundary are brought to rest and
those close to it are slowed down markedly. This effect decays quickly across the flow so that always
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Figure 4.1 Pressure distribution over a wing section

Figure 4.2 Velocity profile across the boundary layer

there is a velocity gradient in the flow adjacent to the surface of the body. The layer in which the
velocity of the air particles increases from zero at the surface to the local velocity about the body is
normally very thin (thickness < 1cm).

The velocity differences between the laminae of air are fundamentally due to cohesion and interac-
tion between fluid particles. It allows motion only by sliding action between adjacent layers which
induces shear forces. The resultant effect of all these forces is the skin friction drag of the body. The
layer of air adhering to the surface in which friction is essential is indicated as the boundary layer.
As will be explained in Section 4.3, the concept of boundary layer flow is a useful tool for the un-
derstanding of drag characteristics. Point of departure thereby, is the idea that viscosity manifests
only in a restricted region and not throughout the main flow.

Hence the flow pattern around a body may be divided into two regions, that is, a thin boundary
layer in which friction is important, and a region beyond this in which the air behaves as a friction-
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less fluid.
Experimentally, it has been observed that the shear stress τ0 is given by the product of the slope of
the velocity profile at the surface and the coefficient of dynamic viscosity µ,

τ0 =
(

dV

dn

)
0
µ (4.2)

For the simple type of laminar flow where successive layers of air slide over one another in the form
of parallel layers, the coefficient µ is a physical property, approximately proportional to the square
root of the temperature, over the normal range of air temperatures (see Chapter 2). Clearly, for a
given µ, the velocity gradient at the surface is the deciding factor in the determination of the skin
friction drag.
From the preceding discussion we may expect that the aerodynamic force and moment are deter-
mined by the following quantities:

1. general shape of the airplane size of the airplane surface, S airplane condition

2. control surface deflections

3. attitude of the airplane relative to the free stream

4. airspeed,V

5. density of the air, ρ

6. coefficient of dynamic viscosity, µ.

To these variables should be added the speed of sound in air, c, which defines the free stream Mach
Number, M = V /c. As we will see later, the Mach number is a convenient parameter for indicat-
ing the importance of the compressibility of the air on the pressure distribution over the airplane
surface (see Section 4.3).
A working method to derive expressions for the aerodynamic force R and moment Mcg is the tech-
nique called dimensional analysis. This technique is based on the principle that in a physical equa-
tion the dimensions should be the same on both sides. Therefore, we state that the aerodynamic
force on the airplane depends on S, V ,ρ, c and µ,

R = f
(
S,V ,ρ,c,µ

)
(4.3)

Since R has dimensions of a force, the right side of Eq. 4.3 must also have dimensions of a force.
The only possibility to secure dimensional uniformity is writing the latter equation in the following
manner,

R = K
(
SaV bρd ceµ f

)
(4.4)

where a, b, d , e and f are unknown constants and K is a function of the remaining dimensionless
variables, which cannot be brought into Eq. 4.3. Then, in terms of mass [M ], length [L] and time
[T ], we have
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ML

T 2 = K
(
L2)a

(
L

T

)b (
M

L3

)d (
L

T

)e (
M

LT

) f

(4.5)

Clearly, the exponent of the mass on the left-hand side of Eq. 4.5 is 1, and on the right-hand side
d + f . Thus,

1 = d + f (4.6)

Similarly, for the length we get

1 = 2a +b −3d +e − f (4.7)

and for the time

−2 =−b −e − f (4.8)

The latter three equations contain five unknowns. Assuming that S, V and ρ are of primary signifi-
cance, we can solve the Eq. 4.6 to Eq. 4.8 for a, b and d in terms of e and f . We find

a = 1− f /2

b = 2−e − f

d = 1− f

(4.9)

Substitution of these exponents into Eq. 4.4 gives

R = K (S)1− f /2 (V )2−e− f (
ρ
)1− f ceµ f (4.10)

Grouping factors of particular exponents yields

R = KρV 2S
( c

V

)e
(

µ

ρV S1/2

) f

(4.11)

Since the dimension of S1/2 is correspondent to a length l , we may write

R = KρV 2S
( c

V

)e
(
µ

ρV l

) f

(4.12)

We note that the ratio V /c is the free stream Mach number. The quantity ρV l /µ, which is called the
Reynolds number (denoted by the symbol Re), indicates the relative importance of the shear and
inertia forces within the flow; the lower the value of Re the more relative important are the viscous
forces. Hence,

R = KρV 2S

(
1

M

)e (
1

Re

) f

(4.13)

For convenience we set

K

(
1

M

)e (
1

Re

) f

= CR

2
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Now we can write

R =CR
1

2
ρV 2S =CR qS (4.14)

Eq. 4.14 states that the aerodynamic force is determined by a coefficient CR times the dynamic
pressure 1

2ρV 2 = q times an area S.
For airplanes the convention is to use the area of the wing planform as the surface of reference.
This area is called wing area and is further explained in Section 4.2. Evidently, Eq. 4.14 represents
also the lift, drag and side force components of the aerodynamic force:

L =CL
1

2
ρV 2S

D =CD
1

2
ρV 2S

S =CS
1

2
ρV 2S

(4.15)

Here the coefficients CL , CD and CS are known as the coefficients of lift, drag and side force, respec-
tively. When the technique of dimensional analysis is applied to the moment Mcg, the following
expression easily is found,

Mcg =CM
1

2
ρV 2Sc (4.16)

where CM is the non-dimensional moment coefficient. According to universal practice, the length
factor c is taken equal to the mean aerodynamic chord of the wing (see Section 4.2).
The way in which the coefficients CL , CD , and CM are determined in aerodynamics is, of course,
beyond the scope of this text. At this place, suffice it to say that these coefficients strongly depend
on the precise shape of the airplane. And even for a given airplane, they are by no means constants,
but rather dependent on airplane condition, control surface deflections, Mach number, Reynolds
number, and attitude of each of the airplane components with respect to the local airflow.
The side force given in Eq. 4.15 occurs only when there is an angle of sideslip. However, sideslip-
ping flight is virtually always an unwanted flight condition. Therefore, so-called coordinated flight
conditions (β= 0) are of primary importance.

4.2. AIRFOIL AND WING CHARACTERISTICS
A cross-section of the wing parallel to the plane of symmetry of the airplane is called airfoil or wing
section, and is so shaped as to generate lift without excessive drag. Fig. 4.3 provides an impression
of the development of wing section shapes over the years. Of special significance is the supercritical
airfoil developed for use on the modern high-subsonic transports. This advanced wing section has
a flatter upper surface, a more convex underside, and an increased camber near the trailing edge.
The improved shape gives a more evenly distributed pressure over the surface, permitting the sec-
tion to be thicker without causing more drag at high-subsonic airspeeds than its predecessors. For
example, the GAW-2 airfoil was designed for application on the low-subsonic general aviation air-
planes. This airfoil type produces reduced drag coefficients and an increased maximum lift coef-
ficient. Fig. 4.4 gives the nomenclature in defining the shape of an airfoil. The mean camber line
determines the amount of curvature and is the line that is situated in
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Figure 4.3 Historical review of airfoil shapes

Figure 4.4 Airfoil geometry and nomenclature

the middle between upper and lower surfaces. The ends of the mean camber line are the leading
edge and the trailing edge points. The chord line is the straight line joining the two ends of the mean
camber line. The chord is the distance between leading edge and trailing edge points, measured
along the chord line. The angle between the free stream direction and the chord line is the angle of
attack α.
The two-dimensional lift, drag and moment coefficients are, according to Eq. 4.15 and Eq. 4.16,

cl =
l

1
2ρV 2c

(4.17)

cd = d
1
2ρV 2c

(4.18)

cm = m
1
2ρV 2c

(4.19)

where l , d and m are the Lift, drag and pitching moment of the aerodynamic force per unit width
of the wing, respectively (Fig. 4.5). The moment m is usually specified in reference to the quarter-
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Figure 4.5 Aerodynamic force and moment on airfoil

chord point. At low velocities, this point is very close to the aerodynamic center of the airfoil. The
latter point is the point about which the pitching moment for a given free stream velocity is essen-
tially independent of the angle of attack. Characteristic curves are sketched in Fig. 4.6, showing the
variations of lift, drag and moment coefficients with angle of attack.
Apparently, up to a large angle of attack, the cl versusα curve may be represented by a straight line.
Notice also that the moment coefficients have negative values. As the angle of attack is increased
up to the stall point, cl max is reached. Beyond this critical angle of attack, the airflow separates
from the upper surface, with the result that the lift coefficient is strongly reduced. Computational
methods have been developed for the determination of the coefficients c, cd and cm . Also, a large
amount of experimental airfoil data from wind tunnel tests is available in literature (see Ref. 6).
Fig. 4.7 shows the most important parameters specifying the geometry of an airplane wing. The
wing span b is the length in Y -direction between the wing tips. The wing area S, is the area of the
wing projected onto the X Y plane, and may be written as

S =
∫ b/2

−b/2
c
(
y
)

dy (4.20)

where c is the chord length, which often varies with the Y -coordinate. The ratio ct /cr is named the
taper ratio. As illustrated in Fig. 4.8, the wing area, arbitrarily, comprises also the central part of the
wing covered by the fuselage.
The mean geometric chord, cmg, is the arithmetic mean of the chord lengths:

cmg = S

b
(4.21)

The ratio of the wing span to the mean geometric chord is known as the aspect ratio and given the
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Figure 4.6 Typical cl −α,cd −α,cm −α curves for cambered airfoil

Figure 4.7 Wing geometry Figure 4.8 Wing area
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Figure 4.9 Finite wing flow

symbol A:

A = b

cmg
= b2

S
(4.22)

A wing parameter of importance in quantifying the moment coefficient is the mean aerodynamic
chord c, which is defined as

c = 1

S

∫ b/2

−b/2
c2 (

y
)

dy (4.23)

As with wing area S, we usually specify c(y) over the part of the wing occupied by the fuselage by
extending the leading and trailing edges to the plane of symmetry of the airplane. Geometric twist
ϵ, is the variation in direction of a section chord line relative to the direction of the chord line at the
root section of the wing. We may modify the span-wise distribution of lift by twisting the wing to
give a desired angle-of-attack variation along the span.
The dihedral angle Γ is the angle between the quarter-chord line and its projection on the X Y
plane. Dihedral is applied as a means to improve lateral stability. The last term denotes the ability
of the airplane to restore to its original attitude after an unwanted displacement about the Xb axis,
without pilot assistance.
We end our enumeration of wing geometrical parameters with the sweep angle Λ, which may be
represented by the angle between the Y axis and the projection of the wing leading edge onto the
X Y plane. Sweeping the wing is an important measure to reduce the magnitude of the free stream
velocity normal to the leading edge, which component determines the velocity and pressure distri-
butions over the wing sections.
Next we have to consider the influence of the finite width of the wing on lift and drag coefficients,
when using two-dimensional airfoil data. Since the pressure on the bottom surface is greater than
that on the top surface, there will arise a circular motion of air around the wing tips, and conse-
quently, a reduced lift coefficient at a given angle of attack (Fig. 4.9). In exchange for this loss of
lift, we get from the span-wise inflow above the wing and the outflow below the wing, two discrete
wing tip vortices in the flow downstream of the wing. A theoretical analysis yields the following
approximate formula for the value of the wing lift curve slope at subsonic velocities (Ref. 7):
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Figure 4.10 Wing lift coefficient as a function of angle of attack

dCL

dα
= 2π

2
A +

√( 2
A

)2 + 1
cos2Λ

−M 2
(4.24)

Now we can examine the example where we want to achieve the same lift coefficient from a wing
placed in a three-dimensional flow as predicted by the aerodynamic properties of the composing
wing sections.
From Fig. 4.10, we see that this is obtained by increasing the angle of attack of the wing in the
actual three-dimensional flow by a small value ∆α over that for the wing in two-dimensional flow.
The latter flow condition is the same as would prevail for a wing of infinite span. In terms of drag,
the effect of the increased angle of attack is expressed as follows; the drag coefficient for the wing in
the three-dimensional flow is equal to the two-dimensional drag coefficient CDp plus the induced
drag coefficient CDi :

CD =CDp +CDi (4.25)

The coefficient CDp in Eq. 4.25 is called the profile drag coefficient (due to pressure drag and skin
friction drag in the two-dimensional situation at the given lift coefficient CL).
In order to raise the maximum lift coefficient CLmax during takeoff and landing, aerodynamic de-
vices are affixed to the wing. The most usual devices to facilitate takeoff and landing are trailing-
edge flaps, which may also extend the wing area. In particular, the increase in CLmax is obtained
by a change in airfoil shape and/or by increased camber. The effects of the use of flaps is indicated
in Fig. 4.11, where it is shown that the lift coefficients are increased over the whole range of angles
of attack, and that the critical angle of attack may be slightly decreased from that of the wing with
flaps up. Flaps also increase the wing drag.
Therefore, full flap deflection is applied to decelerate the airplane during the landing maneuver.
The different types of trailing-edge flaps are shown in Fig. 4.12. The maximum lift coefficient may
also be increased by use of a slot formed by an auxiliary device called slat, which is placed in front
of the wing leading edge. The air flowing through the slot is accelerated, through which flow sep-
aration is delayed and so increasing the critical angle of attack and the maximum lift coefficient.
The effect of the presence of a slot on the lift coefficient is illustrated in Fig. 4.13. Notice that a slot
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Figure 4.11 Effect of flap deflection on lift curve

Figure 4.12 Types of wing flaps

Figure 4.13 Effect of a slot on wing lift curve

extends CLmax without any shift of the lift curve. Detrimental to the view from the flight deck is the
higher stall angle required.

4.3. THE LIFT-DRAG POLAR
Fig. 4.14 shows the lift and drag coefficients as a function of angle of attack for a low-subsonic
airplane in clean configuration (fixed landing gear). Note that these curves have essentially the
same form as for a wing section. At an angle of attack of about 16 deg , separation of the flow from
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Figure 4.14 Aerodynamic characteristics of a low-subsonic
airplane (estimated)

Figure 4.15 Lift-drag polar for a low subsonic airplane (es-
timated)

the wing begins, which leads to a substantial loss of lift and increase in airplane drag. Therefore,
the airplane can only fly at an angle of attack below αcrit. By elimination of α from the relations
CL = f (α) and CD = f (α), the lift-drag polar is obtained,

CD = f (CL) (4.26)

The lift-drag polar which results from Fig. 4.14 is given in Fig. 4.15. In addition, the lift-drag polar is
also plotted for the airplane with wing flaps down. Due to the deflection of the flaps, the maximum
lift-coefficient is increased considerably. Using Eq. 4.26 we should remember that a lift-drag polar
is only of significance if the following parameters are known:

1. actual shape of the airplane (control surface deflections and airplane condition)

2. Reynolds number

3. flight Mach number.

In most performance calculations, it turns out that drag increments due to control surface deflec-
tions are negligible. Therefore, throughout this text the effects of these trim forces on the lift-drag
polar will be omitted. Concerning the airplane condition, typical configurations may be distin-
guished to be present in the various flight phases encountered by the airplane. This means that
lift-drag polars will be used that are representative for the condition of the airplane during particu-
lar flight phases, such as:
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Figure 4.16 Typical lift-drag polars for propeller-driven transport airplane (estimated)

1. takeoff (flaps partly deflected and landing gear down)

2. cruise (flaps and landing gear retracted)

3. landing (flaps fully deflected and landing gear down).

From the remarks made above, it is evident that any presentation of a lift-drag polar should be
accompanied by a record of the several associated conditions on which the curve depends. The
lift-drag polars of a transport airplane with retractable landing gear, as given in Fig. 4.16, show that
in addition to the increase of drag coefficient due to flap deflection, also the landing gear furnishes
a considerable contribution to the total drag of the airplane.
As has previously been noted, the viscous effects in the flow manifest in the presence of a bound-
ary layer. The Reynolds number has an important effect on the boundary layer. At low Reynolds
numbers the flow in the boundary layer is laminar, i.e. streamline (see Fig. 4.2). At high Reynolds
numbers, mostly turbulent flow prevails. In turbulent flow there are oscillations of air particles
across the boundary layer, by which there is an exchange of kinetic energy among the laminae and
a transfer of energy from the free stream to the boundary layer.Fig. 4.17 shows the velocity profiles
across the boundary layer for both laminar and turbulent flow. Assuming the same flow conditions,
the turbulent boundary layer is thicker than the laminar boundary layer.
Another important difference is that, near the surface, the velocity gradient of the turbulent layer
is much greater than that of the laminar boundary layer. Then, Eq. 4.2 tells us that transition to
turbulence must result in an increase in skin friction drag. Referenced to the wing chord, as char-
acteristic linear measure, airplanes experience Reynolds numbers of 5× 106 to 108 or higher. At
these typical high Reynolds numbers, turbulent flow is present over a very large portion, let’s say,
90% of the wing chord.
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Figure 4.17 Typical laminar and turbulent boundary layer velocity profiles

Figure 4.18 Development of the boundary layer over the wing

The development of the boundary layer over the upper surface of a wing is sketched in Fig. 4.18.
Over the front portion, near the leading edge, there is always a laminar boundary layer. The thick-
ness of this layer increases when the flow moves from the nose of the wing. Then very soon after
the point for minimum local air pressure, transition to turbulence occurs which is accompanied by
a drastic thickening of the boundary layer. The turbulent boundary layer goes on to grow in thick-
ness with increasing downstream distance. When moving over the rear portion of the wing surface,
the air particles must press against both the viscous forces and the increasing local pressures. At a
certain point the flow collapses and a wake emanates from the flow separation.

At lower angles of attack, separation occurs generally close to the trailing edge. As the angle of attack
is increased, the boundary layer thickness increases, the separation point shifts forward, and the
drag coefficient builds up. Finally a complete break-away of the flow occurs, which sets an upper
limit to the lift coefficient.

As the Reynolds number increases, the boundary layer becomes turbulent further upstream. At the
same time, separation is delayed, resulting in a smaller wake. The size of the wake is a measure of
the drag caused by the separation. The smaller the wake, the smaller the pressure drag component,
and hence, the smaller the total drag coefficient. On the other hand, the maximum lift coefficient
that can be obtained increases slightly with increasing Reynolds number.

At this point it is worth noting that in order to detect an approaching stall of an airplane, there
must be an adequate stall warning, with flaps and landing gear in any normal position, in straight



4.3. THE LIFT-DRAG POLAR

4

87

and turning flight. The warning may be furnished either through the inherent behavior of the air-
plane or by an artificial stall warning device. The latter system generally consists of a pressure vent
near the leading edge of the wing, located so that just prior to the stall point the stagnation pres-
sure crosses the aperture and the pressure there varies quickly in consequence. This large pressure
change is used to produce an acoustic signal or warning light to advise the pilot that the angle of
attack is near the stall angle. The stall warning begins at a speed exceeding the stalling speed and
continues until stall occurs.
The stall angle may also be determined by a small vane on the side of the fuselage near the nose.
The vane can rotate freely so that it is aligned to the flight path, whereby the vane angle is converted
into an electrical signal that is transmitted to an indicator in the cockpit.
Returning to the preceding discussion on the Reynolds number, we can summarize its effects as
follows:

1. For a given condition of the wing (roughness of the surface) and shape of the wing sections
(pressure distribution over the surface), the value of the Reynolds number determines the
location of both the transition and the separation point.

2. With increasing Reynolds number, the transition point moves forward and the separation
point moves backward over the wing. As a result, the general trends are a somewhat higher
value of maximum lift coefficient and a lower profile drag coefficient when the Reynolds
number becomes greater.

Concerning the variations of maximum lift coefficient and profile drag coefficient, it is important
to note that these coefficients vary merely at a very small rate within the normal ranges of Reynolds
numbers encountered in the various flight phases. This observation implies that, usually, it will be
sufficient to consider in each flight phase a mean value of the Reynolds number.
Let us now look at the effects of flight Mach number on the lift-drag polar. For that we consider
the pressure disturbances in the air produced by an airplane (Fig. 4.19). When the airplane is flying
at a low airspeed, the air in front of the airplane is subjected to these disturbances amply before
the airplane appears so that the air will flow smoothly about the airplane. This situation may be
illustrated by Fig. 4.19a, where for convenience the airplane is represented by a point source with
zero dimensions. The circles indicate the locations of the pressure disturbances which have been
created by the source at certain moments and are transmitted at the speed of sound. Obviously, the
disturbances are closer together in the direction of motion.
As the airspeed comes to the speed of sound, the pressure disturbances are confined to a smaller
area ahead of the source, and the time between the arrival of the disturbances and the appearance
of the source diminishes. This means that some adjustment must take place in a very short time
(Fig. 4.19b).
As the airspeed equals the speed of sound, the pressure disturbances and the source move at the
same speed (Fig. 4.19c). Now, the disturbances form a so-called Mach wave, which is the limiting
case of an infinitely weak shock wave. Ahead of a source with finite dimensions, such as an airplane,
a normal shock wave occurs (Fig. 4.19d). According to Appendix C, a shock wave is an almost sud-
den increase in pressure, temperature and density, and a decrease in velocity and total pressure.
As a result, there is a change in pressure distribution over the surface from that experienced at low
airspeeds, and hence, there is a change in the aerodynamic coefficients of the airplane. In Fig. 4.19e
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Figure 4.19 Pressure perturbations from a moving source

we see the condition in which the speed of the point source exceeds the speed of sound. Now, the
Mach wave is the line tangent to all the circles of disturbances. From Fig. 4.19e we obtain

µ= sin−1
[ c

V

]
= sin−1

[
1

M

]
(4.27)

where the angle µ is the Mach angle, being the angle the Mach wave makes with the direction of the
flight velocity. As shown in Fig. 4.19f, at the nose of a high-speed airplane, an oblique shock wave is
produced, which is inclined at an angle, β>µ (see Appendix C).
In Fig. 4.20 the various flight regimes are classified in terms of Mach number. For Mach numbers
smaller than approx. 0.5, we have low-subsonic flow, where in aerodynamics the air is treated as
though it is incompressible (constant air density). For Mach numbers between 0.5 and 0.8, say, we
have high-subsonic flow, where the compressibility of the air cannot be ignored. Transonic flow
concerns the speed regime in which the flow pattern changes from subsonic to supersonic. This
regime covers the Mach numbers between 0.8 and 1.2 approximately. For Mach numbers greater
than 1.2, we have supersonic flow, where compressibility effects are of paramount importance.
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Figure 4.20 Fields of aerodynamics

Now the velocity of the main flow about the airplane in every place exceeds the speed of sound
and oblique shock waves occur.
For Mach numbers exceeding 5, we speak about hypersonic flow. Owing to the high temperatures
developed around the nose of a body in a hypersonic flow, dissociation and ionization processes
occur, causing that the assumption of a perfect gas is no longer valid.
Fig. 4.21 illustrates the development of shock waves about an airfoil. Up to a flight Mach number
of about M = 0.5 the flow is subsonic everywhere (Fig. 4.21a). Since the local Mach number M∗
will be higher than the flight Mach number, a particular flight Mach number comes about at which
locally sonic flow first occurs on the surface (Fig. 4.21b). The corresponding flight Mach number is
termed the critical Mach number, Mcrit.
As the flight Mach number increases further, regions of supersonic flow come forth, which end
through the occurrence of normal shock waves (Fig. 4.21c and Fig. 4.21d).
The normal shock on the upper surface in Fig. 4.21d produces an increased static pressure behind
the wave. Usually, the boundary layer is unable to withstand the large pressure rise across the wave.
Then, separation of the boundary layer flow occurs, which causes an increase in wake thickness and
so in section drag and a reduction of the maximum lift coefficient. This type of separation is known
as shock induced boundary layer separation.
Fig. 4.21e shows the flow pattern at a flight Mach number close to M = 1, where large regions are
supersonic. At supersonic airspeeds, finally, an oblique shock wave is present around the nose and
at the trailing edge of the airfoil (Fig. 4.21f).
The actual variation of the drag coefficient at constant-lift coefficient versus Mach number for a
supersonic airplane is illustrated by the curves in Fig. 4.22a. The corresponding lift-drag polars
are plotted in Fig. 4.22b. The curves show that up to a Mach number of about 0.9, the lift-drag
polar remains fairly the same. The slight decrease in drag coefficient at constant lift coefficient in
Fig. 4.22a is caused by the circumstance that the effect of an increasing Mach number is to increase
the slope of the CL −α curve (Fig. 4.23). Note also that, on the other hand, an increasing Mach
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Figure 4.21 Shock wave formation about an airfoil

Figure 4.22 Aerodynamic properties of a supersonic airplane

number leads to a lower CL maxvalue.
The extra drag at transonic and supersonic flight Mach numbers in Fig. 4.22, is called wave drag
and results from the formation of shock waves. The shock waves convert a substantial part of the
free stream kinetic energy into heat, which results in airplane drag. In addition, the interaction
between shock wave and boundary layer at high-subsonic and transonic speeds creates a further
increase in the drag coefficients. The flight Mach number at which the drag coefficient at constant
lift coefficient begins to rise sharply, is named the drag-divergence Mach number, Md (Md > Mcrit).
An effective means of increasing the drag-divergence Mach number of high-subsonic airplanes is
the use of supercritical airfoils. Another adequate means is the application of wing sweep (Fig. 4.24),
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Figure 4.23 Effect of Increasing flight Mach number

which also delays the shock formation on the wing surface. As was mentioned earlier, this behavior
is due to the fact that the velocity and pressure distribution around the wing sections is a function of
the velocity perpendicular to the leading edge. From Fig. 4.24a it can be seen that, for a swept wing,
the operative Mach number normal to the front edge of the wing, Mn , is related to the airspeed by

Mn = Vn

c
= V

c
cosΛ (4.28)

Hence, sweeping the wings of high-subsonic airplanes will, in principle, increase the critical Mach
numbers by a factor 1/cosΛ.
The wave drag occurring in transonic and supersonic flight lessens markedly with the slenderness
of the body. In consequence, supersonic airplanes show a slender fuselage and low aspect ratio
wings with thin airfoils.

Figure 4.24 Effect of speed on the shape of an airplane
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Figure 4.25 Excess lift due to delta-wing vortex flow from leading edges

The combination of a large sweep angle and a reduced aspect ratio may then result in a slender
delta wing. Pitch and roll control may be provided by elevons on the trailing edges of the delta wing
(Fig. 4.24b). Elevons work together as elevators and differentially as ailerons.
If the wing fits within the shock wave cone from the fuselage nose, as shown in Fig. 4.24b, the
operative velocity at the wing leading edges is subsonic, which condition furnishes less wave drag.
At low speeds and high angles of attack, the delta wing reveals a special flow condition as shown in
Fig. 4.25. Because of the sharp leading edge and the large sweep angle, the flow over the delta wing
forms leading edge vortices. The formation of these vortices create a high-lift effect and obviate
total flow separation. As a result, a delta wing shows a very large stall angle.

4.4. PARABOLIC LIFT-DRAG POLAR
The total drag of an airplane may be divided into the drag of the wing Dw and the sum of the
component drags Dn ,

D = Dw +Dn (4.29)

Referring to Eq. 4.25, we can write the wing drag as the sum of the induced drag Di and the profile
drag Dp . With this, Eq. 4.29 becomes

D = Di +Dp +Dn (4.30)

The nature of the induced drag (or drag due to lift), has already been discussed in Section 4.2. The
profile drag consists of pressure drag, skin friction drag and wave drag. The wave drag is zero for
subsonic airspeeds below the critical Mach number. Pressure drag, skin friction drag and wave
drag together, form also the drag of the airplane components. Since the drag coefficient of each
component part, CD n, is based on a certain area Sn as the reference area, the total airplane drag is
given by

CD
1

2
ρV 2S =CDi

1

2
ρV 2S +CDp

1

2
ρV 2S + (ΣCDnSn)

1

2
ρV 2 (4.31)

Accordingly, the drag coefficient of an airplane is (see Fig. 4.26)

CD =CDi
1

2
+CDp + ΣCDnSn

S
(4.32)
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Figure 4.26 Components of drag coefficient

where the quantity ΣCDn Sn
S is called the parasite drag coefficient. Theoretical aerodynamics predicts

that the induced drag coefficient is directly proportional to the square of the lift coefficient CL , and
inversely proportional to the

CDi =
C 2

L

πAφ
(4.33)

The factor φ depends primarily on the wing planform since it indicates how close the elliptic span-
wise lift distribution is obtained. For an elliptic lift distribution
φ= 1 (minimum induced drag coefficient). In all other cases φwill be less than one. Thus, the drag
coefficient of the airplane is

CD = C 2
L

πAφ
+CDp + ΣCDnSn

S
(4.34)

Since also the profile drag and parasite drag coefficients are dependent on the angle of attack,
Eq. 4.34 may be written as

CD = C 2
L

πAφ
+XC 2

L +
[

CDp + ΣCDnSn

S

]
CL=0

(4.35)

The term XC 2
L represents the assumed parabolic change of the profile and parasite drag coefficients

with lift coefficient. The quantity in parentheses is termed zero-lift drag coefficient and given the
symbol CD0.
Then, Eq. 4.35 can be transformed into
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Figure 4.27 Parabolic approximation of lift-drag polar of low-subsonic airplane

CD =CD0 +
C 2

L

πAe
(4.36)

where the factor e follows from

1

e
= XπA+ 1

φ
(4.37)

and is called the Oswald’s efficiency factor. Apparently, this factor accounts for the variation of the
profile and parasite drag coefficients with lift coefficient, and the effect of the actual span-wise lift
distribution on induced drag coefficient. For most airplane types the value of e varies between 0.6
and 0.9. Sometimes, Eq. 4.37 is expressed in the form

CD =CD0 +kC 2
L (4.38)

where K = 1/(πAe) is called the induced drag factor.
In Fig. 4.27, the drag coefficient of Fig. 4.15 is plotted against C 2

L . The deviation from the parabolic
form is represented by the divergence from the straight (dotted) line. We see that a considerable
part of the lift-drag polar is indeed a parabola, but there is some extra drag at lift coefficients beyond
about 1.0.
The parabolic lift-drag polar can be used not only at subsonic speeds, but also at both transonic
and supersonic airspeeds, if in Eq. 4.38 the values of
CDo and k are adjusted appropriately. Anticipating later discussions, it may here be noted that in
many respects the performance of airplanes are determined by the following aerodynamic ratios:
CL/CD , C 3

L/C 2
D and CL/C 2

D . In particular the maximum values of these ratios are of importance.
For maximum CL/CD , we differentiate this ratio with respect to CL and set the first derivative equal
to zero, i.e.
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d(CL/CD )

dCL
=

CD −CL
dCD
dCL

C 2
D

= 0

Since CD ̸= 0, we have the condition

dCD

dCL
= CD

CL
(4.39)

Using the parabolic lift-drag polar, Eq. 4.36, we obtain

2CL

πAe
= CD0 +C 2

L/πAe

CL
or CL =

√
CD0πAe (4.40)

Substitution of the latter result into Eq. 4.36 yields (see Fig. 4.28)

CD = 2CD0 and (4.41)

(
CL

CD

)
max

=
p

CD0πAe

2CD0
= 1

2

√
πAe

CD0
(4.42)

For maximum C 3
L/C 2

D in like manner, differentiation furnishes the general condition

dCD

dCL
= 3

2

CD

CL
(4.43)

Making use of the parabolic lift-drag polar gives

2CL

πAe
= 3

2

[
CD0 +C 2

L/(πAe)

CL

]
or

CL =
√

3CD0πAe (4.44)

Substitution of Eq. 4.44 into Eq. 4.36 yields

CD = 4CD0 (4.45)

and (
C 3

L

C 2
D

)
max

= 3CD0πAe
p

3CD0πAe

16C 2
D0

= 3
p

3

16
πAe

√
πAe

CD0
(4.46)

Similarly, for maximizing CL/C 2
D setting

d
(
CL /C 2

D

)
dCL

= 0 yields the condition

dCD

dCL
= 1

2

CD

CL
(4.47)

Then in case of a parabolic lift-drag polar, we find
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Figure 4.28 Maximum value of CL /CD Figure 4.29 Maximum lift-to-drag ratios

CL =
√

1

3
CD0πAe (4.48)

CD = 4

3
CD0 (4.49)

and

(
CL

C 2
D

)
max

=
√

1
3CD0πAe

16
9 C 2

D0

= 3
p

3

16

√
πAe

C 3
D0

(4.50)

We end this subject by remarking that, especially, the maximum lift-to-drag ratio, (CL/CD )max , is
a significant aerodynamic quantity of an airplane. The order of magnitude curves of this ratio are
depicted for transport airplanes in Fig. 4.29.
The curve of Fig. 4.29 shows that the attainable value of (CL/CD )max is about 16 at subsonic veloc-
ities. The maximum lift-to-drag ratio falls off abruptly in the transonic region and approaches to a
value of approximately 7.5 in the supersonic region.

4.5. PROBLEMS
1. A general aviation airplane flies at 1000 m pressure altitude and Mach 0.2. Incompressible

flow conditions may be assumed. Calculate the total pressure at the stagnation point of the
wing of this airplane.

2. List at least five quantities that determine the aerodynamic force and moment of an airplane.
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3. Consider a commercial airplane operating at some representative cruise conditions (pres-
sure altitude 11000 m and Mach 0.85) and a scale model of this airplane in a wind tunnel at
sea level conditions. The wind tunnel has a maximum airspeed of 100 m/s. Is the following
statement true or false? In comparison to the real airplane, the relative importance of the
viscous forces compared to inertia forces is smaller for the scale model in the wind tunnel.

4. In the figure below, the lift curve of an airplane is given as a function of angle of attack. As-
sume that this airplane is flying at 5000 m with an airspeed V of 200 m/s. The air density ρ
at this altitude is equal to 0.7361 kg/m3. The aircraft has wing surface area S of 35.5 m2 and
a weight W of 450 kN. To perform a flight at constant speed and altitude, the lift must bal-
ance the airplane weight. Calculate the required lift coefficient and the corresponding angle
of attack.

5. The aircraft described in question 4 continues to fly at this specific airspeed and altitude.
Over time, the weight reduces by 50 kN because fuel is burnt. Calculate the lift coefficient
and corresponding angle of attack for the new situation.

6. For the airplane described in the previous questions, estimate the maximum lift coefficient.

7. An aircraft wing has a root chord cr of 3 m, a tip chord ct of 2 m, a sweep angle Λ of 30 deg, a
dihedral Γ of 5 deg and a span b of 20 m. Calculate the wing area S, the aspect ratio A and the
mean aerodynamic chord.

8. Why does a wing generate wing tip vortices when generating lift?

(a) Because of the engine accelerating the air.
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(b) Because of the pressure difference between the upper and the lower surface, together
with the fact that the wing is infinite.

(c) Because of the pressure difference between the upper and the lower surface, together
with the fact that the wing is finite.

(d) Because the air has to move out of the way of the aircraft.

9. Based on the calculated aspect ratios in the previous question, which aircraft do you expect
to have the largest induced drag coefficient?

10. Consider a large commercial airplane and a glider. Assume the commercial airplane has a
wing span b of 70 m and a wing area S of 550 m2, and that the glider has a wing span b of 18 m
and a wing area S of 11.8 m2. What are the corresponding aspect ratios for these aircraft?

11. Estimate the lift curve slope dCL
dα of the wing defined in question 4 when operating at Mach

0.6.

12. What is the main function of a trailing edge flap?

13. List at least three types of trailing edge flaps.

14. Is the following statement true or false? A laminar boundary layer is present at a large portion
of the wing chord of large commercial airplanes.

15. Indicate a typical Mach number for each of the following flight regimes: low subsonic, high
subsonic, transonic and supersonic.

16. Define the critical Mach number Mc and the drag-divergence Mach number Md .

17. The aerodynamic characteristics of a low subsonic airplane can be accurately represented
with a parabolic lift-drag polar. The airplane has a zero-lift drag coefficient CD0 of 0.04, an
aspect ratio A of 10 and an Oswald efficiency factor e of 0.8. Calculate the maximum lift to

drag ratio
(

CL
CD

)
max

and the lift coefficient at which this maximum ratio is achieved.



5
AIR DATA INSTRUMENTS

5.1. INTRODUCTION
The instrument panel in the cockpit may consist of a large number of indicators, which provide
essential data on the flight condition and the orientation of the airplane relative to the Earth. Like-
wise, these readings present to the pilot complex information for control and guidance of the air-
plane. Generally, the various instruments and flight systems can be divided into four categories,
namely:

• Air data instruments, which include the altimeter, the vertical-speed indicator, the airspeed
indicator, the Machmeter, and the air thermometer.

• Engine instruments, like tachometers (engine-speed indicators), temperature and pressure
gauges, and fuel-flow meters.

• Blind flying instruments, under which fall for example the turn and slip indicator, the direc-
tion indicator, and the artificial horizon.

• Avionics systems, such as applied for communication, navigation, flight control, and flight
management.

In the light of the aim of this course book, however, only the air data instruments are inside the
scope of our inquiry. This means that the principles of the engine instruments and the gyroscopic
devices of the third category, will not be discussed here. Also, for any explanation of the avionics
systems, the interested reader is referred to the literature dealing with these special topics.

5.2. THE ALTIMETER
The altimeter indicates the vertical distance of the airplane above ground level. As shown schemat-
ically in Fig. 5.1, the instrument is simply a pressure measuring device since it is actuated by the
static pressure of the atmosphere.

99
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Figure 5.1 Principle of altimeter

Essentially, the altimeter is made up of an air-tight case, where a differential pressure capsule is
placed. The capsule is made up of two diaphragms which are connected and sealed at their edges
to form a hollow room.
The instrument chamber is connected to a static pressure tapping on the airplane so that the inte-
rior of the case is at the ambient air pressure. The diaphragm unit is evacuated, with the result that
it will expand when the air pressure decreases. A linkage structure conveys the displacement of the
capsule to the indicator pointer.
To provide an indication of height instead of pressure, the scale is calibrated according to the
pressure-height relationship in the International Standard Atmosphere (I.S.A.). Then, for use in the
troposphere, the calibration equation in terms of geopotential pressure height is (see Section 2.4)

Hp =
[(

p

p0

)− Rλ
g0 −1

]
T0

λ
(5.1)

where the pressure at sea level p0 = 101325N/m2, the temperature at sea level T0 = 288.15K, the gas
constant R = 287.05J/(kg·K), the temperature gradient λ=−0.0065K/m, the acceleration of gravity
at sea level g0 = 9.80665m/s2.
Naturally, in the stratosphere and mesosphere calibration equations different from Eq. 5.1 must be
used. For example, an altimeter which is to be used up to an altitude of 20km will have to be cali-
brated according to Eq. 5.1 up to 11000m and thereafter will have to use the following calibration
equation, where the subscript “s” denotes tropopause (Hs = 11000m).

Hp = Hs − RTs

g0
ln

p

ps
(5.2)

Noteworthy is the fact that, although in the International Standard Atmosphere height is defined
in terms of meter, the altimeter scale almost always uses the foot as a measure of altitude. On
the other hand, horizontal length such as range of vision and takeoff and landing distances are
normally expressed in SI-units (meter or km).
As we have pointed out already in Chapter 2, the pressure occurring at the geopotential pressure
height Hp , as measured by the altimeter in any atmosphere is equal to the pressure at the same
geopotential height H in the International Standard Atmosphere. It will be clear that when the at-
mospheric conditions depart from the values assumed in the International Standard Atmosphere
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Figure 5.2 Definition of altimeter settings

an altimeter is in error, that is, the geopotential pressure altitude differs from the actual geopoten-
tial height.
Thus, the quantity geopotential pressure height provides the actual air pressure but furnishes only
an approximation of the geometric or true height above the ground.
The greatest error is caused by the influence of the sea-level pressure p0. In order to correct the
altimeter reading for the occurring pressure at ground level, the altimeter is provided with a sub-
sidiary scale. Now the datum pressure at which the altimeter will read zero altitude can be set on
this subscale. This may be accomplished by means of a manually operated adjustment knob on the
instrument (Fig. 5.1). The adjustment knob can be turned until the altimeter reads the elevation of
the airport above mean sea level (MSL) or zero height at the airport level.
Three settings of the datum pressure on the subscale can be distinguished, which are designated
by the following codes (Fig. 5.2):

QNE Setting the standard sea-level pressure of 101325N/m2.

QNH Pressure setting such that the altimeter reads altitude above mean sea level at the airport
level.

QFE Pressure setting such that the altimeter reads zero height at the airport level.

The QNH and QFE settings are applied for takeoff and landing maneuvers and for low-level flights
at or below transition altitude. Due to variations in weather conditions, airplanes originating from
different airports may have a significantly different pressure setting after take-off. The QNE setting
is therefore used for normal flight operations above a prescribed transition altitude. Then the al-
timeter is a pressure measuring apparatus and a means to reliably secure the vertical separation of
airplanes, hence ensuring safety.
It will be clear from the foregoing that the vertical position of an airplane during climb after takeoff
is expressed in terms of altitude (ft) until it arrives at the transition altitude above which the vertical
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Figure 5.3 Static probe and pressure distribution (subsonic speed)

position is given in terms of pressure level, usually called flight level (FL). For example, FL100 means
that the altimeter indicates a geopotential pressure height of 10000 ft.
Likewise, on approach the vertical position is given in terms of flight level until the airplane reaches
the transition level below which the vertical position is expressed again in terms of altitude.
The reading of the altimeter may also be subject to inaccuracies in the instrument itself. Permissi-
ble limits of this instrumental error are maintained by a current calibration procedure.
The free stream static pressure which is fed to the altimeter is measured by means of a static pres-
sure probe, or alternatively by a set of static vents in the side of the fuselage of the airplane. The
probe is directed forward and may be mounted on the forebody, wing, or vertical tail.
Fig. 5.3 shows the static probe and the pressure distribution along the streamlines following the sur-
face of the probe. According to Appendix C, the variation of the static pressure along a streamline
may be described by Bernoulli’s equation for compressible isentropic flow,

pt = p

[
1+ γ−1

2γ

ρ

p
V 2

] γ
γ−1 = const (5.3)

where pt is the total pressure and p, ρ and V are the local values of static pressure, air density, and
flow velocity, respectively.
From Fig. 5.3, we see that ahead of the probe the local static pressure equals the free stream static
pressure. There, the local velocity is equal to the free stream velocity. Approaching the nose of the
probe the velocity decreases and the static pressure increases. At the stagnation point the velocity
is zero and the local static pressure equals the total pressure.
Moving from the nose along the surface of the probe, the velocity increases again and the local
static pressure decreases. At some point behind the nose of the probe the velocity and pressure
return to their free stream values. At that point there are static holes which are connected with the
altimeter.
The pressure at the instrument and at the measurement point may be different due to system lag
during alterations of height or speed. Moreover, the presence of the airplane and/or the positioning
of the probe in the pressure field may cause a local pressure at the measurement point which differs
from the free stream value. To avoid or minimize this so-called position error, the free stream static
pressure must be measured outside the pressure field of the airplane.
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Figure 5.4 Trailing static tube

Figure 5.5 Trailing static cone

When executing flight-test work, a usual way of obtaining the proper static pressure is to trail a
static tube at some distance below the airplane (Fig. 5.4). Since this device is limited to a maximum
airspeed of approximately 450km/h, as an alternative, a static cone can be trailed behind the air-
plane (Fig. 5.5). Position error is dependent on altitude and airspeed so that it differs all through the
entire operating range of the airplane. Therefore, a convenient method of measurement of position
error corrections is to fly in formation with a reference airplane having a well-calibrated static sys-
tem. Then immediate comparison of the indicated altitude can be made between the two altimeter
readings.
For a detailed discussion on the determination of error corrections, the reader is referred to Ref. 8.

5.3. THE VERTICAL-SPEED INDICATOR
The vertical-speed indicator displays whether the airplane is continuing level flight, or measures
the rate of climb or descent.
As sketched in Fig. 5.6, in the vertical-speed indicator the static pressure source is connected di-
rectly to the diaphragm capsule and to the instrument chamber via a capillary tube.
When level flight is maintained, the pressure inside the capsule equals the pressure in the casing
and the instrument reading is zero.
During climb or descent, the pressure led into the instrument changes continuously. However,
the capillary tube controls the rate of air flow into or out of the instrument chamber and so the
pressure surrounding the capsule. Due to the restrained choke, the pressure change in the instru-
ment chamber is delayed relative to the pressure in the diaphragm capsule. In other words, the
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Figure 5.6 Principle of vertical-speed indicator

diaphragm unit contracts or expands in terms of a rate of change of pressure. This deflection of the
capsule is calibrated to yield an indication of vertical speed.
For test work, almost always, use is made of the altimeter reading to establish the rate of climb or
descent by measuring the time interval ∆t to cover a certain vertical distance ∆H .
In the absence of vertical wind, the rate of climb, RC , at the mean height between two successive
measurement points may be approximated by

RC = ∆H

∆t
(5.4)

In calculating the rate of climb, we must take into account that the (true) height interval ∆H in
Eq. 5.4 differs from the indicated height interval ∆Hp when the actual atmosphere does not con-
form to the standard reference conditions. Generally, from the aerostatic equation (Eq. 2.1) and the
equation of state p/ρ = RT ,

dp =− p

RT
g0 dH =− p

RTISAg0 dHP
(5.5)

or

dH = dHp
T

TISA
(5.6)

In Eq. 5.6, TISA is the temperature in the International Standard Atmosphere and T is the prevailing
temperature at the same altitude Hp . Combining Eq. 5.4 and Eq. 5.6 yields the following expression,

RC = ∆H

∆t
= T

TISA

∆Hp

∆t
(5.7)

where ∆Hp is the measured height interval, and T and TISA are the temperatures at the mean
geopotential pressure altitude.

5.4. THE AIRSPEED INDICATOR
The determination of airspeed is based on the measurement of the differential pressure,

pt −p = qc (5.8)
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Figure 5.7 Principle of airspeed indicator

Figure 5.8 Pitot probe

where pt is the total pressure and p is the free stream static pressure. The difference between these
pressures, qc , is termed impact pressure.
As depicted in Fig. 5.7, the pressures pt and p are fed separately into the instrument and the pres-
sure difference is measured by employing an air-tight case in which a diaphragm unit is placed.
The total pressure is sensed by a pitot probe, which has an orifice at the stagnation point on the
nose (Fig. 5.8). Often, the pitot probe is combined with the static probe, which assembly is called a
pitot-static probe or pressure head (Fig. 5.9). The relationship between the impact pressure qc and
the airspeed V is obtained by substitution of Eq. 5.3 into Eq. 5.8. This gives

qc = pt −p = p

[(
1+ γ−1

2γ

ρ

p
V 2

) γ
γ−1 −1

]
(5.9)

which leads to

V =
√√√√ 2γ

γ−1

p

ρ

[(
1+ pt −p

p

) γ−1
γ −1

]
(5.10)

The latter relation returns an ideal measure of the so-called true airspeed (T.A.S.) of the airplane.
Since both the air pressure p and density ρ appear in the equation, determining the true airspeed
(T.A.S.) would require measuring these quantities in addition to the pressure difference given by
Eq. 5.8. The resulting airspeed measure, for a given value of (pt −p), would therefore be a function
of altitude. To make the airspeed measurement independent of altitude and derive a unique cali-
bration equation for the airspeed indicator, the concept of calibrated airspeed (C.A.S) Vc is used. By
definition, Vc is obtained by making the assumptions that in Eq. 5.10 p = p0 is the pressure sea-level
reference value of 101325 N/m2 and ρ = ρ0 is the density sea-level reference value of 1.225 kg/m3.
Thus, airspeed indicators are calibrated to the equation

pt −p = p0

[(
1+ γ−1

2γ

ρ0

p0
V 2

c

) γ
γ−1 −1

]
(5.11)
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Figure 5.9 Pitot-static probe

Evidently, the calibrated airspeed Vc is only equal to the true airspeed V , when the actual atmo-
spheric conditions match the standard sea-level reference conditions. From Eq. 5.10 and Eq. 5.11,
we see that the true airspeed can be determined from its relation to calibrated airspeed and the
prevailing values of pressure and density.

V =

√√√√√√ 2γ

γ−1

p

ρ

[
1+ p0

p

[(
1+ γ−1

2γ

ρ0

p0
V 2

c

) γ−1
γ −1

]] γ−1
γ

−1

 (5.12)

Consequently, the computation of true airspeed from calibrated airspeed requires the measure-
ment of geopotential pressure altitude and air temperature.
At low subsonic airspeeds, a simplified procedure for the determination of the true airspeed can
be established by assuming that the measured pressure difference is related to the airspeed by
Bernoulli’s equation for incompressible isentropic flow (see Appendix C).

pt −p = 1

2
ρV 2 or V =

√
2

ρ

(
pt −p

)
(5.13)

In this case, the measured airspeed is called equivalent airspeed (E.A.S.), Ve . This quantity satisfies
Eq. 5.13 at sea level for standard sea-level density.

pt −p = 1

2
ρ0V 2

e or V =
√

2

ρ0

(
pt −p

)
(5.14)

From Eq. 5.13 and Eq. 5.14, we also find the following relation, which shows that the equivalent
airspeed is always lower than (or equal to) true airspeed.

V =Ve

√
ρ0

ρ
(5.15)

Equivalent airspeed is a particularly useful quantity from an engineering point of view, as it does
not depend on altitude (just like calibrated airspeed), and results in the same dynamic pressure of
its corresponding true airspeed at the given altitude. This is convenient when relating the aero-
dynamic forces and moments on the airplane to their non-dimensional coefficients. On the other
hand, the equivalent airspeed does not have information about the actual flow regime around the
airplane, and is therefore of limited value for the analysis of flight physics.
An insight into the accuracy of the true airspeed when calculated by means of Eq. 5.15 instead of
Eq. 5.12 can be obtained by comparing these equations for a given instrument reading. Thus, from
Eq. 5.11 to Eq. 5.13
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Vcompr

Vinc
=

√√√√√√√√√√
γ
γ−1

[
1+ p0

p

[(
1+ γ−1

2γ
ρ0
p0

V 2
c

) γ−1
γ −1

]] γ−1
γ

−1


p0
p

[(
1+ γ−1

2γ
ρ0
p0

V 2
c

) γ−1
γ −1

] (5.16)

This equation shows that the ratio between the resulting compressible and incompressible air-
speeds varies with the calibrated airspeed and the static pressure. The effect of compressibility
is visualized in Fig. 5.10, where the ratio from Eq. 5.16 is plotted as functions of calibrated airspeed
and geopotential pressure altitude. The curves confirm that the relevance of the equivalent air-
speed is limited to low subsonic airspeeds.
At supersonic speeds, a normal shock will appear ahead of the pitot probe as shown in Fig. 5.11.
With the relations M =V /c, c =√

γRT , and p/ρ = RT we get

Figure 5.10 Compressibility correction to airspeed

Figure 5.11 Pitot probe In supersonic flow
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Figure 5.12 Total pressure for isentropic flow and behind normal shock wave (γ= 1.4)

M = V√
γ

p
ρ

(5.17)

Substitution of Eq. 5.17 into Eq. 5.9 yields the free stream total pressure in terms of static air pressure
and flight Mach number.

pt = p

(
1+ γ−1

2
M 2

) γ
γ−1

(5.18)

The shock wave causes that the total pressure p∗
t measured at the stagnation point on the probe is

less than the free stream total pressure pt . As derived in Appendix C, the ratio of the total pressure
behind the shock to the free stream static pressure is related to the flight Mach number by the
following equation, which is called the Rayleigh formula.

p∗
t

p
=

(
γ+1

2
M 2

) γ
γ−1

(
2γM 2

γ+1
− γ−1

γ+1

) 1
1−γ

. (5.19)

The ratios pt /p and p∗
t /p versus Mach number are plotted in Fig. 5.12. The curves show that the

difference between the total pressure for isentropic flow and behind a normal shock grows larger as
the free stream (supersonic) Mach number becomes greater. For example, the ratio p∗

t /p decreases
from 1.0 at M = 1 to 0.721 at M = 2(γ= 1.4)
Since also at supersonic speeds the free stream static pressure can be obtained by applying a pitot-
static probe or via a static source located on the surface of the fuselage of the airplane, we find that
the measured impact pressure difference is given by

p∗
t −p = p

(
γ+1

2
M 2

) γ
γ−1

(
2γM 2

γ+1
− γ−1

γ+1

) 1
1−γ

−1

 (5.20)
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Figure 5.13 Principle of Machmeter

Using the sea-level reference values p = p0 and ρ = ρ0, we obtain the following relationship from
Eq. 5.17 and Eq. 5.20.

p∗
t −p = p

[(
γ+1

2γ

ρ0

p0
V 2

c

) γ
γ−1

(
2

γ+1

ρ0

p0
V 2

c − γ−1

γ+1

) 1
1−γ −1

]
(5.21)

This is the calibration equation of the airspeed indicator for supersonic flight.
The reading of the airspeed indicator is called the indicated airspeed Vi . Possible inaccuracies em-
anating from instrument errors and from the pitot-static system constitute the difference between
indicated airspeed and calibrated airspeed. Finally, the various airspeeds considered in this section
are summarized below:

• V true airspeed, T.A.S.

• Vc calibrated airspeed, C.A.S.

• Ve equivalent airspeed, E.A.S.

• Vi indicated airspeed, I.A.S.

We close this section with the observation that airspeed indicator scales almost always use the knot
(nautical mile per hour) as a measure of airspeed.

5.5. THE MACHMETER
The Machmeter is the instrument which measures the flight Mach number, M =V /c. Eq. 5.18 and
Eq. 5.20 indicate that in both the supersonic and subsonic speed regime, the flight Mach number
can be determined by measuring the pressure ratio (pt −p)/p. Fig. 5.13 shows that the Machmeter
is a compound flight instrument which consists of an airspeed indicator and an altimeter. The
pressure difference pt −p is measured by means of the airspeed capsule and the static pressure is
obtained from the movement of the altitude capsule. The deflections of the two mechanisms are
combined and then transmitted to the indicator pointer.
The result of the previous section also show that the flight Mach number can be computed from
known values of Vc and Hp . Fig. 5.14 gives the subsonic flight Mach number as a function of the cal-
ibrated airspeed for various geopotential pressure altitudes, calculated from Eq. 5.11 and Eq. 5.18.
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Figure 5.14 Mach number versus calibrated airspeed for various geopotential pressure altitudes

5.6. AMBIENT AIR TEMPERATURE MEASUREMENT
The prediction of airplane performance and the operation of airplanes requires that the free-air
static pressure and the total pressure are known. In addition, the ambient or free-air static temper-
ature at the flight altitude is needed for getting the true airspeed or to compute the density of the
air for instance.
The air thermometer on an airplane commonly is made up of a temperature probe attached to the
outer surface of the airplane and an indicator in the cockpit.
Mostly, the temperature sensed by the temperature probe is higher than the ambient air tempera-
ture because of the adiabatic heating effect of the air flow on the temperature sensing element.
If the air at the measurement point could be brought to rest by an adiabatic process, the total tem-
perature, Tt , would be registered, which quantity is a direct function of the ambient temperature
and the flight Mach number in both subsonic and supersonic flow (see Appendix C),

Tt = T

(
1+ γ−1

2
M 2

)
(5.22)

In actual circumstances, however, the instrument usually displays a temperature which is some-
what less than the total temperature. This phenomenon, which is due to a heat flow from the sensor
to the surrounding body, is conveniently expressed by the ratio

K = Ti −T

Tt −T
(5.23)

where Ti is the indicated temperature and K is the recovery factor of the probe, denoting the rel-
ative amount of the adiabatic temperature rise which is accomplished by the thermometer. If the
recovery factor is included in Eq. 5.22, we obtain

Ti = T

(
1+K

γ−1

2
M 2

)
(5.24)
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Figure 5.15 Relationship between measured and ambient temperature

Figure 5.16 Sketch of the total temperature probe

A graphic representation of Eq. 5.24 is given in Fig. 5.15, where the variation of the ratio Ti /T versus
M 2 is shown for six K -values. As used in this diagram, the recovery factor of typical installations
ranges from 0.5 to 1.0.

The value of K for a particular thermometer can be determined from calibration tests in a wind
tunnel or by the execution of flight tests. For example, from flight runs at a constant altitude, the
relationship between Ti and M 2 can be established by direct measurement of flight Mach number
and indicated temperature. Then, as may be seen from Fig. 5.15, extrapolation to M = 0 of the curve
through the test data gives the ambient temperature at the measurement height, whilst the slope
of the curve furnishes the associated value of K .

Present-day installations for measuring the air temperature are virtually always total temperature
probes, having a tube shaped stagnation chamber in which a sensing element is placed (Fig. 5.16).
The thermometer element usually consists of a temperature sensitive resistor included in a electri-
cal bridge circuit. These electric thermometers supply a current arising from the bridge unbalance.
This current is a function of the resistance and, thus, a measure of the prevailing temperature (Ref.
9 and Ref. 10).
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5.7. PROBLEMS
1. The standard sea-level pressure of 101325 N/m2 is used above a prescribed transition altitude

as pressure datum for the altimeter. In case the atmospheric conditions differ from those
defined in the International Standard Atmosphere (I.S.A.), the altimeter is in error, that is, the
geopotential pressure altitude differs from the actual geopotential height. Furthermore, the
ground may not be at sea level altitude. Explain why the standard sea-level pressure is used
even though it often results in incorrect altitude readings.

2. Select the correct answer. The vertical speed indicator can be classified as

(a) air data instrument

(b) engine instrument

(c) blind flying instrument

(d) avionics system

3. List the differences between true airspeed, calibrated airspeed, indicated airspeed, and equiv-
alent airspeed.

4. An airplane performs a climbing flight at a constant calibrated airspeed of 150 m/s in the
International Standard Atmosphere (I.S.A.). Calculate the true airspeed and the ratio of true
airspeed over calibrated airspeed expressed in a percentage, at the following three pressure
altitudes: 0 m, 5000 m, and 10000 m.

5. Consider two aircraft, one flying at flight level 50 and the other at flight level 100. Both have
an indicated airspeed of 150 m/s. You may assume that there are no instrument errors or
inaccuracies in the pitot-static system. Furthermore, incompressible flow conditions may be
assumed. Calculate the true airspeeds of these two aircraft.

6. Explain the working principle of a Machmeter and highlight which air data parameters are
required as input to the instrument.

7. An airplane is flying at a pressure altitude of 8000 m in the International Standard Atmosphere
(I.S.A.). The Mach number indicated by the Machmeter equals 0.7. Compute the total air
pressure and the calibrated airspeed.

8. The air thermometer on an airplane measures the outside air temperature. Explain why the
outside air temperature is needed in the context of operational flight.
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PROPULSION

6.1. TYPES OF AIRPLANE PROPULSION SYSTEMS
The five types of main propulsion systems to be considered here are the reciprocating piston en-
gine with propeller, the turbojet, the turboprop (the turbo-engine and propeller combination), the
turbofan and the battery-powered electric motor with propeller. Except for the battery-powered
electric motor with propeller, these are all named air-breathing engines because of the fact that
they employ the oxygen from atmospheric air to burn the fuel. The electric motor converts electro-
chemical energy stored in the batteries into mechanical power. Note that there are alternative
sources for electric power. Besides storage in batteries, it can be generated on-board by means
of fuel cells, solar panels or a generator powered by conventional fuel. Propulsion systems in which
both a fueled power source and an electric motor are combined are designated hybrid-electric
propulsion systems.
All these devices also have the common property that they generate a propulsive force through the
application of Newton’s third law (action = reaction), by accelerating air backwards with respect to
the airplane. In accordance with Newton’s second law of motion (see Appendix A), the magnitude
of the thrust supplied is equal to the time rate of change of linear momentum given to the mass of
air or gas (air mixed with combustion products).
The piston engine plus propeller is used nowadays small general aviation airplanes and small un-
manned aerial vehicles only. These engines have four or six cylinders, are air-cooled and operate on
the four-stroke cycle principle. The cylinders are virtually always arranged in horizontally opposed
pairs (Fig. 6.1). Fuel may be supplied by individual injection to each cylinder or by a carburetor
which mixes the fuel and air to the right proportions and leads this mixture to the cylinders via
the inlet manifold. Each cylinder has an intake valve and an exhaust valve and inside the cylinder
is a piston moving up and down by the high gas pressures obtained from burning the mixture of
fuel and air. The pistons drive the crankshaft via connecting rods, which change the reciprocating
motion of the pistons to the rotational motion of the crankshaft.
The power delivered to the crankshaft is called shaft brake power, which designation has as its
origin the measurement of the engine output by coupling the crankshaft to a brake system (dy-
namometer). On the other hand, it is also possible to determine the shaft power in flight by means
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Figure 6.1 Four-cylinder piston engine with propeller

of a torque meter (Ref. 9). The crankshaft, in turn, drives the propeller, which device produces the
thrust by accelerating atmospheric air with respect to the airplane.
The useful power available for propulsion is given by the product of thrust T and airspeed V . This
quantity is called power available and denoted by the symbol Pa . The ratio of power available to
shaft brake power is the propulsive efficiency of the propeller,

η j = T V

Pbr
= Pa

Pbr
(6.1)

We shall discuss the subject of propeller efficiency further in Chapter 7. It is sufficient here to re-
alize that the piston engine converts the heat energy in the fuel to shaft brake power and that this
power then is used by the propeller to effectuate power available. There are, thus, two separate
and different conversion processes involved; an energy conversion process and a power conversion
process.
The usefulness of the piston engine and propeller combination is limited to low subsonic airspeeds.
The development of the turbojet in the thirties and forties of the twentieth century came as an
answer to the demand for higher flight speeds. In this engine, a mass flow of air is heated by burning
fuel and ejected rearward as a blast of hot gas at high velocity. The basic layout of the turbojet is
sketched in Fig. 6.2. It consists of five distinct components; air intake, compressor, combustor,
turbine and exhaust nozzle. The core of the engine comprising the compressor, combustor and
turbine may be termed the gas generator. A picture of the typical changes in pressure, temperature
and velocity of the air or gas flowing through the engine is also shown in Fig. 6.2. The changes in
intake and nozzle are only effectuated by way of the form of the passages through which the fluid
flows.
Due to external compression, the air enters the intake at a velocity, which is somewhat lower than
the flight speed. In the intake the air is slowed down further, giving a substantial pressure and
temperature rise of the air.
Two types of compressor may be found; centrifugal and axial (Fig. 6.3). In the centrifugal com-
pressor the air is taken in near the center of an impeller, which flings the air in the direction of the
circumference. This gives a high pressure at the compressor exit.
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Figure 6.2 Typical layout of the turbojet

Figure 6.3 Typical compressor types

In modern gas turbine engines, mostly the axial flow compressor is found, which consists of a series
of rotating many-bladed fans. These fans rotate between sets of fixed stator blades. Each set of fixed
and rotating blades forms a compressor stage and delivers a certain increase in pressure. Therefore,
in the compressor which may incorporate a large number of stages, the passing air obtains a very
high pressure rise. This is accompanied by a considerable increase in temperature.

In the combustor, heat energy of fuel is released in the airflow, providing a high turbine entry tem-
perature. Normally, there is a maximum turbine entry temperature because of the critical thermal
load of the blades of the turbine. To keep the gas temperature at the turbine inlet within acceptable
limits, much more air is used in the turbojet than is required for combustion. This large mass flow
is also needed to get a high thrust.

In passing through the turbine, energy is extracted from the gas flow in order to drive the compres-
sor. This is coupled with a drop in pressure and temperature in the turbine. Most turbojets have
two compressors, one after the other, each driven by an independent turbine through concentric
unconnected shafts (Fig. 6.4). As each rotating assembly, consisting of a turbine, a drive shaft and a
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Figure 6.4 Two-spool turbojet without and with afterburner

compressor or fan is a spool, the arrangement shown in Fig. 6.4 is called a two-spool engine. The re-
maining energy from the gas generator is expanded in the nozzle and exhausted as a high-velocity
jet. If the turbojet is designed for use at subsonic airspeeds, the nozzle is convergent. In the case
of an engine aimed to fly at supersonic velocities, a convergent-divergent exhaust nozzle is used to
obtain maximum jet velocity.
Gas turbine engines may be equipped with a reheat system or afterburner. In the case of afterburn-
ing, supplementary fuel is injected into the exhaust nozzle as is also illustrated in Fig. 6.4. Burning
of extra fuel is possible because the exhaust gas entering the nozzle comprises an excess of un-
burned oxygen. Afterburning is a method to achieve a temporary increase in thrust for takeoff and
climb or for transition from subsonic to supersonic flight velocities.
In contrast to the piston engine, the various processes in the turbojet are continuous. In combi-
nation with the absence of reciprocating parts, the turbojet runs smoother and enables more heat
energy to be released.
Another essential difference between jet and propeller propulsion is the nature of the rearward
mass flow. In the case of the propeller a large mass flow of cold air is transported at a relatively low
speed, whereas the turbojet produces a thrust by accelerating a relative small amount of hot gas to
a very high velocity. This implies, as will be explained in subsequent sections, that the turbojet is
only effective at high flight speeds, whereas the propeller is an efficient means of producing thrust
at low-subsonic airspeeds.
The problem of the inefficiency of the turbojet at low flight speeds can be solved through extracting
most of the power from the hot gases by means of an enlarged turbine, and then to supply the power
to a propeller. This arrangement is called a turboprop. Fig. 6.5 shows the layout of a single-shaft
engine, where the turbine, compressor, and propeller are all mechanically connected. A reduction
gear is present between the compressor and the propeller since the propeller must rotate at a much
lower speed than the gas generator in order to avoid extreme tip speeds. Normally it will be possible
to use the residual energy after the turbine to eject the gases from an exhaust nozzle at a rather high
speed and so to generate some extra thrust.
A compromise between the turboprop and the turbojet is the turbofan, which engine type oper-
ates efficiently in the high subsonic speed range. In this case, a ducted fan takes the place of the
propeller of the turboprop. As sketched in Fig. 6.6, usually, the fan is placed at the front of the en-
gine, where it is an integral part of the low-speed compressor. This arrangement is designated as
front fan. Part of the air impelled by the fan passes through the bypass duct and is discharged as a
cold jet. The rest of the fan flow goes through the engine and forms the hot flow. A characteristic
design figure for a turbofan is the bypass ratio, which is the ratio of the mass flow rate of the cold
(secondary) flow passing through the bypass duct to the mass flow rate of the hot (primary) flow
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Figure 6.5 Turboprop Figure 6.6 Two-spool turbofan

passing through the gas generator. In formula

B = mc

ṁh
(6.2)

where B denotes the bypass ratio and mc and ṁh are the mass flow rates of the cold and hot stream,
respectively. Since m = mc +mh , we also have the relationships in Eq. 6.3.

mc

m
= B

B +1
and

ṁh

m
= 1

B +1
(6.3)

Today’s turbofan engines have a bypass ratio between 9 and 12. Advanced propulsion systems with
a bypass ratio beyond the current values are called ultra-high bypass ratio (UHBR) engines.
To accelerate the cold stream, a large percentage of the energy available from the gas generator is
supplied as shaft power to the fan. Therefore, in principle, the turbofan is similar to the turboprop
except that its bypass ratio is much lower. Nevertheless, in addition to the thrust produced by the
hot jet, the fan also accelerates such a large mass of cold air that it supplies a generous contribution
to the total thrust. An added benefit of bypassing of air is reduced jet-generated noise.
Evidently, the primary purpose of airplane propulsion systems is to convert energy into power
available for propulsion. However, other systems such as the landing gear, the environmental con-
trol system, the flight control systems and fuel systems also require power during flight. Power for
these systems is extracted from the engine and provided by means of electrical, pneumatic and
hydraulic power. On commercial airplanes, mechanical power is converted into electrical power
by a generator driven by an accessory gearbox connected to the engine. Hydraulic power is most
often generated by engine-driven pumps also connected to the accessory gearbox. Finally, bleed
air from the engine is used to supply pneumatic power. The industry is currently in the process of
adopting the “more-electric” aircraft in which various aircraft systems (pneumatic and hydraulic)
are replaced by electric systems. For airplanes equipped with high-bypass ratio turbofan engines,
this is a more efficient form of power extraction Ref. 11.
Over the past decades there has been a strong increase in the usage of unmanned aerial vehicles
(UAVs). Small UAVs are often equipped with a propeller and an electric motor powered by batter-
ies. This propulsion system has a low complexity and it has advantages in terms of noise. A typical
layout with a brushless direct current (DC) electric motor used regularly on small remotely con-
trolled airplanes is presented in Fig. 6.7. Just like the piston engine and propeller combination, the
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Figure 6.7 Battery-powered brushless DC electric motor with propeller

usefulness of the battery-powered electric motor propeller combination is limited to low subsonic
airspeeds. The fundamental challenge in using batteries as an energy source for airplane propul-
sion is the low specific energy of batteries compared to the high specific energy of conventional
jet-fuel. In other words, for a given amount of available power that they are capable to generate,
batteries are very heavy compared to fuel. The effect of weight on airplane performance is treated
in Chapter 11. The specific energies of state-of-the-art batteries at the time of writing are in the
order of 100 to 200 W·hr/kg at cell level, whereas gasoline has a specific energy of approximately
13000 W·hr/kg. Lithium-air batteries, however, show great promise with a theoretical specific en-
ergy of 11680 W·hr/kg Ref. 12. Many significant challenges have to be overcome before even a small
part of this theoretical value can be achieved in reality.
It should be noted that the efficiency of the elements of the battery-powered electric motor is rel-
atively high compared to the efficiency of the various components in an air-breathing propulsion
system. Due to the high weight of batteries, the use of batteries as energy source is at the moment
only feasible for small aircraft, which have a low weight and are intended for a limited flight distance
or flight time. Currently, a significant effort is placed in the development of manned full-electric
general aviation airplanes. Various flying demonstrators have already been introduced over the
past 10 years, and serial production for electric motor gliders has commenced. Unlike air-breathing
engines, the performance of an electric motor is largely independent from the flight altitude and
airspeed.

6.2. THE PISTON ENGINE
The working cycle of the four-stroke piston engine requires two revolutions of the crankshaft; two
strokes down and two strokes up. The four events are illustrated in Fig. 6.8 in the form of a plot of
pressure versus volume:

• The intake stroke (1). The piston travels from the cylinder head (top dead center) to the
bottom of the cylinder (bottom dead center). An amount of fuel and air is sucked into the
cylinder through the open intake valve.

• The compression stroke (2). The piston moves upward to the top of the cylinder, and the
charge is almost isentropically compressed from the inlet-manifold pressure p2 to a pres-
sure p3. When the piston approaches the top of the stroke, the mass of gas confined in the
cylinder is ignited by the ignition system. Between points 3 and 4, combustion takes place at
approximately constant volume and the pressure increases to p4.
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Figure 6.8 Working cycle of the four-stroke piston engine

• The power stroke (3). The high pressure pushes the piston downward and the burning gas
expands more or less isentropically to the pressure p5. Just before the piston reaches the
bottom of the stroke the exhaust valve opens and the pressure inside the cylinder drops to
the value p6 (p6 = p1).

• The exhaust stroke (4). The piston again moves upward and the burned gases in the cylinder
are forced out through the exhaust valve.

The compression ratio of the piston engine is the volume of space in the cylinder when the piston
is at the bottom dead center divided by the volume when the piston is at the top dead center. The
cycle or thermal efficiency is the ratio of the power developed in the engine and the heat release
per unit time or thermal input,

ηth = N Pi

Q
= N Pi

ṁ f H
(6.4)

where N is the number of cylinders and Pi is the indicated power, which is the power developed in
one cylinder. The thermal input Q can be written as the product of the fuel mass flow rate ṁ f and
the heating value of the fuel H . For aviation fuels the heating value is about 4.3×107 J/kg.
The conversion of the heat energy released during combustion to mechanical power, usually, is
analyzed by considering the Otto-cycle, which consists of four ideal processes (Fig. 6.9). Point 2
in Fig. 6.9 stands for the mixture of air and fuel in the cylinder at the inlet-manifold pressure that
is compressed isentropically along the line 2-3. From 3 to 4 heat is added to the charge by burn-
ing the fuel at constant volume, thereby considerably increasing the pressure. Then, the gases are
expanded isentropically along the line 4-5 to the pressure p5. Finally, from 5 to 2, the cycle is com-
pleted by the discharge of the gases at constant volume. When making use of the Poisson relations
between p, T and ρ (see Appendix C), the highest thermal efficiency is easily obtained as
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Figure 6.9 The Otto-cycle

ηth = 1− 1

εγ−1 (6.5)

where ε is the compression ratio of the engine and γ is the ratio of the specific heats of the fuel-air
mixture. Depending on the composition of the gas, the value of γ varies between 1.2 and 1.4.
It should be noted that due to heat and friction losses, the actual value of the thermal efficiency is
lower than that forecasted by Eq. 6.5.
The net work per cylinder done during one cycle, Wi , is represented by the hatched area in Fig. 6.9
since this work is given by

Wi =
∮

pdV (6.6)

At an engine speed n (revolutions per second), the number of power strokes in one second is n/2.
Hence,

Pi =Wi
n

2
(6.7)

When we neglect the friction losses between the moving parts of the engine, the power delivered to
the shaft, Pbr, may be set equal to the total indicated power,

Pbr = N Pi (6.8)

Combination of Eq. 6.7 and Eq. 6.8 yields

Pbr = NWi
n

2
(6.9)

The power Pi and the work Wi are habitually related to each other by means of the mean effective
pressure, pe , which quantity is defined by
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pe = Wi
π
4 D2S

(6.10)

where D is the diameter of the piston (the bore) and S is the length of the displacement of the piston
(the stroke). Clearly, the pressure pe in Eq. 6.10 is a fictitious parameter, which is broadly used as
an index in determining the shaft brake power. Insertion of Eq. 6.10 into Eq. 6.9 yields

Pbr = pe
π

4
D2S

2

2
N (6.11)

where the quantity π
4 D2SN is the total volume displaced by the piston during one stroke (the total

piston displacement of the engine).
Apparently, the shaft brake power delivered by a given engine is a function of mean effective pres-
sure and engine speed,

Pbr = Pbr(pe ,n) (6.12)

Further thermodynamic analysis learns that the pressure pe varies proportional to the quotient of
pressure and temperature of the fuel-air mixture at the beginning of the compression stroke (point
2 in Fig. 6.9). This means that pe depends on the density of the atmospheric air and the throttle
setting δ(0 ≤ δ≤ 1.0). Accordingly, we have

Pbr = Pbr(H ,δ, N ) = Pbr(H ,Γ) (6.13)

where Γ= Γ(δ,n) is the engine control setting.
The charts as generally supplied by the engine manufacturers are of the form sketched in Fig. 6.10.
In this so-called standard power diagram the shaft brake power in International Standard Atmo-
sphere is given, assuming a mixture control which furnishes maximum power.
In the left-hand diagram is given the power at sea level: Pbr = Pbr0(δ,n). The throttle setting is ex-
pressed in terms of inlet manifold pressure pz . The power is limited by the maximum permissible
engine speed and maximum inlet manifold pressure, which corresponds to the full-throttle condi-
tion (fully opened throttle valve; δ = 1.0). The effect of altitude on full-throttle power is shown in
the right-hand diagram of Fig. 6.10, Pbr0 = Pbr0(H ,n). The chart gives also the prevailing inlet man-
ifold pressures. In the full-throttle condition and for a given engine speed the shaft brake power
decreases with increasing height due to the decreasing air density.
An empirical relationship often used to account for the effect of altitude is:

Pbr

Pbr0
= 1.132

ρ

ρ0
−0.132,

where the subscript “0” denotes sea-level condition. In order to determine the power at altitude for
a part-throttle condition for given values of altitude, engine speed, inlet manifold pressure, and air
temperature, the following procedure is employed:

1. Locate point A on sea-level curve for the known values of inlet manifold pressure and engine
speed and transfer to B.
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Figure 6.10 Standard power diagram (I.S.A.)

2. Locate point C on full-throttle altitude curve for the given inlet manifold pressure and engine
speed.

3. Determine power output at the required height (point D) by linear interpolation between
points B and C. Note that along the straight line B-C the power increases somewhat due to
the decreasing air temperature.

4. Modify the power Pbr(I.S.A.) at point D for the deviation of air temperature T from standard
altitude temperature TISA by the following empirical formula:

Pbr = Pbr(ISA)

√
TISA

T
(6.14)

where Pbr is the actual power output and T and TISA are expressed in kelvin.

To improve the performance of a normally aspirated engine a supercharger is used, which provides
a greater pressure at the intake valve. The supercharger is usually positioned between carburetor
and inlet manifold. It may be driven by the crankshaft as sketched in Fig. 6.11a. Alternatively, there
may be a turbocharger, a supercharger impelled by a small turbine which in turn is driven by the
exhaust gas stream, as sketched in Fig. 6.11b. The latter assembly is more economic than a gear-
driven supercharger since it utilizes the heat energy present in the exhaust gases.
Fig. 6.12 shows a picture of the standard power diagram of a supercharged engine. Depending on
engine speed, the maximum inlet manifold pressure is increased at sea level and hence the altitude
performance. In order to avoid unacceptable high engine loads, it is not possible to use the high
inlet manifold pressures at lower altitudes. Therefore, limitations are put on the inlet manifold
pressure, and only when altitude is gained it is licensed to open the throttle gradually in order to
compensate for the loss in atmospheric pressure.



6.2. THE PISTON ENGINE

6

123

Figure 6.11 Supercharging

Figure 6.12 Standard power diagram (supercharged)

The altitude at which the throttle becomes fully open is termed the critical altitude of the engine for
the given engine speed and inlet manifold pressure. Above the critical altitude, the power output
decreases with increasing height due to the reduction of air density as in the case of an aspirated
engine. An important engine characteristic is the amount of fuel required to generate the shaft
brake power. This may be expressed as the fuel weight flow rate, F , divided by shaft brake power,

cP = F

Pbr
= ṁ f g

Pbr
(6.15)
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Figure 6.13 Layout of a brushless DC electric motor

where cP is the specific fuel consumption, which has the dimensions N/Whr or N/kWhr. A com-
parison of Eq. 6.15 with Eqs. 6.4 and 6.8 reveals that the specific fuel consumption is an inverse
criterion of thermal efficiency,

cP = g

Hηth
(6.16)

The working cycle of the piston engine gives a high thermal efficiency over a wide range of inlet
manifold pressures, engine speeds, and flight altitudes. A cruising thermal efficiency of 35% (cP =
2.4N/kWhr) is fairly representative of airplane piston engines. The thermal efficiency, however, is
only half the problem since the conversion of shaft brake power into power available is also coupled
with losses. The overall efficiency of the complete propulsion process can be written as

ηtot = T V

ṁ f H
= T V

Pbr
= Pbr

ṁ f H
= η jηth (6.17)

where, according to Eq. 6.1, η j = T V /Pbr is the propulsive efficiency.

6.3. THE ELECTRIC MOTOR
Electric motors are used to convert electric power into mechanical power. A wide variety of electric
motors exists. The most commonly used type of electric motor for small UAVs is the brushless di-
rect current (DC) motor because it has both a relatively high efficiency and a high power to weight
ratio. A typical layout of such an electric motor is presented in Fig. 6.13. The main elements of
the brushless DC electric motor are the stator, to which electric power is supplied, and the rotor, a
rotating element based on a permanent magnet. In addition, a sensor is required in combination
with an electronic controller. Within the stator, a magnetic field is created by an electrical current.
According to the Biot-Savart law, a current element of intensity I within a wire of length dl con-
tributes dB to a magnetic field at a position defined by the vector −→r .

d
−→
B = µ0

4π

I d
−→
l ×−→r
r 3 (6.18)

In this equation, µ0 is a constant that represents the magnetic permeability of vacuum. If a long
wire is used to form a coil, a strong magnetic field with a uniform direction can be produced
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Figure 6.14 Working principle of a brushless DC electric motor

through the centre of the coil. The magnetic force on an element of a wire carrying a current in
the presence of a magnetic field can be computed using the law of Lorentz.

d
−→
F = I d

−→
l ×−→

B (6.19)

If a permanent magnet is present in the magnetic field created by wire carrying a current, a mag-
netic force is exerted on it. This basic principle is applied in brushless DC motors.
When a permanent magnet is allowed to rotate freely in between two coils as represented in Fig. 6.14,
the magnetic forces generated by the coil create a torque which will rotate the permanent magnet.
In this arrangement, the coils are not moving and are therefore called the stators. The permanent
magnet is designated as rotor. It is important to note that the magnitude and direction of the torque
depends on the angle of rotor. Once the rotor has rotated by 180 deg, the current should change di-
rection in order to keep the torque in the same direction. Furthermore, in its upright position,
there is no torque present. Therefore, in practical applications multiple coils are used to ensure
there is always a net torque present. In an arrangement with multiple coils and possibly multiple
magnets, the angle between the rotor and the active coils is relatively small and thus there is much
less torque variation. A commonly used arrangement is the three-phase DC motor, which has three
sets of coils. Its working cycle is represented in Fig. 6.15. Two assumptions are made in this figure.
The torque variation with rotor angle for a pair of stator coils is neglected. Also, the current can-
not change instantaneously from zero to its maximum value. This effect is not represented in the
simplified working cycle. By continuously switching the current, it can be ensured that there are
always two sets of coils creating a torque on the rotor. As a result, the total torque acting on the
rotor, which is the summation of the torques created by each set of coils, is constant as a function
of rotation (Fig. 6.16). In reality, there will be small torque variations due to the effects mentioned
before. These variations are very small if the motor is carefully designed.



6

126 6. PROPULSION

Figure 6.15 Working cycle of a three-phase synchronous brushless DC motor

Figure 6.16 Total torque of a three-phase synchronous brushless DC motor
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Brushed DC motors also exist. These have an arrangement in which the coils are rotating and the
permanent magnet is static. The rotating coil needs to make contact with the stationary power
supply and this is done by means of brushes. A disadvantage of brushed motors is that the brushes
wear down and require frequent replacement. Furthermore, they are less suited for high torque
applications because the friction of the brushes increases with rotational speed. The efficiency of
brushed DC motors is less than that of brushless DC motors. On the positive side, they do not
require sensors and an electronic controller. This results in a simple and thus low cost design. In
practical applications, a total efficiency of 85 to 90% is typically achieved for brushless DC motors
compared to an efficiency in the range of 75 to 80% for brushed DC motors. For small remotely
controlled UAVs, the brushless DC motor described in this paragraph is the preferred choice. For
larger UAVs, an out-runner configuration of a brushless DC motor is often used Ref. 13. This means
that the rotor is placed around the stators. Apart from that, it has the same working principle. A
detailed treatment of the working principles and design of brushless DC motors can be found in
Ref. 14.
A basic procedure to determine the performance characteristics of a brushless DC motor is pro-
vided next, in combination with a propeller-based propulsive system. While a detailed treatment
of propeller performance is provided in the next chapter, it is relevant to know that variable-speed,
fixed-pitch propellers are often used in combination with brushless DC motors. The thrust (T ) and
associated torque (Q) of a propeller are functions of the rotational speed (ω) of the propeller, the
forward airspeed of the airplane (V ) and the air density (ρ). In equilibrium flight, the thrust gener-
ated through the propeller(s) should match the aerodynamic drag of the airplane. The thrust can
be adjusted by modifying the rotational speed of the propeller. The required shaft power to drive
the propeller is determined by rotational speed and propeller torque.

Pbr =Qω (6.20)

The electric motor delivers this required shaft power. The electronic speed controller converts the
voltage of the battery pack to a three-phase alternating signal, as explained in Fig. 6.15. For a given
required shaft power and rotational speed, the energy consumption can be computed. Assuming
constant battery voltage, the energy consumption follows by the next equation.

E =Vbat

∫
Ibat dt (6.21)

Hence, the energy consumption depends on the current delivered by the battery, which in turn
depends on the flight phase. The capacity of a battery is commonly expressed in Ampere-hours,
and there is an upper limit to the discharge rate (commonly referred to as the C rating of a battery).
In a simple approach, the efficiency of the complete system driving the propeller can be expressed
as follows.

η= Pbr

VbatIbat
(6.22)

In a more comprehensive approach, the different elements of the propulsion system driving the
propeller can be modelled as equivalent electric circuits. The current delivered by the batteries
is supplied to the electronic speed controller(s) (ESC) and possibly other systems that use electric
power such as the flight controller.

Ibat = IESC + Isystems (6.23)
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Typically, the current required for the other systems can be assumed constant. The current sup-
plied to the electronic speed controller is subject to a limit value, which cannot be exceeded for
safe operation. The electronic speed controller creates current pulses to regulate the motor speed.
Therefore, the motor current is only a percentage of the current supplied to the electronic speed
controller. This percentage is called the duty cycle, indicated with σ.

IESC =σImotor (6.24)

The duty cycle is a function of the battery voltage (Vbat), the electric motor voltage (Vmotor) and
current (Imotor) and the resistance of the electronic speed controller (RESC).

σ= Vmotor + ImotorRESC

Vbat
(6.25)

In practical terms it can be interpreted as the ratio of the time that the signal by the electronic
speed controller is active divided by the total time. The voltage and current supplied to the motor
are functions of the propeller torque and rotational speed, and of a wider set of motor parameters.

Imotor =
QKV ,0Vmotor,0

9.55(Vmotor,0 − Imotor,0Rmotor)
+ Imotor,0 (6.26)

Vmotor = RmotorImotor +
(

Vmotor,0 − Imotor,0Rmotor

KV ,0Vmotor,0

)
N (6.27)

Here, KV ,0 is the no-load motor speed constant (rpm/V), Rmotor is the internal resistance of the
motor and Vmotor,0 is the nominal no-load voltage of the motor. A more extensive treatment of this
calculation procedure, including derivations of the different equations is provided in Appendix B
of Ref. 15. This reference also includes example parameters for a limited number of small UAVs.
Note that various databases with information about batteries, electric motors and electronic speed
controllers are also available in the public domain.

6.4. DEFINITION OF THRUST FOR JET PROPULSION
In order to explain the customary definition of thrust for jet propulsion, a nacelle-mounted tur-
bojet engine is considered in Fig. 6.17. Since the resultant force in a steady flow is conveniently
established by the application of the momentum equation (see Appendix C), in Fig. 6.17 a control
volume is specified around the engine, which extends far upstream where the pressure and velocity
have their free stream values p0 and V0. The side boundaries are parallel to the velocity V0 and are,
just like the aft control surface, sufficiently far removed from the engine so that the local pressures
are equal to the free stream pressure p0. The air flows passing through and around the engine duct
are also distinguished in Fig. 6.17.
The air mass flow rate of the internal flow crossing the boundary at the front is given by ṁ = ρ0V0 A0.
The mixture of air and combustion products crosses the aft plane through an area A j with a velocity
w j .
The force obtained as a result from the time rate of change of linear momentum of the fluid that
passes through the engine, and by assuming uniform flow over the area A j , is given by Eq. 6.28.

F1 = Toi +Tint +Tej = (ṁ +ṁ f )w j −ṁV0 (6.28)
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Figure 6.17 Thrust and drag of a turbojet.

where Toi and Tej are component forces in the direction parallel to the free stream velocity arising
from the pressure forces acting on the boundary of the pre-entry stream tube and the post-exit
stream tube, respectively. The force Tint is called the intrinsic thrust, and is associated with the
pressure and friction forces acting on the internal surfaces of the nacelle and engine.
The first term on the right-hand side of Eq. 6.28 includes also the linear momentum of the fuel flow
rate, ṁ f w j , as seen relative to the engine. It should be noticed that in the derivation of the forces
in Eq. 6.28 all pressures are referred to the free stream pressure as a datum. The force obtained as
a result from the rate of increase of momentum of the air which passes around the outside of the
nacelle is given by

F2 =−Toi +Text −Tej (6.29)

where Text is called the extrinsic thrust, which is the force in the direction parallel to the free stream
velocity arising from the pressure and friction forces acting on the external surface of the nacelle.
The net engine force F , which is imparted to the airplane structure is the sum of the forces exerted
over the internal and external surfaces of the engine-nacelle combination,

F = Tint +Text (6.30)

Combining Eq. 6.28 to Eq. 6.30 yields

F = F1 +F2 = (ṁ +ṁ f )w j −ṁV0 +F2 (6.31)
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Conventionally, the net force acting on the airplane in its flight direction is divided into thrust and
drag.
Such division is a matter of definition. If we define −F2 as nacelle (or airplane) drag, then Eq. 6.31
tells us that the thrust is given by the force F1. This means that the thrust is defined as the time rate
of change of momentum of the flow through the engine between stations 0 and j in Fig. 6.17.
However, there is an inconvenience in this definition of the thrust due to the difficulty which is
encountered when we want to determine the velocity w j . Certainly, for a convergent nozzle, there
is in fact hardly a physical post-exit stream tube because of the exchange of energy between internal
and external flows.
In order to avoid this complication, engine manufacturers normally express the thrust as the rate
of increase of momentum between the stations o and e in Fig. 6.17,

T = Toi +Tint = (ṁ +ṁ f )we −ṁV0 + Ae (pe −p0) (6.32)

The thrust so defined depends on the conditions in the undisturbed stream and at the nozzle exit,
which both are known or determinable. When applying the momentum equation for the jet

Ae (pe −p0)+Tej = (ṁ +ṁ f )(w j −we ) (6.33)

we readily find the following expression for the net engine force

F = (ṁ +ṁ f )we −ṁV0 + Ae (pe −p0)− (Toi −Text) (6.34)

Apparently, using Eq. 6.32 for the calculation of the thrust requires that the drag is defined by the
last term of the right-hand side of Eq. 6.34. Clearly, the physical complexity of the problem is now
confined to the determination of Text and Toi as the components of the drag force. Anyway, Eq. 6.32
will form the basis for our evaluations of engine thrust throughout this book. According to our
discussion in Section 3.6 the linear momentum of the fuel flow rate relative to the engine can be
omitted in Eq. 6.32. We thus obtain

T = ṁ(we −V0)+ Ae (pe −p0) (6.35)

A convenient form for the thrust equation is obtained when we introduce the equivalent jet velocity,
(we )eq, defined by

(we )eq = we + Ae

ṁ
(pe −p0) (6.36)

Using this definition we get

T = ṁ
[
(we )eq −V0

]
(6.37)

An important measure for the relationship between the thrust and the size of the engine is the
thrust per unit air weight flow rate or specific thrust

ψT = T

ṁg
= (we )eq −V0

g
(6.38)
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With this definition the specific thrust has the dimension of second. If the nozzle exit pressure
equals the ambient pressure, then we obtain

ψT = T

ṁg
= we −V0

g
(6.39)

Expressing the thrust as the product of weight flow rate of the air through the engine and specific
thrust, will be useful for our subsequent discussions on turbojet performance.

6.5. IDEAL TURBOJET CYCLE
The working cycle of the turbojet is different from that of the piston engine in Fig. 6.9 insofar that
the combustion process in the gas turbine engine is very nearly isobaric with an increase in volume
of the gas.
In examining the thermodynamic behavior of the fluid as it flows through the turbojet, we will
consider here the ideal turbojet cycle or Brayton-cycle. The idealization implies that the following
assumptions are made:

a. The working fluid behaves as a perfect gas with constant specific heats, which are equal to
those of air;

b. All compression and expansion processes are isentropic;

c. Combustion takes place at constant total pressure;

d. In the exhaust nozzle the flow is expanded to the free stream static pressure.

The resulting cycle is shown in Fig. 6.18 in terms of pressure versus specific volume. Specific vol-
ume, v , is the volume per unit mass of the working fluid and hence the inverse of the density,
v = 1/ρ. The various engine components are assigned by numerical engine stations as defined in
Fig. 6.2.

Figure 6.18 Ideal cycle for gas turbine engine (Brayton-cycle)
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As shown in Appendix C, static pressure and temperature and velocity of an airstream are equiva-
lent to the total pressure and temperature. Hence, in studying the conditions of the flow through
the engine, the kinetic energy is taken into account implicitly by using the total properties.
If pt denotes the total pressure, p the static pressure, and M the flow Mach number, we have for
isentropic compression or expansion,

pt = p

[
1+ γ−1

2
M 2

] γ
γ−1

(6.40)

For adiabatic and isentropic compression or expansion the total temperature is given by

Tt = T

[
1+ γ−1

2
M 2

]
(6.41)

where again subscript t denotes the stagnation state.
Starting from the free stream conditions p0, T0 and M0 or V0 in point 0 of Fig. 6.18, the air passes
successively through the following engine components:

1. The intake (0-2). The pressure rises from p0 to about pt2 = pt0 at the inlet of the compressor.
The increase in pressure is due to the external and internal deceleration of the air relative to
the engine, and is called the ram pressure rise,

pt2 = pt0 = p0

[
1+ γ−1

2
M 2

0

] γ
γ−1

(6.42)

Likewise, the temperature at engine station 2 equals the free stream total temperature

Tt2 = Tt0 = T0

[
1+ γ−1

2
M 2

0

]
(6.43)

2. The compressor (2-3). From Eq. 6.40 and Eq. 6.41 we obtain

Tt

T
=

[
pt

p

] γ−1
γ

(6.44)

But, according to Appendix C, T /(p)
γ−1
γ = constant for an isentropic process so that Eq. 6.44

becomes

Tt

(pt )
γ−1
γ

= constant (6.45)

Applying Eq. 6.45 to the isentropic compression process, we have the compressor outlet tem-
perature given by

Tt3 = Tt2ε
γ−1
γ

c (6.46)

where εc = pt3/pt2 is the pressure ratio of the compressor.
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3. The combustor (3-4). As a consequence of the simplification that the drop in total pressure
during combustion is zero, we get

pt4 = pt3 (6.47)

From the steady flow energy equation in Appendix C, we find for the heat added to the flow
per unit time

Q = ṁ f H = ṁcp (Tt4 −Tt3) (6.48)

where H is the heating value of the fuel, Tt4 the turbine entry temperature, and cp is the
specific heat of air at constant pressure.

4. The turbine (4-5). The temperature at the turbine exit is found from the condition that tur-
bine power equals compressor power. In formula

ṁcp (Tt4 −Tt5) = ṁcp (Tt3 −Tt2), or (6.49)

Tt5 = Tt4 − (Tt3 −Tt2) (6.50)

The pressure at the turbine outlet is given by

pt5 = pt4

[
Tt5

Tt4

] γ
γ−1

(6.51)

5. The exhaust nozzle (5-e). If we assume that in flowing through the nozzle the pressure of the
gas falls to ambient pressure, the Mach number at the nozzle exit can be found from Eq. 6.40,

pte

pe
= pt5

p0
=

[
1+ γ−1

2
M 2

e

] γ
γ−1

, or (6.52)

Me =
√√√√ 2

γ−1

[(
pte

p0

) γ−1
γ −1

]
(6.53)

Referring to Eq. 6.40 and Eq. 6.41, we see that the temperature Te can be written as

Te = Tte

1+ γ−1
2 M 2

e

= Tte[
pte
p0

] γ−1
γ

(6.54)

Using Eq. 2.20 for the speed of sound, the jet velocity becomes

we = Me
√
γRTe =

√√√√ 2γR

γ−1
Tte

[
1−

(
p0

pte

) γ−1
γ

]
(6.55)
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An expression for the specific thrust is obtained by substituting Eq. 6.55 into Eq. 6.39

ψT = 1

g


√√√√ 2γR

γ−1
Tte

[
1−

(
p0

pte

) γ−1
γ

]
−V0

 (6.56)

The thermal efficiency of the working cycle of the turbojet is defined as the increase in kinetic en-
ergy of the gas stream in unit time divided by the heat energy added to the flow in unit time,

ηth =
1
2 ṁ(w2

e − v2
0)

ṁ f H
(6.57)

The energy equation in terms of total temperature reads (Appendix C)

Tt = T + V 2

2cp
(6.58)

Substitution of Eq. 6.58 into Eq. 6.57 yields

ηth = 1− 1

ε
γ−1
γ

(6.59)

where ε is the overall pressure ratio of the cycle,

ε= pt3

p0
= pt3

pt2

pt2

p0
= εc

[
1+ γ−1

2
M 2

0

] γ
γ−1

(6.60)

A graphic representation of Eq. 6.59 is given in Fig. 6.19. This chart emphasizes the importance of
applying a high overall pressure ratio, that is, a high flight Mach number and a high engine speed
in order to accomplish a satisfactory thermal efficiency.

Figure 6.19 Thermal efficiency for Brayton-cycle
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The optimum thermal efficiency as given by Eq. 6.59 is independent of the temperature to which
the gas stream is raised in the burner. It should be realized, however, that the compression of the
air goes together with an increase in temperature. The higher the overall compression ratio, the
less the amount of fuel which can be supplied to the combustion chamber without going beyond
the bounds of the turbine entry temperature. Thus, the maximum pressure ratio increases with
increasing turbine entry temperature and with that the maximum attainable thermal efficiency.
The propulsive efficiency of the turbojet engine is defined as the ratio of power available to the
increase in kinetic energy of the gas stream,

η j = Pa

P j
= T V

1
2 ṁ(w2

e −V 2
0 )

(6.61)

Substituting Eq. 6.35 into Eq. 6.61 yields (pe = p0)

η j = ṁ(we −V0)V0
1
2 ṁ(w2

e −V 2
0 )

= 2

1+ we
V0

= 2

2+ T
ṁV0

(6.62)

The overall efficiency of the entire propulsion process is given by

ηtot = T V0

ṁ f H
= T V0

1
2 ṁ(w2

e −V 2
0 )

1
2 ṁ(w2

e −V 2
0 )

ṁ f H
= η jηth (6.63)

In the case of jet propulsion, the fuel consumption is related to the thrust,

F = cT T (6.64)

where F is the fuel weight flow rate and cT is the thrust specific fuel consumption, or in short spe-
cific fuel consumption (SFC), which has the dimensions of N/Ns or N/Nhr.
The specific fuel consumption is related to the overall efficiency by

ct = F

T
= g

H

V0

ηtot
(6.65)

Specific fuel consumption is an important engine characteristic since it is a measure of the effi-
ciency of the engine. A low value of cT means a high overall efficiency.
We conclude this section with presenting Fig. 6.20, which shows typical results of a series of design
point calculations related to a subsonic flight condition of H = 11000m (I.S.A.) and M0 = 0.80.
In Fig. 6.20, specific fuel consumption is plotted against specific thrust for a range of compressor
pressure ratios and turbine entry temperatures. The curves indicate that specific thrust and specific
fuel consumption increase with increasing turbine entry temperature. At a constant Tt4, however,
an increase in pressure ratio εc causes a reduction in specific fuel consumption.

6.6. COMPONENT EFFICIENCIES
In Section 6.5 we saw that for a given flight condition of altitude and airspeed, both specific thrust
and specific fuel consumption of the ideal turbojet cycle were completely determined by compres-
sor pressure ratio and turbine entry temperature.
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Figure 6.20 Ideal turbojet cycle performance

The actual performance, however, will also depend on the efficiencies of the engine components.
Deviations from the ideal behavior arise mainly from the effects of friction and turbulence in the
flow, through which for example we have non-isentropic compression in the intake and compres-
sor, and non-isentropic expansion in the turbine. In the following, a short description of most of
the imperfections is given.
In the intake, the air is decelerated to a very low velocity before it flows into the compressor. Be-
cause, at least in principle, there is no heat transfer, the total temperature remains constant as the
flow velocity reduces from the flight speed ahead of the intake to the low velocity at the compressor
inlet. In the case of subsonic intakes, viscous effects result in a reduction of total pressure, whilst
for supersonic intakes a further cause for total pressure loss is the occurrence of shock waves.
To describe the efficiency of the intake, the ratio of total pressure at the compressor inlet to the free
stream total pressure may be used,

ηr = pt2

pt0
(6.66)

The quantity ηr is termed the pressure recovery factor of the intake.
A typical variation of ηr with flight Mach number for well-designed intakes is shown in Fig. 6.21.
Alternatively, the intake adiabatic efficiency may be employed, which is defined by

ηd = (Tt2)is −T0

Tt2 −T0
(6.67)

where Tt2 is the actual temperature at the compressor inlet and (Tt2)is is the total temperature that
would have been reached after isentropic compression from p0 to pt2. Since Tt2 = Tt0, we find from
Eq. 6.40 and Eq. 6.41 that
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Figure 6.21 Typical variation of Intake pressure recovery factor

ηd =
[

pt2
p0

] γ−1
γ −1

γ−1
2 M 2

0

or
pt2

p0
=

[
1+ηd

γ−1

2
M 2

0

] γ
γ−1

(6.68)

Combination of Eq. 6.66 and Eq. 6.68 produces the relationship:

ηd =
η
γ−1
γ

r

[
1+ γ−1

2 M 2
0

]
−1

γ−1
2 M 2

0

(6.69)

For subsonic intakes, both ηr and ηd are experienced to be virtually constant with flight Mach
number. At supersonic airspeeds, it is most common to specify the intake losses by means of the
intake pressure recovery factor as a function of Mach number M0.
The efficiency of the compressor may be expressed in terms of the compressor isentropic efficiency,
which is the ratio of the ideal and actual compressor powers,

ηc =
ṁcp ((Tt3)is −Tt2)

ṁcp (Tt3 −Tt2)
= (Tt3)is −Tt2

Tt3 −Tt2
(6.70)

Eq. 6.70 expresses that for a given compressor pressure ratio, the actual total temperature rise ex-
ceeds the isentropic value so that the actual compression process requires more power than the
ideal process.
The temperature rise for a given compressor pressure ratio εc , from Eq. 6.70, is found as follows,

Tt3 −Tt2 = Tt2

ηc

[
ε
γ−1
γ

c −1

]
(6.71)

A disadvantage of the isentropic efficiency is the fact that it is dependent on the magnitude of the
compressor pressure ratio. For this reason, we may use the concept of polytropic efficiency, which is
the isentropic efficiency of an infinitely small pressure change such that it has a fixed value through-
out the entire process. Then

ηpol =
(dTt )is

dTt
= const (6.72)
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Also, from Eq. 6.45, we have for an isentropic process

(dTt )is

Tt
= γ−1

γ

dpt

pt
(6.73)

Combination of Eq. 6.72 and Eq. 6.73 gives

ηpol
dTt

Tt
= γ−1

γ

dpt

pt
(6.74)

Integrating between the limits 2 and 3 furnish

ηpol =
ln(pt3/pt2)

γ−1
γ

ln(Tt3/Tt2)
, or (6.75)

Tt3

Tt2
= ε

γ−1
ηpolγ

c (6.76)

Substitution of Eq. 6.76 into Eq. 6.71 produces the following relation between the polytropic and
the isentropic efficiency of the compression process,

ηc = ε
γ−1
γ

c −1

ε

γ−1
ηpolγ

c −1

(6.77)

Non-isentropic expansion in the turbine makes that for a given turbine pressure ratio the gas comes
out at a higher temperature than in the ideal case. This behavior may be expressed by the turbine
isentropic efficiency, which is defined as the ratio of the actual and ideal turbine powers,

ηt =
ṁcp (Tt4 −Tt5)

ṁcp (Tt4 − (Tt5)is)
= Tt4 −Tt5

Tt4 − (Tt5)is
(6.78)

Combining Eq. 6.51 and Eq. 6.78 results in an expression for the turbine pressure ratio at a given
temperature drop,

pt5

pt4
=

[
1− Tt4 −Tt5

ηt Tt4

] γ
γ−1

(6.79)

Similarly, since for an expansion ηpol = dTt /(dTt )is, it follows that

pt5

pt4
=

[
Tt5

Tt4

] γ
ηpol(γ−1)

(6.80)

Consequently,

ηt =
1−

[
pt5
pt4

] ηpol(γ−1)

γ

1−
[

pt5
pt4

] γ−1
γ

(6.81)
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Figure 6.22 Isentropic efficiencies

Figure 6.23 Dependence of specific heat on temperature

Typical variations of ηc and ηt as functions of pressure ratio are given in Fig. 6.22 for a polytropic
efficiency of 0.85. The curves show that ηc decreases and ηt increases with increasing pressure
ratio.
Another factor that can affect the output of the actual turbojet cycle is the variation of specific heat
cp with the conditions of the gas. Under normal working conditions, generally, cp is a function of
temperature alone. Fig. 6.23 shows the variation of cp with temperature for air and typical combus-
tion gases (Ref. 16). The curves indicate that cp rises somewhat with increasing temperature and
with increasing fuel-air ratio. The opposite is true of the specific heat ratio, γ = cp /cv , since this
quantity is given by (see Chapter 2)

1

γ
= 1− Ra

Mcp
(6.82)

where Ra is the universal gas constant and M the molecular mass of the gas.
It is important to note that the molecular mass of combustion gases is approximately equal to that
of air so thatγ is related to cp by Eq. 6.82 with R = Ra/M = 287m2/(Ks2). For design calculations, it is
common practice to use the following mean values of cp and γ for the compression and expansion
processes, intake and compressor (air): cp = 1005m2/(Ks2), γ= 1.4, turbine and nozzle (gas): cp =
1147m2/(Ks2), γ= 1.333.
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Figure 6.24 Temperature rise for standard fuel

In order to establish the fuel consumption for given values of Tt3 and Tt4, it is essential to match the
heat energy, that is, to balance the sum of the heat energy in the air mass flow rate at the inlet of the
combustion chamber and the fuel mass flow rate at the fuel temperature to that in the combustion
gas at the turbine entry temperature. The required computations may be facilitated by applying a
chart as given in Fig. 6.24 , which shows the temperature increase (Tt4 −Tt4) as a function of fuel-
air ratio for a number of initial temperatures Tt3 (from Ref. 16). These data concern the complete
burning of a reference fuel. When making use of Fig. 6.24 , the fuel mass flow rate is easily obtained
from the product of fuel-air ratio and air mass flow rate.

The combustion process involves two losses, a loss due to imperfect conversion of fuel to heat
energy and a drop in total pressure. A discussion of these subjects, however, is left to the more
advanced studies of propulsion.

Finally, it should be mentioned that some refinement of the ideal performance may be obtained
by taking into consideration the design of the exhaust nozzle. In this connection, it is important to
recognize that a gas turbine engine designed for subsonic flight speeds, usually, has a convergent
nozzle (Fig. 6.25).

Since the expansion process in the exhaust nozzle is nearly isentropic, we can make use of Eq. 6.40
to write

pt5 = pte = pe

[
1+ γ−1

2
M 2

e

] γ
γ−1

(6.83)

According to Appendix C, in the case of a convergent nozzle a critical pressure ratio is distinguished,
which yields sonic velocity at the nozzle exit. Insertion of Me = 1 into Eq. 6.83 yields



6.6. COMPONENT EFFICIENCIES

6

141

Figure 6.25 Exhaust nozzles

[
pte

pe

]
cr
=

[
γ+1

2

] γ
γ−1

(6.84)

For air, taking γ= 1.4, the critical pressure ratio is 1.893; for gas, using γ= 1.333, (pte /pe )cr equals
1.851. These values apply of course only to the case of isentropic expansion in the nozzle. For
pressure ratios below the critical value, the pressure pe in Eq. 6.83 may be set equal to p0. Then

pte

p0
<

[
γ+1

2

] γ
γ−1

(6.85)

When the latter condition exists, we have unchoked flow. This implies that Me < 1 and pe = p0 so
that the jet flows out as a cylindrical stream (Fig. 6.25a). Because of the equality pe = p0 the pressure
term in Eq. 6.35 for the thrust is zero, and the nozzle exit Mach number is given by Eq. 6.53.
When the actual nozzle pressure ratio is greater than the critical value, we have

pte

p0
>

[
γ+1

2

] γ
γ−1

(6.86)

Now we speak of choked flow since the mass flow rate has its maximum value. The Mach number
is unity at the exit plane, and the static pressure at the nozzle exit becomes

pte

p0
=

[
γ+1

2

] γ
γ−1

(6.87)

where pe > p0.
For most control settings and flight conditions of interest to gas turbine engines the flow at the
nozzle exit will be choked so that the flow behind the exit plane will expand further (Fig. 6.25b).
To achieve optimum thrust under such conditions, clearly, the nozzle would have to be convergent-
divergent (Fig. 6.25c). Especially at supersonic flight speeds, where high-pressure ratios occur, it is
essential to use a convergent-divergent nozzle in order that the pressure pe matches the ambient
pressure p0.
Fig. 6.26 presents again the thermal efficiencies of turbojet cycles, but now with typical efficiency
values for intake, compressor and turbine, and with application of convergent nozzles. As assumed
in Fig. 6.20, the flight Mach number is 0.8 and the flight altitude 11000 meters (I.S.A.). To simplify
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Figure 6.26 Thermal efficiency

matters, it is adopted that the working fluid behaves throughout the engine as a perfect gas with
fixed thermodynamic properties, which are equal to those of air. Also the assumptions are made of
perfect combustion and isentropic expansion of the flow in the exhaust nozzle.

It is seen from Fig. 6.26 that as the compressor pressure ratio is enlarged for a given turbine entry
temperature the thermal efficiency is increased until a peak value is achieved. Further increase in
pressure ratio then diminishes the thermal efficiency. Apparently, there is a maximum pressure
ratio corresponding to some given turbine entry temperature.

In order to demonstrate how the specific fuel consumption and specific thrust are affected by the
efficiencies of intake, compressor and turbine, results of design point calculations are presented in
Fig. 6.27, using the same basic figures and assumptions as in Fig. 6.26. Looking at the actual and
ideal performance in Fig. 6.27 and Fig. 6.20, we see that the picture is largely the same, except that
noticeable performance penalties arise from the imperfections.

6.7. TYPICAL TURBOJET PERFORMANCE
The reader is reminded that in Section 6.5 and Section 6.6 we have been considering the design
point performance. This term indicates the performance when the engine is running at the par-
ticular compressor pressure ratio, turbine entry temperature, atmospheric conditions and forward
speed for which the components are designed. For a given engine the remaining problem is then
to provide the off-design performance, being the performance over the entire operating range of
control settings, airspeeds and atmospheric conditions.

The methods of attaining such data are wholly beyond the scope of this book. Here we will merely
illustrate the typical effects of the operational variables on the performance of the turbojet.

The engine speed is controlled by the fuel flow rate. However, for a given supply of fuel, thrust
and specific fuel consumption are affected by the conditions of the air entering the intake. These
conditions are defined by four variables: (1) airspeed V0 or flight Mach number M0, (2) ambient
pressure p0 or geopotential pressure altitude Hp , (3) ambient temperature T0, and (4) humidity q .
Thus we can write
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Figure 6.27 Turbojet cycle performance

T = T (Γ, M0, Hp ,T0, q)

cT = cT (Γ, M0, Hp ,T0, q)
(6.88)

The symbolΓ in these equations is used for the engine control setting, which, usually, is represented
by compressor rpm (revolutions per minute) instead of fuel flow rate.
When standard atmospheric conditions are assumed, the state of the incoming airstream is com-
pletely described by flight Mach number and altitude, and the relations in Eq. 6.88 reduce to

T = T (Γ, M0, H)

cT = cT (Γ, M0, H)
(6.89)

Fig. 6.28 depicts how static thrust, air mass flow rate and specific fuel consumption vary with con-
trol setting. The three quantities show a strong dependence on compressor speed, owing to the
increase of compressor pressure ratio and air mass flow rate with increasing compressor rpm.
It should be noticed that the engine rating full power in Fig. 6.28 can be used only for a limited
duration (for example, five minutes) in order to avoid a risk of damage to the engine. Therefore,
the manufacturer designates a number of ratings at which the engine may be running for short
periods and at which the engine may be operated continuously. For example, the maximum thrust
permitted for continuous operation, which is often named maximum except takeoff (METO-)power.
The maximum control setting permitted in the cruise portion of the flight may be called maximum
cruise.
Typical variations in thrust and specific fuel consumption are shown in Fig. 6.29 with respect to
changes in engine control setting and Mach number for a turbojet operating at a fixed altitude. It is
seen that thrust increases significantly with increasing engine rating for any given Mach number.
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Figure 6.28 Typical static performance of turbojet

Figure 6.29 Sea-level performance of typical turbojet engine

As Mach number increases from static, thrust at constant rotational speed decreases because the
increase of jet velocity with flight speed is relatively small. Hence, the difference between we and V0

goes down as airspeed increases so that according to Eq. 6.38 the specific thrust will become less.
At higher airspeeds, a beneficial effect of an increasing mass rate of airflow through the system
more than balances, and thrust starts to rise. As a result, in the subsonic speed regime the thrust is
more or less constant with airspeed.
Fig. 6.29 also shows how specific fuel consumption varies with Mach number. Apparently, some
change for the worse occurs with increasing airspeed.
With respect to the observation that the thrust is approximately independent of airspeed, mention
must be made of the circumstance that at supersonic airspeeds the air mass flow rate becomes so
large that a substantial increase in thrust takes place. The curves in Fig. 6.30 illustrate the strong
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Figure 6.30 Typical performance of turbojet designed for use at supersonic speeds

dependence of turbojet thrust on airspeed at Mach numbers greater than one.

It is also seen from Fig. 6.30 that thrust decreases markedly with increasing altitude. As shown in
Fig. 6.31, the same influence of altitude on thrust is found for a typical subsonic turbojet. Spe-
cific fuel consumption, however, manifests some improvement as the airplane gains altitude. The
minimum value of the specific fuel consumption occurs in the stratosphere (I.S.A.).

The effect of altitude on thrust can be explained by considering the separate influences of atmo-
spheric pressure and temperature. Looking back to the cycle analysis in Section 6.5, it may be un-
derstood that specific thrust is not dependent on the magnitude of the ambient pressure, but only
on pressure ratio and the ambient temperature. Thereby, it appears that specific thrust increases as
the ambient temperature becomes less. This means that as height is gained in the troposphere, the
reduction of temperature will cause an increase in specific thrust. On the contrary, at a given en-
gine control setting and flight Mach number the mass flow rate decreases with increasing altitude
due to the decreasing air density. Owing to this opposing influence of altitude on specific thrust
and mass flow, the variation of thrust with altitude may be written as

T

T0
=

[
ρ

ρ0

]n

(6.90)
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Figure 6.31 Altitude performance of typical turbojet engine

Figure 6.32 Variation of thrust with altitude

where the subscript “0” designates sea-level condition. For turbojet thrust, in the troposphere
(I.S.A.), the power n is about 0.75, giving a thrust at the tropopause which is approximately 40%
of its sea-level value (Fig. 6.32).
In the lower stratosphere (I.S.A.), where the air temperature is constant, the thrust varies in propor-
tion to the density of the air,

T

Ts
= ρ

ρs
(6.91)

where the subscript “s” denotes the condition at the tropopause.
At a given geopotential pressure altitude, a significant variable in the thrust equations is the tem-
perature. From previous discussions we know that when the air temperature increases, air mass
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Figure 6.33 Effect of air temperature on thrust and power

flow rate and specific thrust decrease. Consequently, less thrust will be delivered by the engine.
Calculation results for the ratio of thrust in standard and off-standard atmosphere are plotted in
Fig. 6.33 against air temperature. It is also shown that the power of the piston engine is less sensi-
tive to temperature variations than turbojet thrust.

Clearly, during warm days it may be necessary to restore the thrust. A temporary increase in thrust
can be obtained by liquid injection, through which the air entering the engine is cooled by means
of vaporization of a mixture of water and methanol. Addition of the coolant to the flow is usually
achieved by spraying the liquid into the compressor inlet or directly into the combustion chamber.

Finally, the effect of the presence of humidity in the atmosphere must be mentioned. Investigations
in Ref. 17 indicate, however, that the effect of humidity on turbojet performance is generally small.
The test results for which the static performance data of a turbojet at sea level were determined at
constant engine speed and air temperature, show a decrease of about 5 percent in thrust for the
large variation in specific humidity from 0 to 0.04 (Fig. 6.34). In order to illustrate the humidities
that might be encountered in the operation of airplanes, the calculated variation of saturation spe-
cific humidity with altitude is also presented in Fig. 6.34.

The effect of humidity on the shaft power of the piston engine is depicted in Fig. 6.34 for compari-
son (Ref. 18). It is clearly seen that there is a much greater effect of atmospheric humidity on piston
engine power.

6.8. THE TURBOPROP ENGINE
Fig. 6.35 shows a two-spool configuration of the turboprop. This arrangement has a separate high-
pressure compressor/turbine system, which is mechanically independent of the low-pressure com-
pressor/turbine system. The low-pressure turbine extracts from the gas flow the useful power to
drive the propeller.

We proceed with an examination of the thermodynamic processes in the gas generator. For sim-
plicity’s sake, we shall assume that the pressure of the gas falls completely to ambient pressure in
going through the turbines.

Working through the cycle the points will be numbered as in Fig. 6.35. Thus, the total temperature
at the compressor inlet comes from
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Figure 6.34 Effect of humidity on engine performance

Tt2 = T0

[
1+ γ−1

2
M 2

0

]
(6.92)

where T0 is the ambient temperature and M0 the flight Mach number. Likewise, the total pressure
at station 2 is given by

pt2 = p0

[
1+ηd

γ−1

2
M 2

0

] γ
γ−1

(6.93)

where ηd is the adiabatic efficiency of the intake. By inserting Eq. 6.76 into Eq. 6.49, we obtain the
turbine power required to drive the compressor per unit air weight flow rate as

Figure 6.35 Two-spool turboprop
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Pc

ṁg
= cp

g
Tt2

[
ε

γ−1
ηpolγ

c −1

]
(6.94)

where εc = pt3/pt2 is the compressor pressure ratio and ηpol the polytropic efficiency of the com-
pressor. Note that in deriving Eq. 6.94 use is made of the assumption that cp is constant throughout
the engine. The quantity Pc /ṁg may be called specific compressor power. We can use Eq. 6.80 to
solve for the total specific turbine power

Pt

ṁg
= cp

g
Tt4

1−
(

pt5

pt4

) ηpol(γ−1)

γ

 (6.95)

where now ηpol is the polytropic efficiency of the turbine. Admitting here the simplification of
assuming that in the turbine the flow expands to ambient pressure, the specific output of the engine
from Eq. 6.94 and Eq. 6.95 then turns out to be

ψP = Pbr

ṁg
= cp

g

Tt4

1−
(

p0

pt4

) ηpol(γ−1)

γ

−Tt2

[
ε

γ−1
ηpolγ

c −1

] (6.96)

As in the case of the piston engine, the specific fuel consumption of the turboprop is expressed
as the fuel weight flow rate divided by shaft brake power. Using Eq. 6.48 produces the following
expression

cP = F

Pbr
= ṁ f g

ψP ṁg
= cp (Tt4 −Tt3)

HψP
(6.97)

where cP has the dimensions N/Whr or N/kWhr.
Specific shaft power and specific fuel consumption of the gas generator for matched expansion in
the power turbine (pt5 = pe = p0) are presented in Fig. 6.36. These have been calculated for a range
of turbine entry temperatures and compressor pressure ratios and apply to a flight Mach number of
M0 = 0.4 and an altitude of 4000 m (I.S.A.). Used is the assumption that cp and γ have everywhere
the same values as in ambient air.
It is seen again that in a gas turbine engine an increase in turbine entry temperature results in a
considerable increase in specific output. The curves in Fig. 6.36 also show that there is for any
given turbine entry temperature, an optimal compressor pressure ratio producing maximum spe-
cific power. Increase in pressure ratio beyond this optimum reduces specific power, but provides an
improvement of specific fuel consumption. The curves also make clear that for any given turbine
entry temperature there exists an optimal value of compressor pressure ratio yielding the minimum
specific fuel consumption.
Comparison of the curves in Fig. 6.36 and in Fig. 6.27 shows a complete similarity, only that at a
given pressure ratio, the specific fuel consumption in the turboprop tends to improve somewhat
with increasing turbine entry temperature, whereas in the turbojet there is an associated increase
in specific fuel consumption. The actual turboprop performance differs from the gas generator
output in Fig. 6.36 in that some of the useful power becomes available as jet thrust. This is due to
the fact that when designing a turboprop, the pressure of the gas at the turbine exit is always chosen
greater than ambient pressure in order to use the pressure drop after the turbines to eject the gases
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Figure 6.36 Gas generator cycle performance

from a jet nozzle (Fig. 6.35). In cruise the power produced from the exhaust thrust may amount
to 10-20 percent of the useful power. The contribution of the jet thrust, T j , to the power output is
usually expressed in terms of an apparent increase in shaft power. The definition of the so-called
equivalent shaft power, Peq follows from

Pa = T V0 = η j Pbr +T j V0 (6.98)

where Pa is the power available for propulsion, and η j the propulsive efficiency. Hence,

Peq = Pa

η j
= Pbr +

T j V0

η j
(6.99)

When the airplane is not moving, it is assumed that the propeller generates a fixed amount of thrust
per unit shaft power. Thus, the static equivalent shaft power can be expressed as

Peq = Pbr +
T j

K
(6.100)

For an average propeller, the factor K is approximately 15 N/kW. Although the output of the turbo-
prop often is specified in terms of equivalent shaft power, it might be worthwhile for any analysis
to detail both shaft power and jet thrust.
From the above discussion, it may be clear that the performance of a turboprop is dependent on the
same parameters as those used for turbojet performance. When the restriction is made of operation
in the International Standard Atmosphere, we can write

Pbr = Pbr(Γ, M0, H)

T j = T j (Γ, M0, H)

cT = cT (Γ, M0, H)

(6.101)
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Figure 6.37 Static performance at sea level of turboprop

Fig. 6.37 shows schematically the static performance of the turboprop at sea level as a function of
control setting.
The typical variations of shaft power, jet thrust, and specific fuel consumption with flight Mach
number are illustrated by the curves in Fig. 6.38a. The shaft power and specific fuel consumption
show some improvement with increasing forward speed, whereas the thrust strongly decreases as
the airspeed increases. The qualitative effect of altitude on turboprop performance is sketched in
Fig. 6.38b. It can be seen that there is a loss of power and thrust and an improvement in specific
fuel consumption with increasing altitude. Like the thrust of the turbojet, also the equivalent shaft
power of the turboprop at any given altitude may be related to its sea-level value by the relationship

Peq

(Peq)0
=

[
ρ

ρ0

]n

(6.102)

where again in the troposphere, the exponent n has a value of approximately 0.75. At a given pres-
sure altitude, the effect of an increase in air temperature is a loss of shaft power and jet thrust, and
a worsening of specific fuel consumption (see also Fig. 6.33).

6.9. THE TURBOFAN
In the turbofan engine, the available energy from the gas generator is converted to one of greater
mass flow rate and lower exhaust velocity, than it was directly expanded in the hot nozzle. As
sketched in Fig. 6.6, this is accomplished by combining the ideas of the turbojet and the turboprop.
In the two-spool layout of Fig. 6.6, the fan is driven by a low-pressure turbine. This configuration
is suitable for mediate compressor pressure ratios and bypass ratios. At very high values of these
parameters, the three-spool system of Fig. 6.39 may be required to keep the fan rotational speed
within acceptable bounds. To understand the workings of gas turbine engines it will be useful to
follow a numerical example of the method of calculating turbofan specific thrust and specific fuel
consumption. Therefore we shall determine the design point performance of a hypothetical two-
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Figure 6.38 Typical turboprop performance

spool turbofan engine with convergent nozzle, for a flight Mach number of 0.8 and an altitude of
11000 m (I.S.A.).
The four design parameters for the engine are:

• bypass ratio 3.5

• total compressor pressure ratio 20

• fan pressure ratio 1.7

• turbine entry temperature 1300 K

Using the engine stations as numbered in Fig. 6.40, we have at the fan inlet with T0 = 217K and
γ= 1.4

Figure 6.39 Three-spool turbofan
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Figure 6.40 Turbofan station designations

Tt2 = T0

[
1+ γ−1

2
M 2

0

]
= 217× (1+0.2×0.64) = 245K

If the pressure recovery factor of the intake is 0.95, the pressure ratio at station 2 has the following
value:

pt2

p0
= ηr

[
1+ γ−1

2
M 2

0

] γ
γ−1 = 0.95(1+0.2×0.64)3.5 = 1.448

At the fan exit we have

Tt3 = Tt2

[
pt3

pt2

] γ−1
ηpolγ = 245(1.7)0.336 = 293K,

where for the polytropic efficiency a value of 0.85 is used. The related pressure ratio is

pt3

p0
= pt3

pt2

pt2

p0
= 1.7×1.448 = 2.462

Thus, the cold nozzle pressure ratio is
pt3

p0
= 2.462

When the expansion processes in the nozzles are accepted to be 100% efficient, the critical pressure
ratio, from Eq. 6.84 is

pt3

p8
=

[
γ+1

2

] γ
γ−1 = (1.2)3.5 = 1.893

Since pt3/p0 > pt3/p8 the cold nozzle is choked so that M8 = 1.0 and p8 > p0. Hence,

T8 = T13

(
2

γ+1

)
= 293

(
1

1.2

)
= 244K,

p8

p0
= p8

pt3

pt3

p0
= 2.462

1.893
= 1.301

The cold nozzle outlet velocity is

w8 = M8
√
γRT8 = 1

p
1.4×287×244 = 313m/s



6

154 6. PROPULSION

The contribution of the cold stream to the specific thrust of the engine is given by

Tc

ṁg
= ṁc (w8 −V0)

ṁg
+ A8

(
p8 −p0

)
ṁg

,

where V0 = M0
√
γRT0 = 0.8

p
1.4×287×217 = 236m/s.

Using the familiar relationships ṁc = ρ8w8 A8, ρ8 = p8
RT8

and ṁc
ṁ = B

B+1 it readily follows that

Tc

ṁg
= B

B +1

1

g

[
(w8 −V0)+

√
RT8

γ

[
1− p0

p8

]]
Putting in numerical values yields

Tc

ṁg
= 3.5

(3.5+1)

1

9.81

[
(313−236)+

√
287×244

1.4

[
1− 1

1.301

]]
= 10.2s

The pressure ratio of the high-pressure compressor is

pt4

pt3
= pt4

pt2

pt2

pt3
= 20

1.7
= 11.765

The total temperature at the outlet from the high-pressure compressor comes from

Tt4 = Tt3

[
pt4

pt3

] γ−1
ηpolγ = 293(11.765)0.336 = 671K,

where a polytropic efficiency of 85% (ηpol = 0.85) is adopted again.
The high-pressure turbine temperature drop follows from the equality of compressor and turbine
powers. Admitting the assumption that throughout the engine the specific heats of the working
fluid have the same values as in atmospheric air (cp = 1005m2/(Ks2), γ= 1.4, R = 287m2/(Ks2)), we
obtain

Tt5 −Tt6 = 1

ηm
(Tt4 −Tt3) ,

where ηm is the mechanical efficiency. This factor takes into account the losses that occur when
power is transmitted from the turbine to the compressor. Setting ηm = 0.98 we find the temperature
behind the high-pressure turbine to be

Tt6 = Tt5 − 1

ηm
(Tt4 −Tt3) = 1300− 1

0.98
(671−293) = 914K

The low-pressure turbine temperature drop follows from the power demand of the low-pressure
compressor,

ṁh (Tt6 −Tt7) = 1

ηm
ṁ (Tt3 −Tt2)

Remembering that ṁ/ṁh = B +1, and using ηm = 0.98
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Tt7 = Tt6 − (B +1)

ηm
(Tt3 −Tt2) = 914− (3.5+1)

0.98
(293−245) = 694K

To calculate the hot nozzle pressure ratio we write

pt7

p0
= pt7

pt5

pt5

pt4

pt4

pt3

pt3

p0

The total turbine pressure ratio is given by

pt7

pt5
=

[
Tt7

Tt5

] γ
ηpol(γ−1)

With a turbine polytropic efficiency of 85% we get

pt7

pt5
=

[
694

1300

]4.118

= 0.07544

The pressure loss in the combustor is assumed to be 5% of the compressor delivery pressure, so
that

pt5

pt4
= 0.95

With the substitution of these numbers, the nozzle pressure ratio becomes

pt7

p0
= 0.07544×0.95×11.765×2.462 = 2.076

It appears that also the hot nozzle is choked so that Me = 1.0 and pe > p0. Accordingly,

Te = Tt7

(
2

2

γ+1

)
= 694

(
1

1.2

)
= 578K,

pe

p0
= pe

pt7

pt7

p0
= 2.076

1.893
= 1.097

The jet velocity of the hot stream is

we = Me
√
γRTe = 1

p
1.4×287×578 = 482m/s

The contribution of the hot stream to the specific thrust of the engine is given by

Th

ṁg
= ṁh (we −V0)

ṁg
+ Ae

(
pe −p0

)
ṁg

Recalling that ṁh/ṁ = 1/(B +1), we find
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Th

ṁg
= 1

B +1

1

g

[
(we −V0)+

√
RTe

γ

[
1− p0

pe

]]

= 1

(3.5+1)

1

9.81

[
(482−236)+

√
287×578

1.4

[
1− 1

1.097

]]
= 6.3s.

The total specific thrust is

ψt = Tc

ṁg
+ Th

ṁg
= 10.2+6.3 = 16.5s.

The specific fuel consumption comes by dividing the fuel weight flow rate by the thrust

cT = ṁ f g

T

The fuel flow equation may be written as

ηbṁ f H = ṁhcp (Tt5 −Tt4) ,

where H is the heating value of the fuel (H = 4.31×107 J/kg) and ηb is the combustion efficiency,
which is introduced to take into account the incomplete burning of the fuel flow. Combining the
latter two equations leads to

cT = 1

B +1

cp

Hηb

(Tt5 −Tt4)

ψT

Assuming ηb = 0.95, we obtain

cT = 1005(1300−671)3600

(3.5+1)4.31×107 ×0.95×16.5
= 0.76N/Nh

The above calculations indicate that bypassing of air results in a low specific thrust compared with
the turbojet (see Fig. 6.27). On the other hand, the figure obtained for the specific fuel consumption
illustrates that at a flight Mach number M0 = 0.8 the efficiency of the turbofan is markedly better
than that of the turbojet.
To explain the principal flight regimes for application of a specific engine type, particularly, the
propulsive efficiency may be used. According to Eq. 6.61, the propulsive efficiency is given by the
ratio of power available to the increase in kinetic energy of the flow. In terms of the equivalent jet
velocity, we have

η j = 2

1+ (we )eq
V0

(6.103)

and also

η j = 2

2+ T
ṁV0

(6.104)

Clearly, propulsive efficiency increases with increasing flight speed and mass flow rate, and de-
creases with decreasing jet velocity. A comparison of propulsive efficiency values for the various
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Figure 6.41 Typical trends of propulsive efficiency

types of engines is sketched in Fig. 6.41. Since turbojet thrust is produced at high jet velocities, the
higher the flight speed, the higher is its propulsive efficiency. Due to the increased mass flow rate
and reduced mean exhaust velocity of the turbofan, this engine type is best in the high-subsonic
speed range. At low-subsonic flight speeds, the propeller remains much to be preferred to the other
forms of propulsion.

Of course, the ultimate basis on which the engine types must be compared is the overall efficiency,
which follows from the product of propulsive efficiency and thermal efficiency.

The thermal efficiency is determined by the parameters defining the thermodynamic cycle of the
flow, through which it is mainly within the control of the engine designer. Obviously, measures to
improve the propulsive efficiency are only valuable if there is a resultant increase in overall effi-
ciency.

The way in which thrust and specific fuel consumption vary with bypass ratio for a turbofan with a
given gas generator is sketched in Fig. 6.42. Two flight conditions are shown: takeoff and cruise at
the tropopause (I.S.A.). The main features are that thrust increases and specific fuel consumption
decreases by application of a greater bypass ratio.

The typical variation of thrust and specific fuel consumption with flight Mach number and control
setting, is explained by the curves in Fig. 6.43. Compressor speed, expressed as percentage of maxi-
mum, is used to specify the engine control setting. From these plots we may see that in comparison
with the turbojet there are vital reductions in specific fuel consumption (cf. Fig. 6.29). On the other
hand, the turbofan thrust shows a significant decrease with airspeed.

The variation of turbofan thrust with altitude may also be represented by Eq. 6.90. Now, the value
of the exponent depends on bypass ratio, and because of the large mass flow rates involved, n is
usually near one.

Finally, it should be realized that the calculations made in this section concern the bare engine.
The airplane performance equations, of course, require the use of the installed thrust and specific
fuel consumption, which include both the detrimental effects associated with the integration of en-
gine and airplane structure and the losses owing to bleeding compressed air and power extraction.
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Figure 6.42 Effect of bypass ratio on performance of turbofan

Figure 6.43 Typical turbofan engine performance

However, a detailed analysis of all these effects is not simple and certainly beyond the scope of this
text.

6.10. HYBRID-ELECTRIC PROPULSION ARCHITECTURES
Propulsion systems in which both a fueled power source and an electric motor are combined are
designated hybrid-electric propulsion systems. These propulsion systems have been introduced
widely in the automotive industry since the late 1990s. They are designed primarily to reduce fuel
consumption. In addition, noise emissions are also reduced. The main factor that has prevented
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Figure 6.44 Hybrid-electric propulsion system architectures

the introduction of hybrid-electric propulsion systems within commercial aviation is the relatively
high weight of these systems. As will be explained in detail in Chapter 11, weight has a considerable
effect on airplane performance. This effect is much larger for airplanes than for ground vehicles.
Airplanes have to create a lift force which balances the weight. In simple terms, an airplane design
with a higher weight requires more lift and needs larger wings. This results in more aerodynamic
drag which needs to be compensated by more powerful engines. The larger wings and more pow-
erful engines in turn also cause a weight increase of the design. This cycle is called “the snowball
effect”. Altogether, a higher weight leads to more fuel consumption. Thus the introduction of a
potentially more efficient propulsion system may in fact cause an increase in fuel consumption if
the weight increase is too large. In addition to this main factor, airplanes have a relatively long de-
velopment time (in the order of 10 years). Because of the high costs involved in the development
of a new airplane and the stringent safety standards, the aviation industry is quite conservative. At
present, the use of hybrid-electric propulsion systems for commercial passenger airplanes is being
investigated in various research programs and private companies. Even if these programs and ini-
tiative are going to be successful, these airplanes will most likely not be introduced before the year
2035. A successful introduction will also largely depend on the development of battery technology,
especially in terms of the energy density ratio. Nevertheless, airplanes designed for a small flight
range and a limited number of passengers, are adopting hybrid-electric and all-electric propulsion
systems at a much faster pace.
Five main types of (hybrid-)electric propulsion system architectures can be defined. The first three
architectures in the list are schematically represented in Fig. 6.44. For sake of brevity, various com-
ponents such as power inverters are omitted from the picture.

1. Turbo-electric

2. Series hybrid

3. Series-Parallel or combined hybrid

4. All electric
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5. Parallel hybrid

In the parallel hybrid architecture, two separate systems are driving the shaft connected to the
propulsive device (a fan or propeller). The first system is a gas turbine, powered by fuel. The second
system is an electric motor powered by batteries. The advantage of this architecture is that the gas
turbine can be designed specifically for the cruise condition, and electric power can be used when
there is a peak power demand such as during take-off. During the descent phase, batteries can
be recharged. On the longer term, when the energy density of batteries is increased by orders of
magnitude compared to present day batteries, there is an additional advantage: part of the fuel
may then be replaced by batteries in this architecture.
The turbo-electric approach is one where a turbo-shaft engine is coupled to a generator which de-
livers electrical power. The electrical power is used to drive multiple fans or propellers. All the
energy in this configuration originates from conventional fuel. However, it enables the use of mul-
tiple fans distributed over the airframe. These fans do not have to be at the same location as the
turbo-shaft engine. With many small fans, a large effective bypass ratio can be achieved, which im-
proves the propulsive efficiency. By carefully integrating small fans with the wings and or fuselage,
the aerodynamic efficiency (lift over drag ratio) and maximum lift coefficient can both be improved
(Ref. 19).
In the series hybrid architecture, a turbo-shaft engine powered by fuel delivers mechanical power
to a generator, which converts it into electrical power. Additional electric power is provided by
batteries. The electric power is used by electric motors which drive multiple distributed fans (or
propellers). In terms of advantages, the series hybrid architecture is similar to the parallel architec-
ture. For road vehicles, the series hybrid architecture is claimed to have a lower fuel consumption
(Ref. 20). However, it has a higher weight than the parallel architecture. For aerospace applications,
it may therefore be more beneficial to employ a parallel architecture (Ref. 21).
Evidently, it is also possible to create combinations of parallel and series hybrid electric architec-
tures in a single airplane. This is called series-parallel or combined hybrid.
Finally, it is possible to have an all-electric architecture. The working principle of an all-electric
propulsion system was already described in Sections 6.1 and 6.3. The interested reader is referred
to Ref. 22 for a more thorough introduction to the different types of hybrid-electric propulsion
system architectures.

6.11. PROBLEMS
1. List the four main types of air-breathing propulsion systems used in aviation.

2. Describe the working principle of a four-stroke piston engine.

3. Name at least one advantage and one disadvantage of brushed DC motors compared to
brushless DC motors.

4. An airplane equipped with turbojet engines has a flight speed of 200 m/s at sea level con-
ditions. The engines provide a total thrust of 100 kN. The jet velocity of the engines equals
300 m/s. Compute the propulsive efficiency and the mass flow of air through the engines. It
can be assumed that the pressure at the nozzle exit equals the atmospheric pressure.
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5. Assume that the airplane described in the previous question has a higher flight speed and all
other parameters (thrust, mass flow, jet velocity) remain exactly the same. For this hypothet-
ical situation, will the propulsive efficiency increase or decrease compared to the previous
situation?

6. Complete the empty space in the following sentence. The exhaust flow of a turbojet engine is
_________ (choked/unchoked) in case the pressure at the nozzle exit equals the atmospheric
pressure.

7. The sea-level static thrust of a specific turbojet engine is 12 kN. It can be assumed that the
maximum thrust is independent of the airspeed. The variation of thrust with altitude for this
engine may be written as the following two equations:

T

T0
=

(
ρ

ρ0

)n

and
T

Ts
= ρ

ρs

where n equals 0.7 for the troposphere and 1 for the lower stratosphere. Calculate the maxi-
mum thrust at 12 km altitude.

8. The Concorde was a supersonic passenger airplane designed to cruise at 18 km altitude and
Mach 2. Isentropic flow can be assumed. Calculate the temperature at the nose of this air-
plane.

9. Which of the following propulsion systems has the highest propulsive efficiency at low sub-
sonic flight speeds:

(a) Propeller propulsion

(b) Turbofan

(c) Turbojet

(d) Ramjet

10. Which type of air-breathing propulsion system has the highest propulsive efficiency at high
subsonic Mach numbers (approximately M = 0.8)?

11. List four types of hybrid-electric propulsion system architectures.

12. Describe the main potential advantages of using a parallel hybrid-electric propulsion system
architecture compared to the use of conventional turbofan engines.

13. Make a schematic drawing of the working principle of a turbo-electric propulsion system.





7
PROPELLER PERFORMANCE

7.1. PROPELLER THRUST AND EFFICIENCY
As illustrated in Fig. 7.1, an airplane propeller consists of two or more blades of which the blade
sections are airfoil shaped. The propeller blades convert the shaft power of the engine into a thrust
by pushing air backward, whereby the propeller thrust is given by the time rate of change of mo-
mentum of the air that passes through the propeller. The control surface 0 in Fig. 7.1 is far upstream
of the propeller where air pressure and flow velocity have their free stream values p0 and V0. The
aft plane e is sufficiently far downstream that the local pressure equals the free stream pressure p0.
Then

T = m(we −V0) (7.1)

where we is the final slipstream velocity.
Eq. 7.1 defines the thrust which is obtained in the absence of the airframe. Therefore, this force
may be called the free air thrust.
The work done by the thrust per unit time is the power available Pa , and the ratio of Pa to shaft
power Pbris the propulsive efficiency of the propeller (see also Eq. 6.1),

Figure 7.1 Shape and propulsive action of airplane propeller
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Figure 7.2 Typical propeller performance

ηi = Pa

Pbr
= T V0

Pbr
(7.2)

Consequently, the variation of thrust with airspeed is given by

T = η j
Pbr

V0
(7.3)

From our discussion in Chapter 6 we know that at a given altitude and engine control setting, it
is a good approximation to assume that the shaft power is independent of forward velocity. If we
also assume that η j has a constant value, the thrust predicted by Eq. 7.3 will strongly diminish as
airspeed increases. This strong dependence of thrust on airspeed holds also for an actual propeller,
as sketched in Fig. 7.2.
At zero velocity the actual propeller generates a finite thrust, which is called static thrust. Under this
condition, the propulsive efficiency from Eq. 7.2 is zero. In the first instance η j increases consider-
ably with airspeed, but beyond 200 km/hr the propulsive efficiency remains more or less constant
until, at about 700 km/hr, the efficiency is seriously impaired as the blade tips approach the speed
of sound.
Essentially, the speed of the propeller blade tip relative to the air is the vector sum of the forward ve-
locity V0 in the direction of the propeller axis and the rotational velocityωR, directed perpendicular
to the propeller axis (Fig. 7.3). The magnitude of the propeller tip speed is thus given by

Vt =
√

V 2
0 + (ωR)2 =

√
V 2

0 + (πnp D)2 (7.4)

where R is the blade radius, ω is the angular velocity and np is the number of revolutions per sec-
ond of the propeller (ω = 2πnp ). On the small airplanes with piston-engine, the propeller may be
connected directly with the engine crankshaft. In this case the propeller speed np equals the en-
gine speed n. On turboprop airplanes there is always a gearbox, which makes that the propeller
turns much more slowly than the turbine shaft that drives it so that the ratio np /n is less than one.
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Figure 7.3 Propeller tip speed

As the tip speed Vt approaches the speed of sound, the compressibility effects will dramatically re-
duce the propulsive efficiency of the propeller. This factor limits the use of the current propellers
to a maximum flight Mach number of about 0.6 (see Fig. 7.2 and Fig. 6.41). Some further insight
into the fundamental relationship between thrust, shaft power, propulsive efficiency and airspeed
can be obtained from a classic treatment which is known as the momentum theory. As depicted in
Fig. 7.4, the assumption is made that the flow passing through the propeller forms a well-defined
stream tube, where the propeller is replaced by an actuator disk. Furthermore, this theory assumes
that the pressures and velocities are evenly distributed over the disk area and that the flow is incom-
pressible and irrotational. By the action of the propeller, the free stream velocity V0 is increased to
the slipstream velocity (V0 +Va3), and a certain contraction of the air flow passing through the disk
occurs.

As the flow approaches the disk, the free stream velocity V0 increases to a value (V0+Va) at the disk.
At the same time the static pressurep0 falls to p1 just in front of the disk. In the slipstream behind
the disk the velocity rises to a value (V0 +Va3). The pressure increases to p2 on passing through the
disk and decays to the free stream value p0 in the slipstream.

Since the thrust is given by the time rate of change of axial momentum, we get

T = ρπ
4

D2(V0 +Va)Va3 (7.5)

where ρ is the ambient density and D is the diameter of the disk. The thrust acting on the disk is
also given by

T = π

4
D2(p2 −p1) (7.6)

Application of Bernoulli’s equation (Appendix C) on each side of the actuator disk yields
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Figure 7.4 Velocities and pressures of the momentum theory

p0 + 1

2
ρV 2

0 = p1 + 1

2
ρ(V0Va)2

p2 + 1

2
ρ(V0 +Va)2 = p0 + 1

2
ρ(V0Va3)2

(7.7)

From Eq. 7.6 and Eq. 7.7, we find

T = ρπ
4

D2(V0 + 1

2
Va3)Va3 (7.8)

Comparing Eq. 7.5 and Eq. 7.8, we obtain

Va = 1

2
Va3 (7.9)

The latter equality shows that half the total increment in velocity occurs in front of the disk. The
shaft power may be expressed as the increase in kinetic energy of the air mass flow rate,

Pbr =
1

2
ρ
π

4
D2(V0 −Va)

[
(V0 +Va3)2 −V 2

0

]= ρπ
4

D2(V0 −Va)2Va3 (7.10)

By combining Eq. 7.5 and Eq. 7.10 we get the following expression for the propulsive efficiency (cf.
Eq. 6.62)

η j = T V0

Pbr
= V0

V0 +Va
= 1

1+ Va
V0

(7.11)
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Figure 7.5 Variation of propulsive efficiency with airspeed

or

η j = 2

2+ Va3
V0

(7.12)

Evidently, the propulsive efficiency can also be expressed in terms of the thrust,

η j = 2

1+
√

1+ T
1
2ρ

π
4 D2V 2

0

(7.13)

Emphasis is made that Eq. 7.12 and Eq. 7.13 represent the theoretical upper limit of the attainable
propulsive efficiency since the underlying theory does not include rotational kinetic energy in the
slipstream and assumes that the axial velocity is uniform over the disk.
Clearly, the value of the momentum theory lies especially in providing a qualitative appreciation
of the way in which propellers are likely to act under different design and operating conditions.
Fore example, Eq. 7.12 indicates that at a given airspeed the propulsive efficiency increases as the
slipstream velocity decreases.
Further, Eq. 7.13 tells us that in order to achieve this improvement of η j at a constant value of the
thrust, the propeller diameter must be enlarged.
Another result of the momentum theory is illustrated by Fig. 7.5, where the propulsive efficiency
is plotted as a function of airspeed for various values of the loading of the propeller, Pbr/π4 D2 It is
seen that lower efficiencies may be expected as this quantity increases.
The values of Pbr/π4 D2 considered in Fig. 7.5 represent the loading of propellers which are currently
in service. The order of magnitude of these loadings is such that all existing propellers may be
typified as lightly loaded. This term is used to indicate that their performance may be effectively
examined to the neglect of the rotational kinetic energy in the slipstream. Under this condition the
propulsive efficiency, especially, is determined by losses owing to the profile drag of the blades.
A second category of losses comes about in consequence of the fact that the propeller blades are
also subject to induced drag. The general cause of losses is of course that not all kinetic energy in
the slipstream can be recovered and converted into thrust. The portion that axial and rotational
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Figure 7.6 Advanced turboprop systems

kinetic energy contributes to the total losses is dependent on the number of blades, tip speed and
propeller loading. Because of the need to conserve fuel, in the last decades of the twentieth century
the propeller has been considered again as a propulsor for large commercial air transports (Ref. 23).
Fig. 7.6 shows schematically the various advanced turboprop concepts which have been proposed
for future application at high-subsonic airspeeds. The power plants incorporate a sophisticated
gas generator and one or two multi-bladed small-diameter propellers known as prop-fans. To re-
duce compressibility losses, the thickness-to-chord ratios of the blades are roughly half those of
the modern conventional propeller blades. In addition, the blade tips show a large angle of sweep.
The development programs were directed toward tractor and pusher configurations and concerned
single-rotating prop-fans and counter-rotating systems. The counter-rotating prop-fan consists of
two rows of blades rotating in opposite directions. These systems have the potential of a recovery
of the swirl losses because the rotational velocities of the front row may be removed by the rear half.
Both single and counter-rotating prop-fans have advanced gearboxes capable of transmitting high
engine powers and pitch-change mechanisms capable of governing the eight to ten highly loaded
fan blades (Fig. 7.7). Of importance was also the program for a gearless counter-rotating pusher
engine, the un-ducted fan (UDF), where the prop-fans are directly connected to counter-rotating
turbine stages. From aerodynamic and acoustic considerations, there is a strong need to limit the
tip speed of the blades. This requirement explains the relative small fan diameters, which together
with the high engine powers involved cause a propeller loading of about three times that of the
conventional turboprops. This implies correspondingly high torque forces that are responded by
imparting a large amount of angular momentum to the slipstream. The resulting high rotational
kinetic energy in the airflow contributes directly to the reduced losses of the system and leads to
the indication “highly loaded” for this class of propellers.

Flight tests have shown that very significant improvements in propulsive efficiency can be achieved.
However, interior and exterior noise problems seem to introduce prohibitive objections for practi-
cal applications.
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Figure 7.7 Prop-fan power plant

Figure 7.8 Motion of a propeller blade section

7.2. PROPELLER GEOMETRY
Under normal flight conditions the direction of the propeller axis may be considered as coincid-
ing with the direction of the flight velocity (Fig. 7.8). If induced velocities in the flow through the
propeller are neglected, then, as in Eq. 7.4, the velocity of a blade section relative to the air is com-
posed of a translation with airspeed V0 and a simultaneous rotation about the propeller axis with
rotational speed ωr :

Vr =
√

V 2
0 + (ωr )2 =

√
V 2

0 + (2πnp r )2 (7.14)

Evidently, the component V0 has the same value at each blade section, whilst the rotational speed
is proportional to the distance r from the propeller axis to the blade section.
The angle between the relative velocity Vr and the plane of propeller rotation is called the advance
angle, from Fig. 7.8 we find

tanφ= V0

ωr
= V0

2πnp r
(7.15)
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Figure 7.9 Variation of advance angle and blade angle from hub to tip

Figure 7.10 Effective and geometric propeller pitch

For given values of airspeed V0 and angular velocity ω, the advance angle decreases from the root
to the tip of the blade since the root sections are revolving slower than the tip sections (Fig. 7.9).
The advance angle of the tip section is given by

tanφt = V0

ωr
= V0

πnp D
(7.16)

The dimensionless quantity V0/(np D)is called the advance ratio and given the symbol J

J = V0

np D
=π tanφt (7.17)

After one revolution of the propeller axis, the propeller has advanced a certain distance in the di-
rection of flight. This length is called the effective pitch, pe , of the helical motion performed by each
point on the propeller (Fig. 7.10a).



7.2. PROPELLER GEOMETRY

7

171

Figure 7.11 Geometric data of a propeller blade

The effective pitch of the propeller is related to the advance angle and propeller speed by

pe = 2πr tanφ= 2πr
V0

2πnp r
= V0

np
(7.18)

It can be further seen that

J = V0

np D
= pe

D
(7.19)

Hence the advance ratio is a measure of the effective pitch. A low value of J implies a fine pitch and
a high J a course pitch.
The angle from the plane of propeller rotation to the well-defined chord line of the blade section is
the blade angle (see Fig. 7.8). The angle β is the sum of the advance angle and the angle of attack,

β=φ+α (7.20)

At this point we state that a low drag behavior of the propeller requires that the angle of attack at
each blade radius has approximately the same value as will be explained in the next section. For
that reason, the propeller blades always appear to be twisted with the smallest blade angle at the
tip and the greatest at the hub, owing to the increase in advance angle (see Fig. 7.9).
Fig. 7.11 shows for a given propeller the variation of the blade angle along the blade radius, which,
customarily, is designated by specifying β at 75% or 70% of the radial distance. The higher the
airspeed for which a propeller is designed, the greater the angle β0.75 or β0.70 and thus all blade
angles at which the blade sections are set.
The blade angles are often given in terms of the geometric pitch pg . This parameter is obtained
from the geometry of Fig. 7.10b. When expressed in terms of β0.75 we get

pg = 2πr tanβ= 2π
3

4
R tanβ0.75 (7.21)
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Figure 7.12 Blade element

β0.75 = tan−1
[

4

3

pg

πD

]
(7.22)

Geometric pitch is the distance that the propeller would travel per complete turning if it were ro-
tated in a solid medium. The difference between the geometric pitch and the effective pitch is
called propeller slip.
Fig. 7.11 shows also the typical distribution of maximum blade thickness-to-chord ratio, t/c, and
relative chord length, c/D . Especially, structural requirements make that near the root the thickness
of the blade sections is relatively large. Also, for structural reasons the chord lengths over the outer
part of the blade radius is kept constant.

7.3. BLADE ELEMENT THEORIES
The calculation of propeller characteristics from experimental airfoil data is known as the blade
element theory. In order to determine the forces at any blade radius, the blades are divided into
radial elements of width dr and chord length c (Fig. 7.12).
The method requires that the blade elements can be considered individually. In other words, the
blade element theory assumes that there are no forces acting in radial direction so that each ele-
ment is subjected to two-dimensional flow.
The velocity and force diagram of a blade element at a radius r is depicted in Fig. 7.13. Under
the influence of the forces produced by the propeller, an extra velocity Vi is induced at the blade
element, which shifts the relative velocity Vr through an angle δ.
The axial component Va = Vi cosφa is related to the thrust generated by the blade element while
the presence of the component Vt =Vi sinφa represents the rotation imparted to the slipstream.
Apparently, the effect of Vi is to lower the angle of attack α to the effective angle of attack αe .
The effective velocity Ve experienced by the blade element is obtained by the relative velocity Vr

and the induced velocity Vi . As indicated in Fig. 7.13, the induced velocity is approximately per-
pendicular to Ve , giving
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Figure 7.13 Blade element velocity and force diagram

Ve =
√

V 2
0 + (ωr )2 −V 2

i (7.23)

The angle formed by the effective velocity and the plane of rotation may be called the aerodynamic
advance angle φa .
From Fig. 7.13, the following relations are apparent:

β=φ+α
αe =β−φa

φa =φ+δ
α= δ+αe

(7.24)

By definition, the lift dL is perpendicular to Ve , and the drag dD is precisely in the direction of Ve .
The vector sum of dL and dD forms the aerodynamic force dR. The component of dR parallel to
the propeller axis furnishes the thrust produced by a single blade element,

dT = dL cosφa − dD sinφa (7.25)

The force opposing the rotation of the blade element is

dK = dL sinφa + dD cosφa (7.26)

The power required to rotate the blade element is given by

dPp =ωr dK =ωr
(

dL sinφa + dD cosφa
)

(7.27)

Substituting the relationships dL = cℓ
1
2ρV 2

e c dr and dD = cd
1
2ρV 2

e c dr in Eq. 7.25 and Eq. 7.27 gives
the expressions for dT and dPp respectively:

dT = 1

2
ρV 2

e c
(
cℓ cosφa − cd sinφa

)
dr (7.28)
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Figure 7.14 Annular stream tube

dPp = 1

2
ρV 2

e ωr c
(
cℓ sinφa + cd cosφa

)
dr (7.29)

Emphasis is made that the coefficients c and cd are functions of angle of attack αe , helical Mach
number Me =Ve /c, and Reynolds number (Chapter 4),

cl = cl (αe , M ,Re) (7.30)

cd = cd (αe , M ,Re) (7.31)

Essentially, the difficulty in determining thrust and propeller power at given propeller operating
conditions is to find the value of αe at each radial station. This angle, in turn, is dependent on the
induced velocity. Although Vi is normally relatively small, it is essential to account for its effect
when the aim is to obtain accurate results.
We may attack the problem by using the simple momentum theory of Section 7.1, which predicts
that the axial component of the induced velocity at the propeller plane has a value of one-half the
final velocity in the slipstream. This enables us to express the propulsive force produced by all blade
elements located at a radial distance r from the propeller axis as (cf. Fig. 7.14 and Eq. 7.8)

B dT = 2πr drρ
(
V0 +Vi cosφa

)
2Vi cosφa (7.32)

where B represents the number of propeller blades. In deriving Eq. 7.32 the assumption is made
that the total thrust B dT is given by the average time rate of change of axial momentum of the air
flowing through an annular stream tube, which at the propeller plane has a radius r and is dr wide.
The preceding system of equations can now be solved to obtain the value of the effective angle of
attack. Once the angleαe has been found, the propeller thrust and propeller power are obtained by
integrating Eq. 7.28 and Eq. 7.29 between r = H (propeller hub) and r = R (propeller tip). Thus

T = B
∫ R

H
dT = B

∫ R

H

1

2
ρV 2

e c
(
cℓ cosφa − cd sinφa

)
dr (7.33)

Pp = B
∫ R

H
dPp = B

∫ R

H

1

2
ρV 2

e ωr c
(
cℓ sinφa − cd cosφa

)
dr (7.34)

The above combination of theories is called momentum blade element theory. This technique fur-
nishes a rapid method for calculating the performance of propellers of known design. However,
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Figure 7.15 Typical lift/drag ratios of propeller blade section airfoils

such factors as non-uniform flow, blade interference effects, and tip losses are ignored by this ap-
proach. For that, other blade element theories are available of which most elements are based on
treatments enunciated in the first half of the previous century (see Ref. 24–30). A detailed discus-
sion of these so-called vortex theories, however, is rather complicated and certainly beyond the
intended scope of this course book. Momentum blade element theory requires the input of airfoil
aerodynamic data for the calculation of thrust and power. The last fifty years, the airfoils employed
for propellers have been largely restricted to the NACA 16-series sections (Fig. 7.15). These airfoil
types were developed in the late nineteen-thirties by the National Advisory Committee for Aero-
nautics (NACA) in the U.S.A., and found exclusive use in propellers. We note that in 1958 a new
name was given to the NACA research agency: National Aeronautics and Space Administration
(NASA).
More recently, two new series of blade sections became available. These were developed in the
U.K. and in the U.S.A. for use on modern generation turboprop airplanes (Ref. 31 and Ref. 32).
Their increased performance characteristics are illustrated in Fig. 7.15, where a comparison is made
between the lift-to-drag ratios of a conventional section and an advanced propeller blade section
airfoil (from Ref. 31).
Notice also that significantly higher values of maximum lift/drag ratio are obtained on a propeller
blade section than are achieved in the case of an airplane wing section. This phenomenon might
be explained by considering the effect of reduced boundary layer thickness due to the centrifugal
field in which the blade sections are operating.
At this point, let us return to our discussion on propeller geometry of the preceding section in or-
der to make a few remarks about the necessity for twisting the propeller blades. According to its
definition, the propulsive efficiency of the propeller is given by

η j = T V0

Pbr
= T V0

Pp
(7.35)

The blade element theory uses a similar notion, the blade element efficiency,

η j = dT V0

dPp
. (7.36)
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Figure 7.16 Propeller blade element efficiency versus lift/drag ratio

Through insertion of Eq. 7.28 and Eq. 7.29 into Eq. 7.36, and by making use of the relationship
V0 =ωr tanφ (see Fig. 7.13), we obtain

ηe =
[

cℓ cosφa − cd sinφa

cℓ sinφa + cd cosφa

]
tanπ (7.37)

We gain further insight by adopting in Eq. 7.37 the approximation that the induced velocity at the
blade section is sufficiently small so that φa may be replaced by φ. Now Eq. 7.37 can readily be
manipulated into the following form:

ηe = tanφ

tan(φ+δ)
, (7.38)

where tanδ= cd /cℓ.
Fig. 7.16 shows the relationship of blade element efficiency with lift/drag ratio and advance angle.
Apparently, the magnitude of the angle φ has only a relatively small influence on the efficiency of
the blade element. Therefore, we may consider a mean curve in Fig. 7.16. This unique relation
between ηe and cℓ/cd reveals that the optimum angle of attack is that angle for which the lift/drag
ratio attains its maximum value. Hence, if the propeller blade has the same airfoil section through-
out its entire length, the optimum angle of attack must be uniform along the blade, which results
in a decreasing blade angle from hub to tip. Though, mostly, the blade sections are not shaped
equally, it continues in force that propeller blades are twisted strongly (Fig. 7.11). The results of
the blade element theory may also be used to explain the term activity factor, or shortly AF, which
evaluates the distribution of the blade area along the radius and expresses the ability of a propeller
blade to absorb power. The factor AF may be defined by

AF = 105

D5

∫ R

0.2R
cr 3dr = 105

16

∫ 1.0

0.2

c

D

[ r

R

]3
d

( r

R

)
(7.39)

where the lower limit of integration represents the outer radius of the hub. The meaning of Eq. 7.39
can be explained by examining Fig. 7.13. When neglecting again the induced velocity, the power
required to rotate the blade element may be expressed as (cf. Eq. 7.29)
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dPp = 1

2
ρV 2

r ωr c
(
cℓ sinφ+ cd cosφ

)
dr (7.40)

Using the relationship Vr =ωr secφ, Eq. 7.40 can be written as

dPp =
(

1

2
ρω3 sec2φ

)(
cℓ sinφ+ cd cosφ

)
cr 3 dr (7.41)

For given working conditions and blade section shape, the factors between brackets are constants
so that for the whole blade the power absorption capacity is proportional to

∫ R
0.2R cr 3dr . To make

this quantity dimensionless, it is divided by D5. The constant 105 in Eq. 7.39 is only used to give the
activity factor a convenient magnitude.
Thus, for a given propeller and operating at given conditions, the ability to absorb power is directly
correlated to the activity factor, so that

Pp = constant ×B ×AF

where the product B ×AF is called the total activity factor, TAF. For a blade having a constant chord
length, we find from Eq. 7.39, AF = 1560c/D . For the propeller blade considered in Fig. 7.11 the ac-
tivity factor becomes AF = 121. The thrust producing capability of a propeller blade is characterized
by the integrated design lift coefficient,

CLi = 4
∫ 1.0

0.2
cℓi

[ r

R

]3
d

( r

R

)
(7.42)

where cℓi is the design lift coefficient of a blade element at zero incidence, defining the sectional
camber. A propeller blade with a high CL-value is able to generate more thrust for the same chord
length distribution.

7.4. PROPELLER CHARTS
From the preceding discussions it may be appreciated that for a propeller with a given number
of blades and given blade shape, the thrust will be determined by the density of air, the propeller
speed, the propeller diameter, the free stream velocity, the blade setting, the speed of sound, and
the viscosity of the air. Therefore,

T = T
(
ρ,np ,D,V0,β0.75,c,µ

)
(7.43)

Utilizing the technique of dimensional analysis as described in Chapter 4 we may write

T = K
(
ρanb

p Dd V e
0 c f µg

)
(7.44)

Then, in term of the units mass [M ], length [L] and time [T ], we have

ML

T 2 = K

[
M

L3

]a [
1

T

]b

[L]d
[

L

T

]e [
L

T

] f [
M

LT

]g

(7.45)

By equating exponents we obtain
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1 = a +g
1 = −3a +d +e + f −g

−2 = −b −e − f −g .
(7.46)

When we solve the three equations for the exponents a,b and d in terms of e, f and g , we get

a = 1− g

b = 2−e − f − g

d = 4−e − f −2g .

(7.47)

Using these powers in Eq. 7.44 yields

T = Kρn2
p D4

[
V0

np D

]e [
c

V0

] f [
µ

pVoD

]g

or (7.48)

T = Kρn2
p D4 J e

[
1

M0

] f [
1

Re

]g

(7.49)

If we set

K J e
[

1

M0

] f [
1

Re

]g

=CT

we can write Eq. 7.49 as

T =CTρn2
p D4 (7.50)

where CT is the dimensionless thrust coefficient of which the value may vary with blade angleβ0.75,
advance ratio J , flight Mach number M0 and Reynolds number Re. Carrying out a similar dimen-
sional analysis on propeller power, we find

Pp =CPρn3
p D5 (7.51)

where CP is the power coefficient. Hence for a given propeller it follows that

CT =CT
(
β0.75, J , M0,Re

)
(7.52)

CP =CP
(
β0.75, J , M0,Re

)
(7.53)

Now, as shown in Fig. 7.17, the propeller chart may give the values of CT and CP as functions ofβ0.75

and J . Here, the points on the various curves CP versus J for constant value ofβ0.75 that correspond
to the same value of CT are connected.
The data in this figure represent experimental results obtained at fixed values of Mach number and
Reynolds number. By making use of Eq. 7.50 and Eq. 7.51 we can express the propulsive efficiency
in the form

η j = T V0

Pp
=

CTρn2
p D4V0

CPρn3
p D5

= CT

CP
(7.54)
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Figure 7.17 Propeller chart (NACA 16 blade section series)

Fig. 7.18 gives the propeller performance in terms of η j , J and β0.75. The optimum performance
curve is indicated by the dashed line, joining the points of maximum propulsive efficiency. Notice
that the graph refers to the same propeller as considered in Fig. 7.17. Inspection of Fig. 7.18 shows
that the blade setting has a marked influence on the propulsive efficiency. On a so-called fixed-
pitch propeller the blade angle β0.75 has one particular value so that optimum efficiency occurs for
a given design condition of V0 and np . It is also seen that for this type of propeller a high efficiency
is gained in only a very narrow range of advance ratios. For example, low efficiencies are obtained
at take-off and climb if the propeller is designed for cruising conditions. On the other hand, the
airplane may be equipped with a climb propeller, which has a smaller blade angle or lower pitch.
This increases performance during take-off and climb, but decreases performance during cruise.
Apparently, for optimum propulsive efficiency it would be of advantage to provide a pitch-change
mechanism to change the blade setting as the advance ratio varies.

This requirement has resulted in a solution which is known as the variable-pitch propeller. As can
be seen from the curves in Fig. 7.18, the variable-pitch propeller furnishes improved performance
over a broad range of operating conditions. This explains that nowadays fixed-pitch propellers
only are used on the small single-engine airplanes. An airplane equipped with a variable-pitch
propeller has an engine throttle control for the engine output and a pitch control to regulate the
propeller speed. A so-called constant speed propeller is equipped with a governor, which changes
the blade angles in response to any departure in propeller speed from the value selected by the
pilot. Constant speed propellers on most of the larger modern airplanes have the possibility for
full feathering in flight, that is, the blades can be turned edge-on to the oncoming air to prevent
the occurrence of high windmilling-drag in case of engine failure (Fig. 7.19). Also, the pitch-change
mechanism may be designed to permit the selection of a large negative blade angle after landing,
thus creating reverse thrust for rapid deceleration of the airplane during ground run. The governor
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Figure 7.18 Propulsive efficiency

Figure 7.19 Application of pitch control

adjusts the propeller speed by changing the blade setting to ensure that the power required by the
propeller equals the shaft power at the selected rotational speed:

Pp = Pbr (7.55)

For given values of ρ,V0,D,np , and Pbr the power coefficient and the advance ratio follow from

CP = Pbr

ρn3
p D5

(7.56)

J = V0

np D
(7.57)

Now the blade angle β0.75 and the thrust coefficient CT are known from the propeller chart in
Fig. 7.17. The thrust, finally, is found from Eq. 7.50. It is worth mentioning that the piston-engine
generates its shaft power evenly over a wide range of engine speeds (Fig. 7.20). For airborne op-
eration, a piston engine uses approximately 40% of the rpm-range in which the propeller blade
angle varies between about 20 deg at flight idle to 45 deg at maximum airspeed. The turboprop, on
the contrary, operates within a narrow range of high rotational speeds in order to achieve its low
specific fuel consumption characteristics.
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Figure 7.20 Engine and propeller operating range

Consequently, the turboprop-propeller blade angle during a glide at minimum power is smaller
than that of a piston-engine propeller. The blade angle of a turboprop propeller therefore changes
from about 5 to 45 in only 10% of the flight range of engine speeds so that the blades change angle
at a much faster rate than the blades of a piston-engine propeller. This implies that the turboprop
provides a better thrust response to control lever movement than a piston-engine.

We close this section with remarking that also the control of the turboprop may differ from that of
the reciprocating engine since the pilot of a turboprop airplane, generally, has the disposal of only
one control lever, which regulates the fuel flow to the engine. In this case, the fuel control operates
in conjunction with the pitch control in the flight range of the engine speeds to ensure that the
operating limits of the engine will not be exceeded. It is convenient to specify the output of such a
turboprop system in terms of compressor speed (see Chapter 6). When the engine is operating at
rotational speeds below flight idle, it is said to be in the ground-handling or beta-range (Fig. 7.20).
In this low-power region, the propeller blade angle is controlled directly by the pilot’s control lever
and may be varied progressively from forward thrust through zero to reverse for braking and taxiing.
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7.5. INSTALLED PROPELLER PERFORMANCE
From the existing methods on propeller performance prediction, generally, the free air thrust is
obtained. However, the installation of propeller and engine in the airplane leads naturally to a flow
through the propeller disk which differs from the isolated behavior. The mutual interference of
propeller slipstream and airframe results in two important installation effects:

• The presence of nacelle and wing or fuselage behind the propeller causes a retardation of the
air flow through the propeller disk.

• The airframe parts which are immersed in the slipstream deliver a higher drag than the free
stream value, because of the higher local flow velocities.

In order to take account of these effects when executing airplane performance calculations, the
effective thrust, Teff is used. This is the thrust of the isolated propeller corrected for all effects
emanating from the presence of airframe parts in the slipstream. Since the drag of a propeller-
driven airplane is defined for zero thrust, the actual or propeller efficiency becomes

ηp = TeffV0

Pbr
(7.58)

We may simplify the problem by looking only at the increment in profile drag of the airframe parts
that are exposed to the propeller slipstream. From Eq. 7.5 and Eq. 7.9, the free air thrust is

T = ρπ
4

D2
(
V0 + ∆V

2

)
∆V (7.59)

where∆V is the increase in velocity in the slipstream. The increase in dynamic pressure of the flow
through the propeller disk is given by

∆q = 1

2
ρ

[
(V0 +∆V )2 −V 2

0

]
(7.60)

Combining Eq. 7.59 and Eq. 7.60 yields

∆q = T
π
4 D2 (7.61)

If the airframe parts immersed in the slipstream of one propeller have a parasite drag areaΣ (CDs Ss ),
the increase in airplane drag per propeller can be expressed in the form

∆D =∆qΣ (CDs Ss ) = T
π
4 D2

∑
(CDs Ss ) (7.62)

Now we are able to relate the propeller efficiency and the propulsive efficiency as follows

ηp = (T −∆D)V0

Pbr
= T V0

Pbr

(
1− ∆D

T

)
= η j

[
1−

∑
(CDs Ss )
π
4 D2

]
. (7.63)

In practice, the drag coefficient in Eq. 7.63 usually is treated as a constant, irrespective of the operat-
ing conditions. Based on wetted area, CDs = 0.004 may be used (Ref. 7). Propeller efficiencies given
in propeller charts may be derived from wind tunnel tests on the propeller with spinner mounted
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Figure 7.21 Measurement of effective thrust in wind tunnel

in front of the proper nacelle-wing combination (Fig. 7.21). In this case the effective thrust is the
measured resultant force of the propeller-body combination plus the drag of the body measured
without the propeller.

7.6. PROBLEMS
1. An advanced turboprop airplane equipped with two engines is flying in cruise at Mach 0.56

and 7500 m altitude. The propeller rpm equals 1000 and the radius is 2 m. Calculate the tip
speed of the propeller, ignoring the effect of the induced velocity created by the propeller on
the tip speed.

2. Describe which main assumptions are made when momentum theory is applied to evaluate
the performance of a propeller.

3. Consider the turboprop airplane and flight condition described in question 1. The propulsive
efficiency equals 0.85 in this condition. Calculate the thrust delivered by each propeller.

4. For the calculated thrust value in the previous question, compute the induced axial velocity at
the propeller disc and far behind the propeller disc. The theory to be used for this calculation
is momentum theory.

5. Repeat exercise 1 with the induced axial velocity determined in exercise 4.

6. Calculate the advance ratio of the propeller described in question 1.

7. The Spirit of St. Louis was the first airplane to successfully fly across the Atlantic Ocean. It was
equipped with a fixed-pitch propeller which had a radius of 1.4 m. The optimum airspeed to
achieve maximum flight distance was approximately 30 m/s when fully loaded and flying at
sea-level conditions. The power available in this condition was approximately 45 kW. Calcu-
late theoretical attainable propulsive efficiency for this airplane in the given condition, based
on momentum theory.

8. Propellers used on modern regional airplanes can be idealized as having constant power
available with airspeed. Why is this the case?
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(a) the rotational velocity of the propeller can be changed in flight

(b) the engine produces the same (shaft) power, independent of airspeed

(c) the propulsive efficiency does not change with airspeed

(d) the propeller pitch can be changed in flight

9. Consider an airplane equipped with a variable-pitch propeller. A fine (low) pitch setting is
used at which of the following flight condition(s)?

(a) take-off

(b) climb

(c) cruise

(d) descent

(e) landing

(f) flight with one engine inoperative



8
THE AIRPLANE IN SYMMETRIC FLIGHT

8.1. FUNDAMENTAL EQUATIONS
In view of the importance of symmetric flight in airplane performance considerations, it is appro-
priate to extend the analyses of Chapter 3 to this type of flight. In this section, we shall devote our
attention to examining the fundamental equations that govern the accelerated motion of the cen-
ter of gravity of a rigid airplane along a curved flight path. As depicted in Fig. 8.1, at a given point
on the trajectory, the Xa axis and the Za axis of the air-path axis system and the Xb axis of the body
axis system are set up.
The Xa axis is tangent to the flight path and the Za axis lies in the vertical plane through the Xa axis,
perpendicular to the local flight direction. The flight condition at one instant along the trajectory
is characterized by the following kinematic and geometric parameters:

• Airspeed V , which is the velocity vector of the center of gravity of the airplane. The velocity
vector coincides with the Xa axis and lies in the plane of symmetry of the airplane.

• Angle αT , which defines the inclination of the thrust vector to the Xa axis.

• Flight-path angle γ, which is the angle between the Xa axis and its projection on the hori-
zontal plane. The angle γ is positive if the airplane climbs relative to the air, and negative if
the airplane descends. Thus, from vertical climb to vertical dive, the flight-path angle varies
from π/2 to −π/2 (Fig. 8.2).

• Angle of attack α, which is the angle between the Xb axis of the body axis system and the Xa

axis. The angle of attack represents the attitude of the airplane relative to the oncoming air,
and is positive if the Xb axis is turned in positive sense to the Xa axis.

• Angle of pitch θ, which is the angle between the Xb axis and the horizontal. According to the
sign convention for the flight-path angle, the angle θ has a positive value if the Xb axis lies
above the horizontal plane, and negative when it is below this plane.

185
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Figure 8.1 Airplane in symmetric flight.

Figure 8.2 Sign of flight-path angle.

In symmetric flight, the angle of pitch, the angle of attack, and the flight-path angle are related by

θ =α+γ (8.1)

Also indicated in Fig. 8.1 are the three principal forces acting on the airplane that determine its
performance. These forces are:

• Airplane weight W , which acts vertically downward.

• Thrust T , which is assumed to make an angle αT with the Xa axis.

• Aerodynamic force R, and its components lift L and drag D . The forces L and D act along the
negative Za axis and negative Xa axis, respectively.

Applying Newton’s second law of motion along the Xa axis yields the equation
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W

g

dV

dt
= T cosαT −D −W sinγ (8.2)

where dV / dt is the acceleration tangent to the flight path. Along the Za axis, we have

W

g

V 2

R
= T sinαT +L−W cosγ (8.3)

where R is the local radius of curvature of the flight path.
The left-hand side of Eq. 8.3 is the centrifugal force due to the curvilinear motion (see Section 1.3).
With the familiar relationship V = R dγ/ dt , the centrifugal force can also be expressed as

W

g

V 2

R
= W

g
V

dγ

dt
(8.4)

The lift can be written as (see Chapter 4)

L =CL qS =CL
1

2
ρV 2S (8.5)

where CL is the lift coefficient, q = 1
2ρV 2 is the dynamic pressure and S is the wing area. Similarly,

we have

D =CD qS =CD
1

2
ρV 2S (8.6)

where CD is the drag coefficient. Consequently, the equations of motion for an airplane in symmet-
ric flight are found to be

W

g

dV

dt
= T cosαT −CD

1

2
ρV 2S −W sinγ (8.7)

W

g

V 2

R
= W

g
V

dγ

dt
= T sinαT −CL

1

2
ρV 2S −W cosγ (8.8)

Since the weight of the airplane decreases continuously due to the consumption of fuel by the en-
gine(s), we have the relationship

F =− dW

dt
(8.9)

where F denotes the fuel weight flow rate. In this connection, it should be remarked that in princi-
ple the motion of the airplane must be determined for the case of a body with variable mass. From
our discussion in Section 3.6, we know that Eq. 8.7 and Eq. 8.8 are correct if the rate of increase
of linear momentum of the fuel flow relative to the airplane is included in the expression for the
thrust. For air-breathing engines, however, this contribution to the entire time rate of change of
linear momentum is so small that we may ignore the effect of a variable mass in Eq. 8.7 and Eq. 8.8.
In the absence of wind, the variation of true altitude per unit time is the rate of climb RC of the
airplane, which is equal to the vertical component of the airspeed V

RC = dh

dt
=V sinγ (8.10)
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The rate of climb is positive when the airplane ascends relative to the air, and negative when the
airplane descends. When we consider an airplane that flies in the International Standard Atmo-
sphere (I.S.A.), the atmospheric conditions are completely determined by the geopotential altitude
H . Also, we will use the approximation that h = H in Eq. 8.10. Further, we make the assumption
that at each point of time the aerodynamic forces in accelerated flight equate the air loads in steady
flow with the momentary values of angle of attack, airspeed and altitude. Then, from the discus-
sions in Section 4.1, we know that for an airplane with given configuration, the coefficients CL and
CD in Eq. 8.7 and Eq. 8.8 are functions of angle of attack, flight Mach number and Reynolds number,

CL =CL(α, M ,Re) (8.11)

CD =CD (α, M ,Re) (8.12)

Since M = M(V , H) and Re = Re(V , H), it follows that

CL =CL(α,V , H) (8.13)

CD =CD (α,V , H) (8.14)

Similarly, from Chapter 6, we have
T = T (Γ,V , H) (8.15)

F = F (Γ,V , H) (8.16)

Finally, the angle αT in the equations of motion is a function of the angle of attack,

αT =αT (α) (8.17)

From the foregoing it is thus evident that Eq. 8.7 and Eq. 8.8 contain the following variables:

t ,W,α,V , H ,γ,Γ

If we take the time t as independent variable, the other six are the dependent variables, which de-
fine the flight condition at each point of time. To find these six unknowns, four equations (Eq. 8.7
to Eq. 8.10) are available so that the course of the flight is fully determined if two dependent vari-
ables are prescribed as a function of time. The two variables which can be chosen freely, are called
control variables, and the remaining four variables are the state variables. The functions which
describe the time history of the control variables are called control laws, for example,

α=α(t ) or Γ= Γ(t ) (8.18)

With these two control laws, we have a system of six equations to solve the six unknowns. The two
basic controls on the airplane about which the pilot has the disposal in symmetric flight, namely,
the elevator to adjust the angle of attack (pitch control) and the engine control lever to select the
power output (engine control), allow the realization of the prescribed control laws (Fig. 8.3).
The name given to the combination of the two control laws in Eq. 8.18 is flight technique or flight
program. To the preceding system of equations describing the translational motion in symmetric
flight, we can add Eq. 3.24 for the rotational motion. Since in symmetric flight we are concerned
with longitudinal motion only, this moment equation reduces to



8.1. FUNDAMENTAL EQUATIONS

8

189

Figure 8.3 Controls in symmetric flight.

Figure 8.4 Pitch control.

My = dq

dt
Iy = d2θ

dt 2 Iy (8.19)

The longitudinal control about the lateral axis is provided by the tail load carried by the horizontal
stabilizer (Fig. 8.4). The magnitude of the tail force depends on the elevator deflection. This tail
force is, in addition to aerodynamic force R, thrust T and weight W , the fourth force acting on
the airplane in symmetric flight. The tail force must be counteracted by the lift when it is directed
downward. Clearly, the higher the downward tail load the higher the total lift, which implies more
drag. This means that in symmetric flight the lift and drag coefficients in general have the following
functional relationships:

CL =CL(α,V , H ,δe )

CD =CD (α,V , H ,δe ).
(8.20)

Thus, by inserting Eq. 8.19 into the system of equations we are faced with only one extra variable
so that the number of control variables continues to be two. Though the use of Eq. 8.19 may be
needed, it is often possible to assume that the elevator deflection δe is instantly reactive to the



8

190 8. THE AIRPLANE IN SYMMETRIC FLIGHT

prescribed control law α=α(t ). Eq. 8.19 can then be omitted. This simplification implies that the
effect of elevator deflection on the resultant aerodynamic force is neglected.

8.2. INTEGRAL AND POINT PERFORMANCE
Eq. 8.7 to Eq. 8.19 describe the unsteady airplane motion along a curvilinear path. They can be ap-
plied to determine the so-called path performance or integral performance values, which are related
to the course of the flight. Examples of integral performance values are time to climb to a certain
altitude, range and endurance in cruise, and takeoff and landing distances. On the other hand, we
distinguish the point performance of an airplane. This name identifies the study of performance
parameters which occur at a given point of time or at a given point on the flight path.
Hence, the designation “point performance” refers to instantaneous quantities such as maximum
and minimum speed in level flight, maximum climb angle and rate of climb, and minimum radius
of turn. Studies of integral performance and point performance both may fall within the category
of flight dynamics. Recall from Chapter 3 that this term classifies the study of performance prob-
lems in which the exchange between kinetic and potential energies is of significance. In particular,
the integral and point performance achieved when flying along optimum trajectories, but also the
unsteady motion during takeoff and landing belong to the class of dynamic performance.

Generally, Eq. 8.7 and Eq. 8.8, which form a system of nonlinear differential equations, are not very
suitable for analytical integration. To make these equations amenable to treatment, several simpli-
fications and approximations are generally introduced. In this light, as an engineering approach,
integral performance values from general translational motion of an airplane in accelerated flight
are often determined by the use of the simplifying assumption that the airplane executes a quasi-
steady flight. In this text, we are interested mainly in the last-mentioned case where the acceler-
ation can be assumed to be zero. The airplane’s performance concerning such steady-state flight
conditions are called static performance. This last type of performance analysis leads in many ap-
plications to sufficient accurate computations of the parameters which define the performance
capabilities of an airplane. On the other hand, when predicting the integral performance of air-
planes, the variations of airplane weight and/or altitude may be neglected. For example, these
assumptions may be reasonable in the case that the time passed in a specific flight phase is very
short, such as in takeoff and landing maneuvers.

8.3. AIR LOADS
All loads applied to an airplane that is airborne are produced through accelerations of the vehicle
as a result of a control action by the pilot (maneuvering loads) or by encountering atmospheric
turbulence (gust loads). To enter into the details of the idea of air load we consider an instant along
a horizontal flight path (Fig. 8.5a). When symmetric flight is maintained at constant airspeed and
altitude, all forces are in balance. For this condition, the flight-path angle γ in Eq. 8.7 and Eq. 8.8 is
zero. Then, the left-hand sides of these equations are zero, yielding

0 = T cosαT −CD
1

2
ρV 2S (8.21)

0 = T sinαT −CL
1

2
ρV 2S −W (8.22)



8.3. AIR LOADS

8

191

Figure 8.5 Equilibrium of forces in quasi-steady level symmetric flight.

Since for most conventional airplane types the angle αT is very small, we have also assumed that
cosαT = 1 and sinαT = 0. Then, from Eq. 8.21 and Eq. 8.22, we find that, at each instant during the
flight, the thrust is equal to the drag and the weight is equal to the lift (Fig. 8.5b).

T = D =CD
1

2
ρV 2S (8.23)

W = L =CL
1

2
ρV 2S (8.24)

Now assume that, starting from the quasi-steady level flight condition in Fig. 8.6a, the pilot moves
the elevator in the negative direction. From Fig. 8.4 this results in a positive pitching (clockwise)
motion of the airplane through which, at the given flight speed, the angle of attack is suddenly
increased by ∆α. Consequently, equilibrium of forces no longer exists and an acceleration will take
place, which causes a curvature of the flight path (Fig. 8.6b). The increased values of lift and drag
may be expressed as

L′ = L+∆L = (CL +∆CL)
1

2
ρV 2S (8.25)

D ′ = D +∆D = (CD +∆CD )
1

2
ρV 2S (8.26)

To describe the air load, the load factor is used. This parameter is defined as the ratio between the
resultant external non-weight force and the weight of the airplane,

−→n =
−→
A

W
(8.27)

where −→n denotes the load factor and
−→
A is the vector sum of the aerodynamic force

−→
R and the thrust−→

T . In this example, as portrayed in Fig. 8.6b, the increase in lift is of prime significance, and so are
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Figure 8.6 Lift in steady and accelerated flight.

the loads from accelerations normal to the Xa axis. Consequently, the normal load factor in its
usual (and approximated) form is obtained by simply dividing the lift by the weight.

n = L′

W
= 1+ ∆CL

CL
(8.28)

The equation of motion along the Za axis can be written as

W

g
an = L′−W (8.29)

where an is the acceleration toward the center of curvature (centripetal acceleration). Eq. 8.28 and
Eq. 8.29 give for this acceleration normal to flight path,

an = g (n −1) (8.30)

In quasi-steady level symmetric flight an is zero, meaning that the lift equals the weight of the
airplane and that the normal load factor is equal to one. As pointed out already, a normal load
factor other than one may occur as a result of a maneuver or due to an external cause in the form
of a gust.
Obviously, the greatest maneuvering load factors will occur if the maximum amount of lift is gen-
erated at a given airspeed. In other words, if the angle of attack is increased up to the critical angle
of attack. Hence

n = CL max
1
2ρV 2S

W
(8.31)

As will be explained in the next section, the maximum lift coefficient is related to the minimum
stalling speed VMS , in equilibrium flight, by

W =CL max
1

2
ρV 2

MS S (8.32)

Thus from Eq. 8.31 and Eq. 8.31, the value of n that can be achieved from maneuvering, can be
expressed as

n = V 2

V 2
MS

(8.33)
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Eq. 8.33 shows that the obtainable load factor strongly increases with increasing airspeed.

8.4. STALLING SPEEDS
Most performance requirements are specified in reference to the minimum stalling speed, VMS .
The minimum stalling speed is defined in the airworthiness requirements as the minimum speed
reached during a prescribed stall maneuver with the airplane in a given configuration. In conduct-
ing the stall maneuver, the following procedure is utilized (Fig. 8.7): first, the airplane is flown at
a steady speed 20% to 40% above the anticipated VMS with the engine(s) at idle; the flight speed
is reduced by increasing the angle of attack with elevator control until the speed is slightly above
the estimated VMS ; the altitude also slowly decreases, as aerodynamic drag increases and there is
typically not enough thrust to maintain straight flight; then, the elevator control is pulled back so
that the airplane is slowed down at a constant deceleration dV / dt (stall entry rate) until the actual
VMS is reached. This speed is recognized by uncontrollable downward pitching motions, owing to
breaking away of flow from the upper surface of the wing. As sketched in Fig. 8.7, in approaching
the stall, the load factor first remains roughly constant, and the lift coefficient gradually increases
according to the equation

W

g
an =CL

1

2
ρV 2S −W (8.34)

or, using Eq. 8.30,

CL = nW
1
2ρV 2S

(8.35)

Immediately after the instant at which the maximum lift coefficient occurs, the load factor drops
considerably, indicating that stalling phenomena are advancing quickly. As soon as the airplane is
stalled, the pilot recovers the motion by pitching down the nose, producing an increase in airspeed.
Since the resulting minimum stalling speed depends strongly on the magnitude of the stall entry
rate, a sufficient number of stall maneuvers are executed to obtain enough data points to define the
minimum stalling speed at a prescribed value of dV / dt = −1kts/s (Fig. 8.8a). The stall entry rate
is defined as the slope of the line connecting the minimum stalling speed and a value 10% above
VMS . That is:

dV

dt
= VMS −1.1VMS

∆t
(8.36)

Furthermore, minimum stalling speeds are determined for every flap and landing gear position
that is used in the various flight phases. Besides VMS , also the minimum speed at which the lift
equals the weight of the airplane can be deduced from the measurement data,

VS =
√

W

S

2

ρ

1

CL max
(8.37)

The speed VS is called the one-g stalling speed or simply stalling speed, and is thus the minimum
steady speed in free air under one-g conditions at minimum engine control setting. Typically, VMS

may be as low as 0.94 VS at dV / dt = −1 knot/s. In Fig. 8.7, the minimum stalling speed has also
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Figure 8.7 Determination of minimum stalling speed. Figure 8.8 Effect of stall entry rate.

been reduced to an apparent maximum lift coefficient by using the L =W condition,

CL max = W
1
2ρV 2

MS S
(8.38)

It is evident that the CLmax value thus obtained is a function of the stall entry rate (Fig. 8.8b). Using
VMS = 0.94VS , we find that the latter maximum lift coefficient may be quoted at a value some 13%
higher than the CLmax obtained by calculation methods or wind tunnel tests. Whenever appropriate
in this text, a tacit enlargement of the “physical” CLmax value in this manner will be supposed.

8.5. LOAD FACTOR ENVELOPES
All existing airworthiness requirements prescribe that the airframe, the load-carrying structure of
the airplane, is strong enough to withstand certain limit load factors on the boundaries of a repre-
sentative flight envelope. The basic maneuvering envelope, which defines the symmetrical flight
maneuvering loads for which the airframe is constructed, is shown in Fig. 8.9a. The various design
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Figure 8.9 Basic load factor envelopes.

speeds, as selected by the airplane designer, are given in terms of equivalent airspeeds (E.A.S.) (see
Section 5.4) so that they do not depend on altitude or compressibility effects. The curve 0A is the
stall line and represents the load factor according to Eq. 8.33. The speed VC is the design cruising
speed, VD is the design diving speed, and VF is the design speed with flaps fully deflected. The
design maneuvering speed VA is obtained at the positive limit maneuvering load factor n1

VA =VMS
p

n1 (8.39)

where VMS is the minimum stalling speed with wing flaps retracted.
A pull-down maneuver, a sudden decrease of the angle of attack, yields a load factor less than one
and can even cause a negative load factor. Since the negative value of CLmax is generally less than
the positive CLmax, the negative limit maneuvering load factor n3 in Fig. 8.9a is lower than its pos-
itive counterpart. Values of the limit maneuvering load factors as used for strength requirements
are roughly as follows:

n1 = 2.5 and n3 =−1.0 for civil transport airplanes

n1 = 8.0 and n3 =−3.5 for military airplanes

The airplane is also assumed to be subjected to symmetrical vertical gusts when flying through
turbulent air. As sketched in Fig. 8.10, in the simplest case there may be a sudden sharp-edged gust
with speed U . Then, the alteration of the lift coefficient is

∆CL = dCL

dα
∆α=± dCL

dα

U

V
(8.40)

where the minus sign refers to a downward gust.
Substitution of Eq. 8.40 into Eq. 8.28 and using Eq. 8.24 yields the following expression for the gust
load factor

n = 1± dCL

dα

1
2ρ0UeVe

W /S
(8.41)
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Figure 8.10 Effect of vertical gust on angle of attack.

where Ue is the gust velocity expressed in terms of an equivalent speed as well. Conform the air-
worthiness requirements listed at the end of this section, the gust load factors must be computed
from

n = 1±K
dCL

dα

1
2ρ0UeVe

W /S
(8.42)

in which K is an adjusting factor, referred to as gust alleviation factor. This factor takes account of
the fact that actual gust velocity profiles will never be sharp-edged but will have a more uniform
shape so that, depending on airplane size and weight, there will be some response by the airplane.
Eq. 8.41 and Eq. 8.42 clearly demonstrate that gust load factors are of special importance to high-
speed airplanes having low wing loadings. Hence, in the presence of high gust velocities the flight
will be executed at a much slower speed than in still air.
The limit gust load factor, according to the current airworthiness standards, must correspond to
particular positive and negative values of Ue . An example of a basic gust load factor envelope is
given in Fig. 8.9b. The dashed lines show the gust load factors for given gust velocities. The gust
velocities used at the design cruising speed are assumed to be 50 ft/s (15.24 m/s) equivalent speed
at altitudes between sea level and 20000 ft (6096 m). These gust velocities may be reduced lin-
early from 50 ft/s at 20000 ft to 25 ft/s (7.62 m/s) at 50000 ft (15240 m). Also positive and negative
gusts of 25 ft/s at the design diving speed VD must be considered at altitudes between sea level and
20000 ft. Above 20000 ft this value may be reduced linearly to 12.5 ft/s (3.81 m/s) at 50000 ft. Fur-
thermore, rough air gusts of ±66 ft/s (20.12 m/s) must be considered at altitudes between sea level
and 20000 ft. This maximum gust velocity may be reduced linearly from 66 ft/s at 20000 ft to 38 ft/s
at 50000 ft.
At given altitude and airplane weight, the maximum gust velocity determines the speed VB in
Fig. 8.9b. This is the speed at which the assumed gust velocity causes the airplane to stall. The
speed VB is called the design speed for maximum gust velocity or rough airspeed.
The limit load factors considered in this section represent the maximum air loads which might be
expected in normal operation. Airworthiness requirements are also specified in terms of ultimate
load factors, being the limit load multiplied by a factor of safety. This measure provides that the
structure does not fail before the ultimate load is reached. Normally, a factor of safety of 1.5 must
be applied to the prescribed limit load factors. Finally, it is worth noting that the airworthiness stan-
dards encompass much more items than the requirements on design strength as described above.
“Airworthiness” has to do generally with a chain of involvements contributing to an overall aviation
safety level. This is achieved by controlling the various stages in the life of an airplane; reaching
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from its design phase via type certification to its operation by the airline and specification of main-
tenance standards. Airworthiness requirements are promulgated by national authorities and are
based primarily on experience. All existing rules remain subject to continuous updating as a con-
sequence of implementation of new experience and advanced developments. For conventional
civil airplanes, the two codes of current requirements most frequently cited are:

– FAR: Federal Aviation Regulations issued by the Federal Aviation Administration (FAA) of the
United States of America.

– EASA regulations: a set of regulations produced and published by the European Aviation
Safety Agency.

Moreover, there exist similar codes of requirements published for military airplanes.

8.6. PROBLEMS
1. Name the two basic controls which the pilot has available to control the motion of an airplane

in symmetric flight

2. Explain the difference between “point performance” and “path performance”

3. An airplane has a true airspeed of 150 m/s and a climb rate of 10 m/s. The pitch attitude θ
observed by the pilot equals 10 deg. Calculate the angle of attack α for this flight condition.

4. An aerobatic airplane is performing a display at 100 m altitude and at a true airspeed of
60 m/s. The weight of the airplane is 10 kN. It has a maximum lift coefficient of 1.5 and
the wing surface area is 11 m2. The propulsion system is a piston engine with a four bladed
propeller. The maximum power available at this specific flight condition is 200 kW. The pilot
would like to perform a pull-up to impress the audience. Calculate the maximum instan-
taneous load factor that can be obtained in a symmetrical pull-up at the prescribed flight
condition

5. Explain the difference between the minimum stalling speed VMS and the minimum speed
VS .

6. Calculate the minimum speed VS of the airplane of problem 5 at a flight altitude of 1000 m.

7. Provide typical limit maneuvering load factors for civil transport airplanes.

8. A turboprop airplane is flying at 6000 m altitude and Mach 0.45. Characteristics of this air-
plane are provided in the following table.

Parameter Value

Weight 140 kN
Wing surface area 70 m2

Wing aspect ratio 12
Oswald’s efficiency factor 0.76
Zero-lift drag coefficient 0.013
Lift-curve slope 5.1/rad
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The airplane encounters an upward gust with (true) speed 10 m/s. The gust can be assumed
to be “sharp-edged”.

(a) Calculate the resulting gust load factor.

(b) In reality gusts are not “sharp-edged”. Do you expect the gust load factor for this situ-
ation in real-life to be larger, smaller or the same as the gust load factor calculated in
question a? Why?



9
PERFORMANCE IN STEADY SYMMETRIC

FLIGHT

9.1. BASIC RELATIONS
Consider an instant along the flight path of an airplane in steady symmetric climbing flight, as
shown in Fig. 9.1a. Summing forces parallel to the flight path, we have

T cosαT −D −W sinγ= 0 (9.1)

and perpendicular to the flight path, we get

T sinαT +L−W cosγ= 0 (9.2)

For most airplane types and in normal flight conditions, the component T sinαT in Eq. 9.2 is rel-
atively small in comparison with the other terms. Therefore, it is useful to ignore this force and to
assume that the thrust line inclination from the flight path is zero so that the propulsive force T
points into the direction of the velocity V (Fig. 9.1b). Then, Eq. 9.1 and Eq. 9.2 reduce to

T −D −W sinγ= 0 (9.3)

L−W cosγ= 0 (9.4)

Although not essential, it is often convenient to multiply Eq. 9.3 with airspeed V ,

T V −DV −W V sinγ= 0 (9.5)

Eq. 9.5 expresses the work per unit time done by the forces in the direction of flight, and is fre-
quently used in this form. By introduction of the rate of climb RC of the airplane,

RC =V sinγ (9.6)

199
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Figure 9.1 airplane in steady symmetric flight

Eq. 9.5 becomes
T V = DV +W (RC ) (9.7)

The left-hand side of Eq. 9.7 is the power delivered by the power plant at the airspeed V . This
quantity is called power available Pa ,

Pa = T V (9.8)

The term DV on the right-hand side of Eq. 9.7 is the power required for flight at velocity V or shortly
power required Pr ,

Pr = DV. (9.9)

The difference between power available and power required is the excess power,

Pc = Pa −Pr (9.10)

Thus, the excess power Pc refers to the power that in steady flight is used to climb

Pc =W (RC ) (9.11)

In Chapter 8, we demonstrated that at a given point of time (given airplane weight and altitude) the
flight condition depends on the following four variables:

• angle of attack, α

• airspeed, V

• flight-path angle, γ

• engine control setting, Γ
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Figure 9.2 Performance Diagram

Whenα (elevator stick position) andΓ (control lever position) are chosen, then the flight-path angle
and airspeed can be obtained from the Eq. 9.3 to Eq. 9.5.
To solve these equations, the performance diagram or Pénaud diagram may be used, where, for
a given altitude, airplane weight, configuration and engine control setting, the drag or power re-
quired and the maximum thrust or maximum power available are plotted against airspeed.
Fig. 9.2 shows typical shapes of performance curves in terms of both force and power. Putting
together the two curves of thrust and drag is useful when analyzing turbojet and turbofan powered
airplanes since their engines are rated in terms of thrust (Fig. 9.2a). On the other hand, piston and
turboprop engines are rated in terms of shaft power. Then, it is more convenient to examine their
performance by combining the curves of power required and power available rather than force
curves (Fig. 9.2b). Before discussing the deductions which can be made from the performance
diagram, let us first consider the nature of the power and force curves separately as their variations
with flight velocity are essential to the resultant performance.

9.2. DRAG AND POWER REQUIRED
From Eq. 9.4 and Eq. 9.9, and using the relationships L = CL

1
2ρV 2S and D = CD

1
2ρV 2S, we easily

find that

V =
√

W

S

2

ρ

1

CL
cosγ (9.12)

D = CD

CL
W cosγ (9.13)

Pr =W

√√√√W

S

2

ρ

C 2
D

C 3
L

cos3γ (9.14)

These expressions show that for a low-subsonic airplane with a given weight and flying at a given
altitude (given air density), the airspeed V , drag D and power required Pr , are functions of angle
of attack α and flight-path angle γ. In its turn, the flight-path angle depends via the thrust term in
Eq. 9.3 on the engine control setting Γ. In climbing flight, of course, the flight-path angle is unequal
to zero. Nevertheless, performance analyses are customarily simplified by neglecting the effect of
γ on V ,D and Pr . Also in this book, we shall assume that the flight-path angle is sufficiently small
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Table 9.1 Drag and power required for a low-subsonic airplane. Airplane weight W = 20000N, wing area S = 25m2, flight
altitude H = 0m (I.S.A.)

CL CD CL/CD V ,m/s V ,km/hr D,N Pr ,kW

1.5 0.210 7.14 29.5 106.2 2801 82.63
1.4 0.164 8.54 30.5 109.8 2342 71.43
1.3 0.143 9.09 31.7 114.1 2200 69.74
1.2 0.124 9.68 33.0 118.8 2066 68.18
1.0 0.097 10.31 36.1 130.0 1940 70.03
0.8 0.076 10.53 40.4 145.4 1899 76.72
0.6 0.061 9.84 46.7 168.1 2033 94.94
0.4 0.049 8.16 57.1 205.6 2451 139.95
0.3 0.045 6.67 66.0 237.6 2999 197.93
0.2 0.042 4.76 80.8 290.9 4202 339.52

so that its cosine may be replaced by unity, unless otherwise stated. The approximation cosγ = 1
means that at a given height, the lift and drag coefficients and thus the drag and power required
are functions of airspeed only. In other words, these relationships are given by single curves which
apply to all engine control settings.
A main point to note is that, although cosγ = 1, the sine of the flight-path angle remains unequal
to zero. With this conventional assumption, Eq. 9.12 to Eq. 9.14 reduce to

V =
√

W

S

2

ρ

1

CL
(9.15)

D = CD

CL
W (9.16)

Pr =W

√√√√W

S

2

ρ

C 2
D

C 3
L

(9.17)

As a first example, let us consider a propeller-driven small airplane of 20000 N weight with a wing
area of 25 m2. Calculated drag and power required values, starting from chosen values of lift co-
efficient CL , are displayed in Tab. 9.1. For each CL the airspeed V is calculated from Eq. 9.15,
using ρ0 = 1.225kg/m3 (see Appendix D). Since our example concerns an airplane designed for
low-subsonic airspeeds, the corresponding values of CD follow directly from the known lift-drag
polar (Fig. 9.3). Now, from Eq. 9.16 the drag is determined. Finally, power required is calculated
from Eq. 9.17. The results of Tab. 9.1 are plotted as a function of airspeed in Fig. 9.4. On the two
curves, special points can be distinguished which correspond to particular points on the lift-drag
polar:

• Minimum airspeed in steady flight (point A). From Eq. 9.15, we see that the airspeed de-
creases as the lift coefficient increases so that the minimum airspeed is obtained for maxi-
mum lift coefficient, CL max. Then, according to Eq. 8.37, the minimum airspeed is the stalling
speed VS .
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Figure 9.3 Typical lift-drag polar of a propeller-driven airplane

Figure 9.4 Drag and power required for low-subsonic airplane

• Minimum power required (point B). Fig. 9.4 shows clearly that the power required curve
reaches a minimum value at an airspeed greater than the stalling speed VS. From Eq. 9.17
we see that minimum power required occurs at an angle of attack for maximum climb factor,
(C 3

L/C 2
D )max

• Minimum drag (point C). The angle between any radius from the origin to a point on the
power required curve in Fig. 9.4 is a measure for Pr /V and so for the drag (see Eq. 9.9). The
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point C on the power required curve that corresponds to minimum drag is thus found by
drawing a straight line from the origin tangent to the Pr curve, as shown in Fig. 9.4. Hence,
minimum drag is always obtained at a higher airspeed and a lower lift coefficient (smaller
angle of attack) than minimum power required. Eq. 9.16 tells us that minimum drag will be
obtained when the airplane is flying at an angle of attack for which CL/CD is the maximum.

An analytical representation of drag and power required curves can be obtained by using the para-
bolic approximation for the lift-drag polar,

CD =CD0 +
C 2

L

πAe
(9.18)

where CD0 is the zero-lift drag coefficient, A is the wing aspect ratio and e is the Oswald’s efficiency
factor (see Section 4.4). Introducing the parabolic drag equation, we can write Eq. 9.13 as

D =CD0
1

2
ρV 2S + C 2

L

πAe

1

2
ρV 2S (9.19)

From the basic equation L =W , we have

CL = W
1
2ρV 2S

(9.20)

Substituting Eq. 9.20 into Eq. 9.19 yields

D =CD0
1

2
ρV 2S + W 2

πAe 1
2ρV 2S

= D0 +Di (9.21)

In Eq. 9.21, D0 is the zero-lift drag and Di is the induced drag of the airplane. Examination of this ex-
pression indicates that at a given altitude the zero-lift drag increases with V , while the induced drag
decreases with increasing flight velocity. These two contributions to the total drag D are sketched
as separate functions of airspeed in Fig. 9.5. The speed for minimum drag corresponds to the con-
dition dD/dV = 0. Differentiating Eq. 9.21 with respect to V and setting the derivative equal to zero,
we readily obtain

VD min =
√

W

S

2

ρ

1p
CD0πAe

(9.22)

Insertion of this expression into Eq. 9.21 produces

D0 = Di =W

√
CD0

πAe
(9.23)

Dmin = 2W

√
CD0

πAe
(9.24)

Eq. 9.23 shows that at the velocity for minimum airplane drag, corresponding to CD = 2CD0 and
CL =p

CD0πAe, zero-lift and induced drags are equal (see Fig. 9.5). Notice that Eq. 9.24 can also be
derived by combining the expression for maximum lift-to-drag ratio, Eq. 4.42, with Eq. 9.16,
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Figure 9.5 Drag components in level flight

Dmin = W

(CL/CD )max
= 2W

√
CD0

πAe
(9.25)

Similarly, using Eq. 9.18 and Eq. 9.20 leads to the following expression for the power required

Pr =CD
1

2
ρV 3S =CD0

1

2
ρV 3S + W 2

πAe 1
2ρV S

(9.26)

For minimum power required, dPr /dV = 0. Taking the derivative of Eq. 9.26 with respect to V ,
equating it to zero, leads to the following expression for the speed for minimum power required

VPmin =
√

W

S

2

ρ

1p
3CD0πAe

(9.27)

Substituting Eq. 9.27 into Eq. 9.26 furnishes the expression for minimum power required. Thus

Prmin = 4

3
W

√√√√W

S

2

ρ

√
3CD0

(πAe)3 (9.28)

Note that substitution of the expression for maximum climb factor, Eq. 4.46, into Eq. 9.17 also will
produce Eq. 9.28.
By combining Eq. 9.22 and Eq. 9.27, we find the relationship,

VDmin = 4p
3VPmin (9.29)

Apparently, based on the parabolic lift-drag polar, the minimum drag speed is 1.32 times the speed
for minimum power required. As we shall see later on in this text, VDmin and VPr min represent very
important flight conditions because of operational as well as economic reasons.
Fig. 9.6a displays the parabolic approximation of the lift-drag polar of our illustrative propeller-
driven small airplane. The values of CD0 and e are determined by drawing the parabola that fits
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Figure 9.6 Parabolic approximation of lift-drag polar

best the empirical curve. We see from Fig. 9.6a that at a certain value of the lift coefficient, the drag
coefficient ceases to be parabolic with CL . As the lift coefficient increases past a value of about
1.0 , the actual drag coefficient increases strongly from that expected from the parabolic behavior.
Beyond the stalling point the CL drops again as the angle of attack is further increased. The par-
abolic lift-drag polar on the other hand, is simply broken off at the maximum lift coefficient. At
this point a large deviation from the actual drag coefficient occurs. Therefore, as is clearly seen by
inspection of the illustrative diagrams in Fig. 9.6b, the shapes of the Pr - and D curves at airspeeds
near the stalling speed are somewhat different for the two types of CL versus CD curves. For the
actual lift-drag polar, the drag and power required values will be greater than obtained from its par-
abolic approximation. Furthermore, the actual Pr - and D curves are convex in a way that they have
vertical tangents at the stalling speed.
Fig. 9.7a presents typical parabolic lift-drag polars for a high-subsonic commercial turbofan air-
plane. The same data are given in Fig. 9.7b by means of the zero-lift drag coefficient CD0 and the
induced drag factor k = 1/(πAe) as functions of flight Mach number. The curves illustrate that the
drag coefficients rise sharply at Mach numbers greater than 0.70 . The procedure of calculating the
drag and power required curves is accomplished in Tab. 9.2 for the aerodynamic data of Fig. 9.7, as-
suming an airplane weight of 2500 kN, a wing area of 365 m2, and a flight altitude of 9000 m (I.S.A.).
The Mach number corresponding to a given forward velocity is given by

M = V

c
= V√

γRT
(9.30)

where T = 229.65K is the air temperature. The lift coefficient follows from Eq. 9.20 with W =
0.4663kg/m3 (see Appendix D).
For each pair of CL and M values, the drag coefficient is found through the drag equation

CD =CD0 +kC 2
L (9.31)
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Figure 9.7 Lift-drag polars for high-subsonic transport airplane

Table 9.2 Drag and power required for a high-subsonic airplane. Airplane weight W = 2500kN, wing area S = 365m2, flight
altitude H = 9000m (I.S.A.).

CL V , m/s M CD CL/CD D , kN Pr , kW

1.40 144.9 0.477 0.1229 11.39 219.4 31795
1.20 156.5 0.515 0.0933 12.86 194.4 30426
1.00 171.5 0.564 0.0700 14.29 175.0 30013
0.80 191.7 0.631 0.0513 15.58 160.4 30756
0.70 204.9 0.675 0.0441 15.89 157.3 32235
0.60 221.4 0.729 0.0389 15.42 162.1 35885
0.50 242.5 0.798 0.0360 13.89 180.0 43650
0.45 255.6 0.841 0.0370 12.16 205.7 52565
0.40 271.1 0.892 0.0386 10.36 241.3 65403

The numerical results are plotted in Fig. 9.8. From a comparison with Fig. 9.4, it is apparent that
there is no fundamental difference in the general shapes of the power required and drag curves for
propeller-driven and jet-driven airplanes.

As a third example, in Tab. 9.3 the drag and power required curves are produced for a supersonic
airplane with a weight of 85 kN and a wing area of 35 m2. The flight is executed at an altitude of
11000 m (I.S.A.). At this height the air density is equal to 0.3639 kg/m3 and the air temperature is
216.65 K. Fig. 9.9 furnishes the aerodynamic data for the vehicle. In the calculations, values of Mach
number are chosen. The corresponding airspeeds follow from Eq. 9.30 and the lift coefficients are
given by Eq. 9.20. From Eq. 9.31, the lift coefficient at a given Mach number determines the drag
coefficient and so the drag and power required.

The graphic representation of the calculation results is given in Fig. 9.10. The curves portray that
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Figure 9.8 High-subsonic transport airplane drag and power required

Table 9.3 Drag and power required for a supersonic airplane. Airplane weight W = 85000N, wing area S = 35m2, flight
altitude H = 11000m (I.S.A.).

M V , m/s CL CD CL/CD D , kN Pr kW

0.47 138.1 0.7000 0.2095 3.34 25.4 3513
0.50 147.5 0.6271 0.1697 3.70 23.0 3394
0.60 177.0 0.4355 0.0839 5.19 16.4 2897
0.80 236.1 0.2447 0.0308 7.96 10.7 2522
1.00 295.1 0.1567 0.0273 5.75 14.8 4366
1.10 324.6 0.1295 0.0386 3.36 25.3 8213
1.20 354.1 0.1088 0.0343 3.18 26.8 9476
1.60 472.1 0.0612 0.0252 2.43 35.0 16530
2.20 649.2 0.0324 0.0195 1.66 51.3 33271

there is a dramatic rise in drag and power required due to compressibility when the airplane flies at
transonic and supersonic speeds. Since the drag coefficient decreases with increasing supersonic
flight velocity, the drag rises above M = 1.1 at a slower rate than below the sonic speed.

9.3. THRUST AND POWER AVAILABLE
Fig. 9.11 indicates the typical variation of thrust with flight Mach number for turbojets, turbofans
and propeller propulsion systems. The data are presented as the fraction of the thrust at a given
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Figure 9.9 Aerodynamic data for supersonic airplane (estimated)

Figure 9.10 Power required and drag for supersonic airplane

Mach number to the static thrust (V = 0). The curves show that throughout the subsonic flight
regime the thrust of a turbojet is reasonably constant with airspeed (cf. Fig. 6.29). On the other
hand, propeller thrust declines rapidly with increasing Mach number. For moderate bypass ra-
tios, the curves for the turbofans have shapes in the middle between that of turbojets and pro-
peller propulsion systems. As depicted in Fig. 9.12a, the behavior of the propeller thrust results
in a power available remaining relatively constant with airspeed, except at high and low forward
velocities where the propulsive efficiency falls off (see Fig. 7.2). In contrast, the almost constant
value of turbojet thrust causes that its power available increases essentially linearly with airspeed
(Fig. 9.12b). Obviously, if the airplane is equipped with turbofan engines, the power available curve
will lie approximately halfway between that of the pure turbojet and propeller propulsion systems.
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Figure 9.11 Typical Variation of thrust with Mach number. Note: nowadays, it is more proper to use the nomenclature
of “low”, “medium” and “high” bypass ratio for the three turbofan curves indicated above. Some variants of
modern turbofan engines like the CFM LEAP and the PW1000G exhibit bypass ratios up to 12.5

Figure 9.12 Typical power available curves

Since the performance characteristics of turbojet and turbofan engines are specified in terms of
thrust, the power available curves for these engine types are simply obtained from Pa = T V . For
propeller-driven airplanes the calculation procedure is definitely more complicated as the available
power is obtained from the product of shaft brake power of the engine and propulsive efficiency of
the propeller,

Pa = η j Pbr (9.32)

First of all, we will explain the derivation of the power available versus V curve for an airplane
with piston-engine and propeller. This type of airplane may be equipped with a constant speed
propeller or a fixed-pitch propeller. In both cases, power available is determined at a given inlet
manifold pressure. Thus, as explained in Section 6.2, for the flight at a given altitude, shaft brake
power as a function of engine rpm is known from the standard power diagram. For the combination
of piston-engine and constant speed propeller, the pilot can control the inlet manifold pressure and
the propeller blade angle separately such that the engine speed remains constant. Accordingly, at a
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Table 9.4 Power available and thrust for piston-engine and constant speed propeller. Flight altitude H = 0m (I.S.A.), pro-
peller diameter D = 2.60m, propeller gear ratio np /n = 1.0, inlet manifold pressure pz = 115140Pa, engine speed
n = 2300rpm.

V , m/s V , km/hr Pbr, kW CP J CT η j Pa , kW T , N

10 36 295 0.0360 0.100 0.090 0.250 73.75 7375
20 72 295 0.0360 0.201 0.081 0.452 133.34 6667
30 108 295 0.0360 0.301 0.070 0.585 172.58 5753
40 144 295 0.0360 0.401 0.061 0.680 200.60 5015
50 180 295 0.0360 0.502 0.054 0.753 222.14 4443
60 216 295 0.0360 0.602 0.048 0.803 236.89 3948
70 252 295 0.0360 0.702 0.044 0.858 253.11 3616
80 288 295 0.0360 0.803 0.040 0.892 263.14 3289

given altitude (given air density), shaft brake power is directly known from selected values of inlet
manifold pressure and engine speed.
The performance of an electric motor in combination with batteries and an electronic speed con-
troller is not affected by the flight altitude, apart from minor temperature effects. Hence, it can
be assumed constant. On the other hand, the propeller torque and rotational speed (in case of a
fixed-pitch variable speed propeller) are dependent on air density.
Using the chosen set of data, the calculation to obtain thrust and power available for the illustrative
propeller-driven small airplane of the preceding section is carried out in Tab. 9.4.
The procedure of finding power available and propeller thrust at successive values of airspeed is
illustrated in the following.

1. For the selected values of inlet manifold pressure and engine speed we find the shaft brake
power from the standard power diagram in Fig. 9.13.

2. The power coefficient of the propeller is computed from the equilibrium condition Pp = Pbr:

CP = Pbr

ρn3
p D5

3. The value of CT for the CP and J found in steps 2 and 3 is taken from Fig. 9.14, and the propul-
sive efficiency is computed from

η j = CT

CP

4. Power available and thrust are determined by using the two equations

Pa = η j Pbr and T = η j
Pbr

V

When dealing with a fixed-pitch propeller the blade angle β0.75 is constant. This implies that the
power required for rotation and so the propeller speed will vary with forward velocity. At flight
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Figure 9.13 Standard power diagram of piston-engine (illustrative)

Figure 9.14 Propeller chart of 2-bladed propeller (estimated)

speeds lower than a chosen design speed the propeller power requirements slow the rotational
speed down, and at higher airspeeds it is necessary to reduce the engine control setting in order to
avoid over-speeding of the engine. When starting from given values of airspeed, the determination
of power available and thrust requires a very cumbersome calculation method since the engine
speed, defined by the equilibrium condition Pp = Pbr can only be found by trial and error. A work-
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ing procedure to determine successive points of the power available curve for a piston-engine with
a fixed-pitch propeller is to start from chosen values of engine speed. Then, in combination with
the selected inlet manifold pressure, shaft brake power is directly known, and the resulting airspeed
follows from the condition Pp = Pbr. The values of power available and thrust can now be found in
four steps:

1. Determine Pbr from the standard power diagram for each chosen value of engine speed.

2. Compute the power coefficient from

CP = Pbr

ρn3
p D5

Take from the propeller chart the values of J and CT which correspond to this CP and the
selected blade angle β0.75 and compute V and η j by using

V = Jnp D and η j = CT

CP
J

3. Compute the available power and thrust by using

Pa = η j Pbr and T = η j
Pbr

V

The procedure is executed in Tab. 9.5 for the airplane of the preceding example, but now for the
case of a constant propeller blade setting. The numerical results in Tab. 9.4 and Tab. 9.5 are plotted
in Fig. 9.15, showing that the curve for the fixed-pitch propeller is not very different from that for
the constant speed propeller, except that there will be less excess power. In a turboprop, most of
the gas generator power is extracted from the gas stream through the engine by the turbine to drive
the propeller, while a small portion is used to develop jet thrust through expansion of the exhaust
gases in the nozzle. Therefore, the power available produced by the turboprop is the sum of the
power delivered by the propeller plus the power equivalent of the jet thrust,

Pa = η j Pbr +T j V (9.33)

where the shaft power Pbr and the additional jet thrust T j may be known from the engine brochure
and η j can be found according to the procedure for the constant speed propeller in Tab. 9.4.

9.4. THE PERFORMANCE DIAGRAM
Fig. 9.16 shows the two performance curves in terms of power for our illustrative small airplane with
piston-engine and constant speed propeller. Power required and power available are taken from
the previous Tab. 9.1 and Tab. 9.4. The maximum forward velocity at which level unaccelerated
flight can be maintained, is determined by the condition that Pc = 0 in Eq. 9.10. Thus

Pa = Pr (9.34)
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Table 9.5 Power available and thrust for piston-engine and fixed-pitch propeller. Flight altitude H = 0m (I.S.A.), propeller
diameter D = 2.60m, inlet manifold pressure pz = 115140Pa, propeller blade angle β0.75 = 19deg

np = n, rpm Pbr,kW CP J CT V ,m/s V ,km/hr η j Pa ,kW T,N

1800 233 0.0593 0.18 0.102 14.0 50.4 0.309 72.0 5143
1900 245 0.0530 0.54 0.074 40.2 144.7 0.749 183.5 4565
2000 258 0.0479 0.60 0.066 52.0 187.2 0.826 213.0 4096
2100 270 0.0433 0.66 0.056 60.1 216.2 0.853 230.5 3835
2200 283 0.0394 0.71 0.048 67.7 243.7 0.871 246.5 3641
2300 295 0.0360 0.74 0.043 73.8 265.7 0.875 258.0 3496

Figure 9.15 Power available curves for piston-engine propeller combination

In Fig. 9.16, this equality holds for the intersection of the Pa and Pr curves. At all speeds lower
than the maximum level flight speed Vmax, power available exceeds power required for level flight.
The excess power can be used for increasing the potential energy of the vehicle, i.e., climbing flight
and/or for increasing kinetic energy, i.e., accelerated flight. Now, suppose the pilot wishes to slow
down the airspeed in order to change to a steady climbing flight. For that, they must pull back the
control stick to operate the elevators such that the angle of attack is increased. In the first instant,
before the airspeed is altered, increased lift and drag are produced. The extra lift causes an upward
directed acceleration and the excess drag reduces the flight velocity. Ultimately, the control action
may lead to a new state of steady climbing flight where, from Eq. 9.10 and Eq. 9.11, the rate of climb
is given by

RC = Pa −Pr

W
(9.35)

Using Eq. 9.35, the rate of climb follows directly from the excess power in Fig. 9.16. This procedure
is carried out in Tab. 9.6 and the resulting RC is plotted versus V in Fig. 9.17a. The maximum rate
of climb is then found to be RCmax = 6.2m/s. Naturally, the maximum rate of climb is of great
importance to minimize the time for the airplane to attain its cruise altitude. From the curve in
Fig. 9.17a, we also see that the best speed for climbing is VRC max = 150km/hr. Since the rate of
climb is maximum at the airspeed at which the excess power is maximum, the optimum speed for
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Figure 9.16 Performance diagram for small propeller-driven airplane

Table 9.6 Calculation of rate of climb

V , km/hr Pa , kW Pr , kW Pc , kW RC , m/s

106.2 170.0 82.6 87.4 4.37
120.0 183.0 68.0 115.0 5.75
140.0 197.0 74.0 125.0 6.15
160.0 210.0 88.0 122.0 6.10
180.0 221.0 107.0 114.0 5.70
200.0 231.0 132.0 99.0 4.95
220.0 240.0 165.0 75.0 3.75
240.0 248.0 204.0 44.0 2.20
260.0 256.0 247.0 9.0 0.45
280.0 262.0 293.0 -31.0 -1.55

maximum rate of climb can also be found in Fig. 9.16 as the abscissa where the two power curves
have parallel tangents.
Another curve that can be used to display the climb performance is the hodograph, which is the
plot of the rate of climb against the horizontal component of the airspeed, Vh =V cosγ (Fig. 9.17b).
In the latter diagram, a radius vector from the origin and intersecting the curve has the slope:

RC

Vh
= V sinγ

V cosγ
= tanγ

Hence, the angle between the abscissa and a straight line from the origin to the RC curve represents
the flight-path angle or angle of climb,

γ= tan−1
[

RC

Vh

]
= sin−1

[
RC

V

]
It is also apparent that the length of the radius vector from the origin to any point on the curve
serves as a measure of the airspeed V . Furthermore, it is seen that the maximum climb angle in
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Figure 9.17 Rate of climb versus airspeed and climb performance hodograph

steady symmetric flight is determined by the tangent to the hodograph. From Fig. 9.17b, γmax =
9.93deg.

The corresponding speed for steepest climbing is found as Vγmax = 120km/hr. The flight with max-
imum climb angle is of importance to minimize the horizontal distance for the airplane to arrive at
a particular altitude, which is relevant for obstacle avoidance tasks, for example. We further notice
that the airspeed for best climb angle is less than the speed for best rate of climb. As matters of
interest, the airspeeds for minimum drag, VD min, and minimum power required, VPr min , have also
been marked in Fig. 9.16. It is seen that VRC max is greater than the minimum drag speed and that
Vγmax is nearby the minimum power required speed.

At the engine control setting considered in Fig. 9.16, a large excess power is available at the stalling
speed, through which the airplane will climb if steady flight is maintained. In order to perform a
level flight at the stall, of course, the engine must be throttled back until power available equals
power required. Another point to note with respect to the flight at low airspeeds is that in case
the pilot desires to increase the rate of climb, the control stick has to be pushed forward in order
to attain an increased airspeed. This control action will lead to the wanted effect of a higher rate
of climb owing to the greater vertical distance between the performance curves in Fig. 9.16. The
region wherein this phenomenon occurs is referred to as the region of reversed command. This
situation is connected with the problem of speed instability, which complication shall be discussed
in Section 11.3. In Fig. 9.18, the performance curves of Fig. 9.16 are repeated. In addition, the power
available curve for the fixed-pitch propeller of the previous Tab. 9.5 is drawn. The blade setting of
the latter propeller is such that both propulsion systems provide the same maximum level flight
speed.

As we have learned in the preceding section, due to the decrease in engine speed with decreasing
airspeed, shaft brake power and so power available is lower for the fixed-pitch propeller. Conse-
quently, the rate of climb and the climb angle at each flight velocity will be less for the airplane with
fixed-pitch propeller. From our discussion in Section 9.1, we know that it is convenient in consid-
ering the performance of jet propelled airplanes to work with thrust and drag curves. This type
of performance diagram is presented in Fig. 9.19 for our illustrative high-subsonic turbofan trans-
port of Tab. 9.2. The thrust curve is sketched according to the typical variation of high-bypass ratio
turbofan thrust. The intersection of the thrust and drag curves in Fig. 9.19 defines the maximum
airspeed for level flight,
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Figure 9.18 Performance diagrams for small propeller-driven airplane

Figure 9.19 Performance diagram for turbofan transport airplane

T = D (9.36)

At velocities below Vmax, the excess thrust determines directly the angle of climb since from Eq. 9.3
we find that

sinγ= T −D

W
(9.37)

This equation indicates that the maximum climb angle is obtained for maximum excess thrust.
Inspection of Fig. 9.19 shows that for the jet airplane steepest climbing occurs in the proximity of
the minimum drag speed. The high thrust to weight ratios for jet airplanes allow relative large climb



9

218 9. PERFORMANCE IN STEADY SYMMETRIC FLIGHT

angles. Therefore, in the light of Eq. 9.12 to Eq. 9.14, it is worthwhile to examine the validity of the
approximation that γ is sufficiently small to assume that cosγ is equal to one. The effect of this
approximation can best be studied by considering steady symmetric flight conditions at a given
airspeed. Then, the performance diagram directly yields the climb angle and the rate of climb,
using drag and power required for level flight. At a given airspeed, the lift coefficient in level flight
is greater than in climbing flight

(
CL =W /(qS) instead of CL = W cosγ/(qS). Consequently, also

the drag coefficient and so the drag and power required in level flight are greater than in climbing
flight.
It is thus evident that when using the performance diagram, we have the safe situation that climb
angle and rate of climb are underestimated. Apparently, the increased drag and power required
values result from the use of wrong lift coefficients (wrong induced drag coefficients). Hence we
may provide a relationship between the actual climb angle and the climb angle using cosγ = 1 by
writing:

sinγ= T −D

W
= T −D1

W
+ ∆Di

W
(9.38)

where the subscript “1” denotes the case cosγ= 1 and∆Di is the surplus of induced drag. However,
∆Di =∆CDi

1
2ρV 2S; hence, from Eq. 9.38

sinγ= sinγ1 +∆CDi

1
2ρV 2S

W

Now since CDi = kC 2
L

sinγ= sinγ1 +k
(
C 2

L1 −C 2
L

) 1
2ρV 2S

W

Substituting CL1 =W /
( 1

2ρV 2S
)

and CL =W cosγ/
( 1

2ρV 2S
)
, results in the expression:

sinγ= sinγ1 +k sin2γ
W

1
2ρV 2S

(9.39)

The problem may be adequately described by setting γ= γ1 in the second term on the right-hand
side of Eq. 9.39, so that

sinγ

sinγ1
= RC

RC1
= 1+k sinγ1

W
1
2ρV 2S

(9.40)

To illustrate the result of the preceding analysis we now look as an example at a typical turbofan
transport with a wing loading of 6850 N/m2. For this airplane the induced drag factor is k = 0.053
and the maximum sea-level climb angle γ1 = 15deg. If the corresponding speed for steepest climb-
ing is 425 km/hr, we have from Eq. 9.40

sinγ

sinγ1
= RC

RC1
= 1+0.053×0.2588

6850

0.5×1.225× (425/3.6)2 = 1.011

From this numerical result, we see that the error is only 1.1%. Nevertheless, if desired, the result
can easily be improved by iteration.
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9.5. PERFORMANCE PREDICTION USING ANALYTICAL EXPRESSIONS
The performance diagram enables us to determine graphically the point performance for airplanes
for which the lift-drag polar and the variation of thrust or power available with forward speed are
known in any arbitrary form. In Section 9.2, we described an analytical procedure for deriving
the drag and power required curves from the approximation that the drag coefficient increases
parabolically with the lift coefficient (see Eq. 9.21 and Eq. 9.26).
In order to obtain a complete analytical representation of the performance curves we have to in-
troduce also simplifying assumptions with regard to the shape of the thrust and power available
curves. Obviously, such analytical methods of performance computation will only provide an as-
sessment of the actual performance and are especially of importance to obtain an insight into the
effects on performance of the various parameters. As discussed in Chapter 6, the thrust of a tur-
bofan engine is produced by the cold air flowing through the bypass duct and the hot air passing
through the exhaust nozzle (see Fig. 6.6). Typically, the turbofan thrust decreases with airspeed,
which behavior may be conveniently described by:

T

Tstatic
= 1−k(V )

1
2 (9.41)

where k is a constant for a given bypass ratio, control setting and altitude. Although it is a labori-
ous task, from Eq. 9.21 and Eq. 9.26, formulae for the performance of the airplane can be derived.
Returning to Fig. 9.11, we see that the variation of turbofan thrust with airspeed lies between that
of the turboprop and the turbojet. Moreover, Fig. 9.11 shows that the turbofan becomes more and
more a turboprop as the bypass ratio is enlarged, and that the turbofan resembles a pure turbojet if
its bypass ratio is low. Therefore, it is convenient in analyzing performance using analytical expres-
sions for thrust and drag, to consider successively the extreme cases of propulsion by a propeller
and a pure jet.
As we have learned in Section 9.3, for a constant speed propeller the power available is essentially
constant throughout the speed range of the airplane. Hence, power available for propeller-driven
airplanes may be assumed to be independent of airspeed, provided that engine control setting and
altitude remain unchanged. The variation of power available with altitude may be described by a
relationship similar to Eq. 6.102, namely,

Pa

Pa0
=

(
ρ

ρ0

)n

(9.42)

in which the subscript “0” designates sea-level condition and the power n is less than 1.0 (in the
troposphere).
Returning again to Fig. 9.11, we note that the thrust of a subsonic turbojet engine is relatively con-
stant with flight velocity. Accordingly, it appears worthwhile to assume that the thrust of a jet-
powered airplane has a constant value throughout the subsonic speed range. As stated previously
(see Eq. 6.90), we may relate the thrust of the turbojet at any given altitude to its sea-level value by

T

T0
=

(
ρ

ρ0

)n

(9.43)

Fig. 9.20a shows schematically the performance diagram with the assumption Pa is constant. Spe-
cial points which correspond to definite points on the lift drag polar are indicated on the power
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Figure 9.20 Idealized performance diagrams

required curve. The lift drag polar is sketched in Fig. 9.20b. The meanings of these points are re-
viewed in Tab. 9.7, where points 2, 3 and 6 require some further explanation. The angle inclined
between any straight line through point 0′ in Fig. 9.20a and intersecting the power required curve
and the horizontal Pa-line is approximately a measure of the climb angle since, from Eq. 9.6 and
Eq. 9.35, γ is given by

γ= sin−1
[

RC

V

]
= sin−1

[
Pa −Pr

W V

]
(9.44)

Hence, at point 2 we find the speed for steepest climbing and the corresponding maximum climb
angle as this point is located by the tangent from point 0′ to the Pr curve. The exact location of
point 2 , clearly, depends on the magnitude of power available. Recalling Eq. 9.35 for the rate of
climb, we find that when power available is unchanging, the maximum rate of climb is given by

RCmax = Pa −Pr min

W
(9.45)

Point 3 in Fig. 9.20a indicates the speed at which the power required curve has a minimum value.
Substitution of Eq. 9.17 into Eq. 9.45 results in

RCmax = Pa

W
−

√
W

S

2

ρ

1(
C 3

L/C 2
D

)
max

(9.46)

Thus, we see that point 3 on the lift-drag polar represents the angle of attack at which the climb
factor C 3

L/C 2
D is maximum. Regarding point 6, it should be noticed that an analytical prediction of

the maximum level flight speed starting from a given value of Pa and using Eq. 9.34, Eq. 9.17 and
Eq. 9.31 is very complicated as it requires the solution of a fourth power equation in CL . A working
approach to the problem is to specify Vmax and then to determine the power available needed to
satisfy the equilibrium condition Pa = Pr .
Fig. 9.20c shows the performance diagram in terms of power for a jet airplane with constant thrust.
In this case power available varies linearly with airspeed. The meanings of the special points in
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Table 9.7 Point performance in steady symmetric flight, with reference to Fig. 9.20

Point Performance Lift-drag polar Equation

Pa = const. T = const.

1 stall speed stall speed CL max V =
√

W
S

2
ρ

1
CL

2 max. climb angle — — sinγ= Pa−Pr
W V

3 min. power required min. power required
(
C 3

L/C 2
D

)
max Pr =W

√
W
S

2
ρ

C 2
D

C 3
L

3 max. rate of climb —
(
C 3

L/C 2
D

)
max RC = Pa−Pr

W

4 min. drag min. drag (CL/CD )max D = CD
CL

W

— — max. climb angle — sinγ= T−D
W

5 — max. rate of climb — RC = Pa−Pr
W

6 max. level flight speed — — Pa = Pr , L =W

Fig. 9.20b and Fig. 9.20c are also listed in Tab. 9.7, where now the points 4, 5 and 6 may need some
additional explanation.
For the climb angle (point 4) we can write, from Eq. 9.37 and Eq. 9.16,

sinγ= T −D

W
= T

W
− CD

CL
(9.47)

At constant thrust, the climb angle appears to be maximum at the minimum drag speed and thus
at the maximum lift-to-drag ratio,

sinγmax = T

W
− 1

(CL/CD )max
(9.48)

In reference to Fig. 9.20b, the point at which CL/CD is maximum is found by drawing a line from
the origin tangent to the lift-drag polar. Maximum rate of climb occurs at point 5 , where the excess
power is maximum. Clearly, the location of the corresponding point on the lift-drag polar depends
on the magnitude of the thrust, which defines the slope of the Pa-line in Fig. 9.20c. Combining
Eq. 9.15 and Eq. 9.47 results in the following expression for the rate of climb,

RC =V sinγ=
√

W

S

2

ρ

1

CL

[
T

W
− CD

CL

]
(9.49)

The maximum rate of climb can be obtained by setting the first derivative of Eq. 9.49 with respect
to CL equal to zero, i.e

dRC

dCL
= d

dCL

[√
W

S

2

ρ

1

CL

[
T

W
− CD

CL

]]
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Figure 9.21 Minimum airspeed

Carrying out this differentiation yields the condition for maximum rate of climb that

T

W
= 3

CD

CL
−2

dCD

dCL
(9.50)

For a parabolic variation of CD with CL we can substitute Eq. 9.18 into Eq. 9.50 to give

T

W
= 3

CD0

CL
− CL

πAe
(9.51)

This quadratic equation in CL can be solved to obtain the lift coefficient for maximum rate of climb,

CLc = πAe

2

T

W

−1+
√

1+12
CD0

πAe

(
W

T

)2
 (9.52)

The maximum level steady flight speed at point 6 is described by the conditions:

W =CL
1

2
ρV 2S (9.53)

T =CD
1

2
ρV 2S (9.54)

Substituting Eq. 9.21 into Eq. 9.54 yields a quadratic equation in Vmax,

T =CD0
1

2
ρV 2

maxS + W 2

πAe 1
2ρV 2

maxS
(9.55)

which can be solved to obtain an expression for the maximum level flight speed,

Vmax =

√√√√√ T

ρCD0S

1±
√

1− 4CD0

πAe

(
W

T

)2
 (9.56)

In principle, there are two solutions for the level steady flight speed. The plus sign in Eq. 9.56
represents the high-speed intersection of the thrust and drag curves, and the minus sign is coupled
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with the possibility of a low-speed intersection (Fig. 9.21). In the latter case, the stalling speed
cannot be reached in level steady flight. On the other hand, there are speeds, depending on airplane
weight, configuration, altitude and engine rating, at which the equation T = D cannot be satisfied
at a lift coefficient less than or equal to CL max. Then the minimum airspeed equals the stalling
speed.

9.6. PROBLEMS
1. A twin-engine turbofan airplane has a maximum take-off mass of 78000 kg. Each of its en-

gines can produce a maximum static thrust at sea-level altitude of 111 kN. The lift drag polar
of this aircraft can be considered parabolic, with CD0 = 0.02, e = 0.8 and A = 9.2. The wing
area is 122.6 m2 and its CL max is 1.6. Determine the following performance metrics at sea-
level altitude:

(a) Minimum airspeed for level flight

(b) Airspeed for minimum drag, and corresponding value of drag

(c) Airspeed for minimum power required, and corresponding value of power required

(d) Airspeed for maximum rate of climb, and corresponding value of rate of climb

(e) Airspeed for maximum climb angle, and corresponding value of climb angle

(f) Maximum airspeed for level flight

2. For the aircraft of Problem 1, calculate the performance metrics if the thrust available de-
pends on airspeed according to the following relation (where M is the Mach number).

T (M) = Tstatic(1−1.1M +0.8M 2)

3. Draw the performance diagrams of the aircraft in the scenarios described in Problems 1 and
2. Locate the points corresponding to the performance metrics listed in Problems 1 and com-
pare their positions on the chart. What is the impact of including the variation of thrust with
airspeed on the performance analysis of the same airplane?

4. A piston-engine, single-propeller airplane has a maximum take-off mass of 3995 kg. The en-
gine can deliver a maximum brake power of 647 kW at sea-level altitude, and the propeller
has a constant efficiency of 0.92. The lift-drag polar of this aircraft can be considered par-
abolic, with CD0 = 0.025, e = 0.8 and A = 9.7. The wing area is 62 m2 and its CL max is 1.5.
Determine the following performance metrics at sea-level altitude:

(a) Minimum airspeed for level flight

(b) Airspeed for minimum drag, and corresponding value of drag

(c) Airspeed for minimum power required, and corresponding value of power required

(d) Airspeed for maximum rate of climb, and corresponding value of rate of climb

(e) Airspeed for maximum climb angle, and corresponding value of climb angle

(f) Maximum airspeed for level flight
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5. Draw the performance diagrams for the aircraft of Problems 4, and locate the points corre-
sponding to the listed performance metrics.

6. Which of these aircraft design factors influence the minimum speed for level flight? And
which ones influence the maximum rate of climb? Discuss the effect of each factor for sce-
narios at low and high altitude.

(a) High-lift devices

(b) Airplane weight

(c) Maximum static thrust or power

(d) Power lapse rate with altitude

(e) Lift distribution along the wing span



10
EFFECT OF ALTITUDE

10.1. EFFECT OF ALTITUDE ON DRAG AND POWER REQUIRED
The effect of altitude on point performance in steady symmetric flight arises from the decrease in
air density with increasing altitude. The associated modification of the performance diagram may
be examined by repeating the construction of the two performance curves for each altitude in the
way described in Section 9.2 and Section 9.3. However, the influence of altitude on drag and power
required curves can best be studied by considering flight conditions at different altitudes but at the
same angle of attack. And flight at the same angle of attack implies flight at the same lift and drag
coefficients CL and CD . Using the subscript “1” to denote the conditions at altitude H1, the relevant
equations are:

V1 =
√

W

S

2

ρ1

1

CL
, D1 = CD

CL
W, Pr 1 =W

√√√√W

S

2

ρ1

C 2
D

C 3
L

At an altitude H2 > H1, designated by the subscript “2”, we have

V2 =
√

W

S

2

ρ2

1

CL
, D2 = CD

CL
W, Pr 2 =W

√√√√W

S

2

ρ2

C 2
D

C 3
L

Let us assume that we can neglect the effect on the lift-drag polar of the alteration of the flight Mach
number that is coupled with the altitude variation at constant dynamic pressure. Then, the lift and
drag coefficients also remain unchanged, and we obtain,

V2

V1
=

√
ρ1

ρ2
(10.1)

D2

D1
= 1 (10.2)

225



10

226 10. EFFECT OF ALTITUDE

Pr 2

Pr 1
=

√
ρ1

ρ2
(10.3)

The ratios in Eq. 10.1 to Eq. 10.3 show that at a given angle of attack the values of airspeed and
power required increase with increasing altitude, whereas the drag is independent of height. To
illustrate the results of this analysis, consider as an example an airplane powered by two turboprop
engines, having the following characteristics:

airplane weight W = 150000N
wing area S = 70m2

wing aspect ratio A = 12
lift-drag polar CD =CD0 +C 2

L/(πAe)
zero-lift drag coefficient CD0 = 0.013
Oswald’s efficiency factor e = 0.76
maximum lift coefficient CL max = 1.5

Fig. 10.1 presents drag and power required curves for four altitudes. According to Eq. 10.1 and
Eq. 10.2, the drag curves experience a horizontal translation to the right when altitude increases.
The power required curves show a shift to the right as well as an upward displacement. In this
respect, from Eq. 10.1 and Eq. 10.3, we can write,

Pr 2

Pr 1
= V2

V1
(10.4)

Eq. 10.4 shows that corresponding points for a given angle of attack lie at a straight line through
the origin. Consequently, all power required curves have only one joint tangent, which defines the
locations of the points for minimum drag, since Dmin = (Pr /V )min.

10.2. RATE OF CLIMB AND CLIMB ANGLE
Fig. 10.2a shows a graph of representative power available curves for our illustrative turboprop air-
plane of the preceding section. Sketched are typical variations of Pa with V for a given engine
control setting, where it is assumed that at each velocity the available power varies with height
according to Eq. 9.42. Also plotted is the set of power required curves, as given in the previous
Fig. 10.1. Fig. 10.2a shows that the variations of power required and power available with altitude
result in a decrease in the vertical distances between the performance curves. We also see that the
stalling speed (T.A.S.) increases, whilst the maximum level steady flight speed first remains more or
less unchanged, and later falls off with increasing altitude.
The altitude effects on the RC vs V curves, resulting from the performance curves, are shown in
Fig. 10.2b. These plots show that as altitude increases the maximum rate of climb decreases.
This is illustrated by Fig. 10.3, where RCmax is plotted against altitude. It appears that the latter
curve is practically linear. A point to note is that in the case of a supercharged piston engine the
linear decrease of maximum rate of climb with altitude is only valid above the critical altitude of
the engine since from thereon the power output decreases linearly with air density. This behavior
is illustrated by the dashed lines in Fig. 10.3. The altitude at which the maximum rate of climb
becomes equal to zero is called the absolute ceiling or theoretical ceiling of the airplane. At this
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Figure 10.1 Altitude effects on drag and power required

Figure 10.2 Performance diagrams and rate of climb curves

height, the Pa curve is tangent to the Pr curve, i.e., the high-speed and the low-speed intersections
of the performance curves coincide and no positive excess power exists (Fig. 10.3). Note that the
theoretical ceiling depends on airplane configuration, airplane weight and engine control setting.
The time to climb from sea level to any given altitude H is given by the integral
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Figure 10.3 Maximum rate of climb versus altitude

t =
∫ H

0

dH

dH/ dt
=

∫ H

0

dH

RC
(10.5)

Hence, the minimum time to arrive at the theoretical ceiling, Hth is

tmin =
∫ Hth

0

dH

RCmax
(10.6)

Since the maximum rate of climb diminishes to zero at the theoretical ceiling, the time needed
for reaching this altitude in a quasi-steady climb becomes infinite (although it could of course be
reached in a dynamic maneuver). This makes the idea of the theoretical ceiling inadequate for use
as a criterion for the climbing capability of an airplane. Therefore, as a practical upper limit of flight
altitude, the service ceiling is used, which is defined as that altitude at which the maximum rate of
climb is reduced to 0.5 m/s (100 ft/min). In our example in Fig. 10.3 the difference between the two
ceilings is seen to be 500 m.

Let us assume for the sake of discussion that power available would be independent of airspeed.
Then, the maximum rate of climb is given by Eq. 9.46, which is repeated here for convenience,

RCmax = Pa

W
−

√
W

S

2

ρ

1(
C 3

L/C 2
D

)
max

(10.7)

This equation clearly shows that, at a given engine control setting, the maximum rate of climb
diminishes with increasing height due to the fact that both Pa and ρ lessen. Eq. 10.7 also indicates
that if Pa is constant with airspeed, the angle of attack for maximum rate of climb does not vary
with altitude. Hence, the equilibrium condition W =CL

1
2ρV 2S requires that the dynamic pressure

must remain fixed (Fig. 10.4a). Accordingly, while the true airspeed for maximum rate of climb
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Figure 10.4 Typical variations of climb speed with altitude

must increase as the altitude increases,

VRCmax =
√√√√W

S

2

ρ

1

(CL)(C 3
L /C 2

D

)
max

(10.8)

the equivalent airspeed for maximum rate of climb is interestingly invariable with height (which
makes it easy to monitor on an airspeed indicator).

VeRCmax
=

√√√√W

S

2

ρ0

1

(CL)(C 3
L /C 2

D

)
max

(10.9)

It must be emphasized that this reasoning is only valid as far as Pa is independent of airspeed.
When the actual variations of power available are taken into account, the fastest climb will occur at
a somewhat higher equivalent airspeed than predicted by Eq. 10.9.
As was seen in Chapter 9, in the case of a propeller-driven airplane we cannot derive analytic ex-
pressions for the steepest climb conditions. However, from Fig. 9.17b one thing is sure; at sea level
the airspeed for steepest climb is lower than that for maximum rate of climb and lies very close to
the stalling speed. Since the airspeeds for steepest climb and fastest climb must coincide at the
theoretical ceiling, we conclude that the equivalent airspeed for steepest climb will increase with
altitude (Fig. 10.4a).
We will proceed to examine the effect of altitude on the two special climb speeds for jet airplanes,
assuming that the engine thrust is constant with airspeed. Then, the maximum climb angle is given
by Eq. 9.48, which is rewritten below,

sinγmax = T

W
− 1

(CL/CD )max
(10.10)
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Figure 10.5 Lift coefficient for fastest climb

This equation shows that at constant engine control setting, the climb angle will decrease as the
altitude increases. At the theoretical ceiling of the airplane, the steepest climb angle becomes zero,

sinγmax = Tth

W
− 1

(CL/CD )max
= 0 (10.11)

Obviously, the angle of attack for steepest climb is independent of altitude so that now we have
that the true airspeed for best angle of climb must increase with increasing altitude, but the corre-
sponding equivalent airspeed for best angle of climb remains constant with altitude.

Veγmax
=

√
W

S

2

ρ0

1

(CL)(CL /CD )max

(10.12)

Also with respect to the airspeed for fastest climb, a different behavior occurs compared with the
case of propeller propulsion. According to Eq. 9.50, the condition for maximum rate of climb reads,

T

W
= 3

CD

CL
−2

dCD

dCL
(10.13)

For an airplane with parabolic lift-drag polar, CD =CD0 +kC 2
L , Eq. 10.13 can be written as (see also

Eq. 9.51)

T

W
= 3

CD0

CL
−kCL (10.14)

The condition in Eq. 10.14 is plotted in Fig. 10.5 for an airplane that has a drag equation with CD0 =
0.017 and k = 0.053.
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Figure 10.6 Typical flight speed boundaries for subsonic airplane

An important thing to notice is that the lift coefficient for maximum rate of climb increases with
increasing altitude, owing to the fact that the thrust falls off when height is gained. This observation
implies that the equivalent airspeed for best rate of climb also falls off with height although the
corresponding true airspeed may increase somewhat with height (Fig. 10.4b). At the theoretical
ceiling, we have

Tth

W
= CD

CL
(10.15)

Substitution of Eq. 10.15 into Eq. 10.13 confirms the result of the previous Eq. 10.11 that at the
theoretical ceiling the airplane flies at that angle of attack where the ratio CL/CD is the maximum.
Although the foregoing results are based on the assumption of a thrust which is independent of
airspeed, they certainly indicate the typical features of the climb speeds for γmax and RCmax.

10.3. STALL, PROPULSION AND BUFFET BOUNDARIES
For the case of constant engine control setting and given airplane weight and configuration, the in-
fluence of height on the possible flight speeds is sketched in Fig. 10.6. For the sake of completeness,
also are indicated the typical variations of the climb speeds.
The altitude effects on the high-speed and low-speed boundaries due to engine output and stall
characteristics are, basically, identical for the various types of subsonic airplanes with turbo-engines
and for airplanes with aspirated (non-supercharged) piston engines.
With regard to minimum airspeed, two different altitude regions must be distinguished. At lower
heights, the magnitude of power available is such that a steady flight with maximum lift coefficient
can be executed without losing height (see also Fig. 9.21). Therefore, in this region, the minimum
airspeed is equal to the stalling speed, which follows from

VS =
√

W

S

2

ρ

1

CL max
(10.16)
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Figure 10.7 Lift coefficient for maximum airspeed

and increases with height in accordance with Eq. 10.1. Because CL max is independent of altitude,
the minimum equivalent airspeed in this region is also constant with height, and is obtained from
the following equation.

VeS =
√

W

S

2

ρ0

1

CL max

At heights near the theoretical ceiling, power available has been reduced to the extent that power
required for steady level flight at maximum lift coefficient exceeds Pa . In this region, the minimum
airspeed is determined by the low-speed intersection of the performance curves, whereby the re-
quired angle of attack is smaller than the critical angle of attack. This condition is also depicted in
Fig. 10.6.
The high-speed boundary is formed by the maximum level steady flight speeds. In accordance with
the performance diagrams in the previous Fig. 10.2, the maximum airspeed in Fig. 10.6 initially
remains approximately constant and then becomes smaller with increasing altitude down to the
speed Vγmax =VRCmax at the theoretical ceiling.
Let us first examine in some detail the variation of Vmax with altitude for propeller-driven airplanes.
In this case, we may use our approximation that Pa is constant with airspeed. Using Eq. 9.17 and
the condition Pa = Pr , we get the relationship

Pa =W

√√√√W

S

2

ρ

C 2
D

C 3
L

(10.17)

Solving Eq. 10.17 for the climb factor yields

C 3
L

C 2
D

= W 3

S

2

ρ

1

P 2
a

(10.18)

Eq. 10.18 indicates that because ρ and Pa decrease with increasing altitude, the climb factor will
increase up to its maximum value

(
C 3

L/C 3
D

)
max when the airplane is at the theoretical ceiling. As

can be seen in Fig. 10.7, there will be an associated increase in angle of attack so that also the lift
and drag coefficients at which the airplane flies will become greater as altitude increases.
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The relationship between the maximum level steady flight speed and the changing values of ρ, Pa

and α is given by

Pa =CD
1

2
ρV 3

maxS or (10.19)

Vmax = 3

√
Pa

S

2

ρ

1

CD
(10.20)

In studying the variation of Vmax with altitude on the basis of Eq. 10.20, we have to include an
assumption about the relationship between power available and height. To this end, we consider
the following three characteristic altitude changes of Pa :

a. Power available is directly proportional to air density. In this case, it is seen from Eq. 10.20
that Vmax decreases continuously with height, as sketched in Fig. 10.8a.

b. Power available is independent of altitude. Now, the decrease of ρ will dominate the increase
of CD , resulting in a rise in Vmax (Fig. 10.8b). This condition can be used in the case of air-
planes with supercharged piston engines at heights below the critical altitude of the engines.
Beyond the critical height, the piston engine output varies linearly with density. Conse-
quently, Vmax will inevitably decrease so that from thereon the Vmax vs. H curve is similar
to the curve in Fig. 10.8a.

c. The ratio Pa/ρ increases with height according to Eq. 9.42. Under this condition, we may find
that at first Vmax increases somewhat. Above a certain altitude the influence of the increasing
CD will dominate and, accordingly, Vmax will fall off (Fig. 10.8c). This behavior is typical for
turboprop airplanes.

The same traits are true of the turbojet airplane. From the condition of equilibrium T = D at Vmax

we obtain

T = CD

CL
W whence (10.21)

Figure 10.8 Altitude effects on maximum airspeed
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Figure 10.9 Performance diagrams of supersonic airplane

CL

CD
= W

T
(10.22)

Using the approximation that T is constant with V , we find that in consequence of the fact that the
thrust falls off with altitude, the lift-to-drag ratio in Eq. 10.22 will increase up to (CL/CD )max at the
theoretical ceiling (Fig. 10.7). Now the relation between Vmax, ρ, T and α is governed by

T =CD
1

2
ρV 2

maxS or (10.23)

Vmax =
√

T

S

2

ρ

1

CD
(10.24)

If the assumption is made that the thrust decreases in direct proportion to ambient density, it fol-
lows from Eq. 10.24 that Vmax decreases with height, as shown in Fig. 10.8a. In point of fact, Vmax

will be almost constant up to a large flight altitude. This picture of the maximum level flight speed
variation is shown in Fig. 10.6 and Fig. 10.8c and comes about because of the increase in the ratio
T /ρ with altitude (see Eq. 6.90 and Eq. 9.43).
The performance diagrams of a supersonic airplane for three altitudes are presented in Fig. 10.9.
The weight of the airplane is 82 kN and the jet is thrust augmented by afterburning. The altitude
effects resulting from these graphs are shown in Fig. 10.10.
In contrast with its subsonic counterparts, the maximum level steady flight speed appears to in-
crease strongly when a supersonic airplane climbs from sea level to a higher altitude. The reason for
this lies in the combined effect of an increasing thrust and decreasing drag coefficient with super-
sonic flight velocity. Fig. 10.10a shows that the very highest airspeed is reached near the tropopause
(I.S.A.).
Apparently, high excess powers are present at both subsonic and supersonic speeds, through which
in each of the two speed regimes a maximum rate of climb speed can be recognized (Fig. 10.10b).
The flight regime of an airplane is also determined by its buffet characteristics. Buffeting concerns
an undesirable shaking of the airplane and its controls, which is caused by the turbulence in the
flow when the boundary layer separates from the outer surface of the airplane. Boundary layer
separation can happen at any airspeed. Therefore, buffeting can affect the low-speed as well as the
high-speed boundary.



10.3. STALL, PROPULSION AND BUFFET BOUNDARIES

10

235

Figure 10.10 Altitude effects on performance of supersonic airplane

Generally, there is a marked tendency for the stalling angle of attack to go down with increasing
flight Mach number. The actual maximum usable angles of attack, of course, can only be obtained
from flight testing over the entire Mach number range of a specific type of airplane. The typical
variation of the maximum attainable lift coefficient against flight Mach number for a high-subsonic
type of airplane (buffeting limit) is sketched in Fig. 10.11.
At low Mach numbers, buffeting occurs as the stall is approached, and the maximum achievable
lift coefficient is close to the CL max value of the airplane.
As described in Chapter 4, when an airplane exceeds the critical Mach number, shock waves on
the airplane surface will be formed. Due to the large pressure increase through the waves, shock-
induced boundary layer separation comes about and the resulting turbulence in the wake may
cause buffeting. The objectionable phenomena also include pitching and yawing oscillations from
rapid changes of pressure distribution. In consequence of this, buffeting becomes more pronounced
and maximum CL decreases with increasing Mach number up to transonic speeds, at which it may
cause a complete collapse of the lift.
Curves of constant values of n W /S

p/p0
are also plotted in Fig. 10.11, where n is the load factor. The

curves are calculated from

nW =CL
1

2
γpM 2S (10.25)

which is the basic lift equation for level flight when the load factor is not equal to unity (see Sec-
tion 8.3), and when the dynamic pressure is expressed in terms of the Mach number M , the static
pressure p, and the specific heat ratio of the air γ. Clearly, plots such as in Fig. 10.11 can be used to
determine the operating envelope of an airplane with respect to buffeting since for any given wing
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Figure 10.11 Mach number effect on stall

Figure 10.12 Mach number effect on level flight speed limits

loading, altitude and load factor there is a minimum and maximum Mach number defined by the
points at which the buffet boundary crosses the appropriate n W /S

p/p0
vs. M curve.

In order to determine the operational envelope where level steady flight speeds can be maintained,
our hypothetical buffet boundary is plotted again in Fig. 10.12a. Superimposed on the buffet plot
are now CL vs. M curves for level steady flight, calculated from the condition W = CL

1
2γr M 2S,

using W /S = 5kN/m2. We clearly see that the range of possible level flight speeds becomes smaller
as altitude increases. At a certain altitude the low-speed and high-speed stall coincide. This altitude
is called the aerodynamic ceiling of the airplane.

Fig. 10.12b shows the resulting flight Mach numbers as a function of altitude. It is evident that these
flight speed limits depend on airplane configuration, weight and load factor.
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Figure 10.13 Flight envelope of jet airplane

10.4. FLIGHT ENVELOPE
The flight envelope describes the area of altitude and airspeed where an airplane is constrained
to operate (Fig. 10.13). Within the boundaries of this diagram fall all the possible combinations of
airspeed, altitude and load factor.
The flight envelope is defined by the various limitations on the performance of the airplane, such as
available engine power, stalling, buffet characteristics, structural considerations and requirements
on external noise production.
The selected high-speed boundary depends highly on the chosen value of the design cruising speed
VC , which is the maximum equivalent or calibrated level flight speed at which the structure is strong
enough to withstand prescribed loads imposed by allowable flight maneuvers and gusts encoun-
tered in rough air. The conditions defining the flight loads are specified in the airworthiness regu-
lations. As explained in the previous Section 8.5, the basic maneuvering and gust envelopes (V -n
diagrams) define the symmetrical flight loads for which the airplane structure is designed.
From the speed-altitude operating limits in Fig. 10.13, which refer to jet airplanes, the following
boundaries are recognized:

• The design diving airspeed VD which limits the maximum level flight speeds at which the
airplane is designed to remain controllable and to withstand particular flight loads. Flying
at VD , the associated flight Mach number increases with altitude, and therefore an altitude
may be reached at which it would be impossible to fly because of compressibility effects. For
this reason, there is a design diving Mach number MD , which cuts off VD so that the airplane
remains free from undesirable flying qualities associated with buffeting.

• The maximum operating speed VMO , which is the calibrated airspeed that may not be delib-
erately exceeded in any type of flight, and the associated maximum operative Mach number
MMO . Both the VMO and MMO are calculated respectively from VD and MD according to
some safety margin to account for unintentional increments of speed. The airspeed VMO is
also so established that it is not smaller than the design cruising speed VC .
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• The maximum flight altitude for airplanes with a pressurized cabin. This altitude limit is
determined by the maximum pressure differential load for which the airplane structure is
designed.

• The stall limit, which is formed by the calibrated minimum stalling speed, that is the cali-
brated minimum steady flight speed with power off at which the airplane is controllable. The
maneuver conducted to measure this speed has previously been described in Section 8.4.

Remember that, at constant calibrated airspeed, the flight Mach number will increase with altitude.
Therefore, the calibrated minimum stalling speed may increase with altitude due to the effects of
near-stall buffeting on maximum lift coefficient. It is also important to remember that the stall
boundary depends strongly on airplane weight and configuration.
For supersonic airplanes similar flight speed limitations occur. In addition to the boundaries in-
dicated in Fig. 10.13, maximum speed may be limited by detrimental effects of compressibility on
flying qualities. Also, the serious deterioration of the strength of materials due to aerodynamic
heating in supersonic flight may constrain the achievable level flight speed.
The relationship between the temperature at the stagnation points on the leading edge of the wing
or at the nose of the fuselage and the flight Mach number is given by the expression

Tt = T

[
1+ γ−1

2
M 2

]
(10.26)

where Tt represents the total temperature at a stagnation point and T is the ambient temperature
(as derived in Appendix C).
For instance, let us assume a flight in the lower stratosphere (I.S.A.) at a Mach number of 2.5. Then
Eq. 10.26 yields: Tt = 488K = 215◦C. This figure may confirm that extra structural problems are
present in supersonic airplane design as a result of kinetic heating of the skin surfaces.
In order to warrant safe and economic operations throughout the entire range of flight speeds, each
airplane is furnished with a flight manual, specifying the conditions under which the airplane can
be used safely.

The possible area of altitude and airspeed where hypersonic airplanes may operate is depicted in
Fig. 10.14. Hypersonic regime is usually defined as flight in excess of Mach 5 where temperature
effects, and other such as chemical reactions, start to play a major role in the physics of flight. The
maximum altitude boundary is attained when the sum of aerodynamic lift and centrifugal force
becomes insufficient to balance the component of the airplane weight perpendicular to the flight
path. On the other hand, for a given airspeed the airplane cannot fly below a certain altitude where
the adverse effects of high total pressures or high skin temperatures on structural strength, become
too great. When an airplane is flying along a curvilinear path in a great-circle plane, the upper
boundary can be found from the equality

CL
1

2
ρV 2S + W

g

V 2

R
=W cosγ (10.27)

where R is the radius of curvature of the flight path and γ is the angle the flight path makes with the
local horizontal (Fig. 10.15).
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With the assumption of a small flight-path angle (cosγ = 1), we can transform Eq. 10.27 into the
form

CL
1

2
ρV 2S + W

g

V 2

(Re +h)
=W (10.28)

In this equation Re is the radius of the (spherical) Earth and h is the flight altitude. Substitution
of Eq. 1.18 into Eq. 10.28 produces the following expression for the relationship between the flight
velocity V and the altitude h,

CL
1

2
ρV 2S =W0

g

g0

[
1− V 2

V 2
c

]
(10.29)

where W0 is the weight of the airplane at sea level and Vc is the circular velocity. As exemplified in
Fig. 10.14, there exists a narrow flight corridor which links atmospheric flight to space flight and
vice versa. Through the flight corridor a lifting vehicle can reach the circular velocity and become a
satellite or can perform a lifting re-entry trajectory.
The three boundaries in Fig. 10.14 are determined for the value W0/(CLS) = 4800N/m2, a permis-
sible total pressure of pt /p0 = 2, and a maximum allowable total temperature of 1900◦C. For the
variation of temperature, pressure and density with altitude in the upper atmosphere, the data in
Ref. 33 are used.

Figure 10.14 Flight corridor

10.5. PROBLEMS
1. For the aircraft introduced in Problem 2 of Section 9.6, calculate the performance metrics at

an altitude of 11000 m assuming that the available thrust varies with altitude according to the
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Figure 10.15 High-altitude and high-velocity flight In great circle plane

following relation
T

T0
=

(
ρ

ρ0

)0.85

2. Calculate the theoretical ceiling altitude for the aircraft described in the previous problem.

3. For the aircraft introduced in Problem 5 of Section 9.6, calculate the performance metrics at
an altitude of 3000 m assuming that the power available varies with altitude according to the
following relation?

Pa

Pa0
=

(
ρ

ρ0

)0.7

4. Calculate the theoretical ceiling altitude for the aircraft described in the previous problem.

5. Draw the boundaries of the flight envelope for the two aircraft mentioned in Problems 1 and
2.

6. Is it possible for an aircraft to have a higher maximum level flight speed at high altitude than
a low altitude? Discuss how the maximum level flight speed varies with altitude for different
power-train architectures.
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FLIGHT AND AIRPLANE CONDITION

EFFECTS

11.1. EFFECT OF WEIGHT
To study the effect of changing the weight of an airplane, we consider here steady symmetric flight
at an initial weight W1. For the purpose of calculating new values of airspeed, drag and power
required at a weight W2, let the flight altitude and the angle of attack remain fixed. If further pos-
sible effects of compressibility are ignored, we can utilize the fact that CL and CD are invariable at
constant angle of attack. Then, from Eq. 9.15 to Eq. 9.17, we have the following ratios,

V2

V1
=

√
W2

W1
. (11.1)

D2

D1
= W2

W1
. (11.2)

Pr 2

Pr 1
=

√[
W2

W1

]3

. (11.3)

Thus, starting from the weight W1, for each angle of attack the new speed V2, drag D2 and power
required Pr 2 can be calculated.
Fig. 11.1 shows the effect of weight on drag and power required curves of our illustrative turboprop
airplane with a wing area of 70m2, a parabolic lift-drag polar, CD = 0.023+0.035C 2

L and a maximum
lift coefficient of 1.5 . As can be seen from Eq. 11.1 and Eq. 11.2, all corresponding points on the drag
curves which have the same angle of attack are located on a quadratic curve through the origin,

D2

D1
=

[
V2

V1

]2

(11.4)

Similarly, from Eq. 11.1 and Eq. 11.3, we find that with changing weight all corresponding points on
the power required curves move along a third order curve through the origin,
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Figure 11.1 Effect of weight on drag and power required

Pr 2

Pr 1
=

[
V2

V1

]3

(11.5)

It is important to realize again that the foregoing relations hold only at low subsonic velocities and
that at high-subsonic and supersonic velocities the effect of weight must be determined by calcu-
lating the drag and power required curves according to the procedure described in Section 9.2.
Using a parabolic lift-drag polar, the effect of changing the weight of the airplane can also be exam-
ined from Eq. 9.26 which is repeated below for convenience,

Pr =CD0

1

2
ρV 3S + W 2

πAe 1
2ρV S

(11.6)

Inspection of Eq. 11.6 shows that the weight only affects that part of power required that is asso-
ciated with induced drag. Since at constant weight the relative importance of this part of power
required increases with decreasing velocity and air density, the effect of changes in weight on per-
formance are especially noticeable at lower airspeeds and/or greater heights (Fig. 11.2). As far as
the minimum airspeed is determined by stalling, from Eq. 11.1, we have

VS2

VS1
=

√
W2

W1
(11.7)
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Figure 11.2 Effect of weight on performance diagram

A change in weight, particularly, has a considerable influence on climb performance. Of special
interest is of course the effect of weight on the maximum rate of climb. From Eq. 9.35, we find that

RCmax = (Pa −Pr )max

W
(11.8)

It will be appreciated that at each flight speed the numerator of Eq. 11.8 decreases with increasing
weight. Consequently, the total outcome of Eq. 11.8 is a dramatic reduction of the maximum rate
of climb. Also, there is a higher speed for fastest climb as the weight increases. Obviously, the same
effects on maximum climb angle and steepest climb speed will occur. In the high-speed range, the
first term of the right-hand side of Eq. 11.6 prevails so that there the influence of a change in weight
on maximum level flight speed will be much smaller, certainly at low altitudes. This is confirmed by
the performance curves in Fig. 11.2, which show that there is only a slight reduction in maximum
airspeed as weight increases. For our example airplane, a complete picture of the effect of weight
on performance in level steady flight and climb is presented in Fig. 11.3. It can be seen that also the
absolute ceiling goes down significantly with weight.
From the preceding discussion it may be clear that for each flight, the maximum allowable weight
of the airplane and so the maximum load the airplane can carry is determined by requirements on
take-off and landing distances, climb performance, and en route obstacle clearance. Therefore, a
close relationship exists between actual take-off weight and the airworthiness standards. To illus-
trate this connection, Tab. 11.1 gives the minimum climb requirements to be achieved by transport
airplanes with the critical engine out, as specified in the Federal Aviation Regulations (FAR) (see
Section 8.5). The climb requirements are expressed as climb gradients, that is to say, in terms of
sinγ= RC

V , and expressed in percent. As portrayed in Fig. 11.4, the take-off path with engine failure
is broken down into three climb segments. The take-off reference speeds VLOF and V2 in Fig. 11.4
are specified in terms of the calibrated minimum stalling speed VMS for the appropriate airplane
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Figure 11.3 Effect of weight on performance

Table 11.1 Take-off climb requirements for transport airplanes

minimum climb gradient

number of engines 2 3 4

first segment: T.O.-power and flaps, landing gear down > 0.0% 0.3% 0.5%
second segment: T.O.-power and flaps, landing gear up 2.4% 2.7% 3.0%
third segment: METO-power, flaps and landing gear up 1.2% 1.4% 1.5%

configuration and weight. To ensure a safe climb-out, the speed at liftoff, VLOF, normally, is 15
to 25 percent higher than the minimum stalling speed. Dependent on the type of power plant
and number of engines, the minimum value of the speed at the obstacle height, the take-off safety
speed V2, may not be less than 1.15VMS or 1.2VMS (Chapter 16). From a complete investigation of
each segment, weight limits are determined which are available to the pilot in the form of graphs
where the take-off weight is given in terms of humidity, pressure altitude, and ambient tempera-
ture (Fig. 11.5). In conclusion, for safe operation, we can say that the pilot should know exactly at
which weight they are flying. The pilot should also have a good understanding of the performance
characteristics under different conditions of number of operative engines, engine control setting,
flap setting, and landing gear position. The typical effects of the latter conditions will be discussed
in the following sections.

11.2. EFFECT OF ENGINE FAILURE
Malfunction of one or more engines on multi-engine airplanes leads, as a matter of course, to a
considerable loss in power available. For example, in the case of a two-engine airplane, after en-
gine failure we have only half the commencing thrust. With the resulting reduction in excess thrust
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Figure 11.4 Take-off performance for transport airplane

Figure 11.5 Weight-altitude-temperature (WAT) curves for transport airplane

and power, maximum level flight speeds, maximum rates of climb and ceilings deteriorate. The
qualitative effects of the number of operative engines on maximum rate of climb for a two-engine
and a four-engine airplane are sketched in Fig. 11.6. It is important to notice that engine failure
must be considered for multi-engine airplanes in all flight phases. With respect to cruise flying, es-
pecially, the lowering of the theoretical and practical ceilings is of great importance to flight safety.
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Figure 11.6 Effect of the number of operating engines on maximum rate of climb

Figure 11.7 Engine failure on a twin-engined airplane

Needless to say that the load the airplane carries as well as the selected route must warrant the
condition that there is no risk of en-route terrain collisions. A point to note is that on airplanes
with three or more engines, the occurrence of two inoperative engines in cruising flight must be
awaited.
Failure of an engine in flight not only means loss of thrust, but also an increment in drag as caused
by (Fig. 11.7):

• additional drag from control surface deflections

• additional drag produced by the dead engine.

For a propeller airplane it is important to avoid the existence of windmilling drag. A propeller be-
ing windmilled by the oncoming air and thus driving the inoperative engine causes a considerable
additional drag. Also, there is a great risk of further damage to the engine. Fortunately, windmilling
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Figure 11.8 Yawing motion

drag can be almost completely eliminated by feathering the propeller (see Chapter 7). The meth-
ods of calculating windmilling drag are beyond the scope of this book. For information about this
subject the reader is referred to Ref. 34.
As portrayed in Fig. 11.7, failure of the starboard engine of a twin-engined airplane causes an un-
balanced thrust yawing moment to the right. Under this condition, there will be a direct tendency
to yaw toward the dead engine. Assuming a pure yawing motion, the angle of sideslip remains zero
so that the velocity vector of the center of gravity lies in the plane of symmetry (Fig. 11.8). The
airplane travels along a curvilinear flight path of which the radius is given by

R = V

r
(11.9)

where r is the angular velocity of the yawing motion. From Fig. 11.8, it is seen that the wing tips of
the airplane have velocity differences from the flight speed by an amount

∆V = r
b

2
(11.10)

The changes in local velocity along the span due to the yawing velocity will cause an increase in lift
and drag on the outer wing and a decrease in lift and drag on the inner wing. Also a side force Yv

occurs due to a change in the angle of attack at the vertical stabilizer. Clearly, the yawing motion
considered in Fig. 11.8 will create a rolling moment to the right and, although to a lesser degree,
also a yawing moment to the left (Fig. 11.9). Furthermore, in the case of failure of a wing-mounted
propeller engine, the asymmetric lift from the part of the wing submerged in the slipstream of the
propeller will cause an additional rolling moment toward the dead engine (Fig. 11.10).
The resulting yawing moment to the right in combination with the rolling moment in the same di-
rection will cause, if allowed to continue uncontrolled, a spiral dive. Evidently, when engine failure
occurs the yawing motion must be stopped promptly. This can be done by introducing a sideslip
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Figure 11.9 Asymmetric force and moments resulting from yawing motion

Figure 11.10 Rolling moment caused by asymmetric lift on wing

angle to generate a side force on the vertical tail that counteracts the yawing moment, by introduc-
ing a bank angle raising the dead engine to rotate the lift vector toward the live engine, or by a com-
bination of both. Practically, these maneuvers are performed by the pilot by applying rudder and
aileron control. A resolute application of rudder deflection toward the live engine will be required
to generate a rudder-induced yawing moment and establish a new sideslip angle (see Fig. 11.7). A
deflection of the ailerons will be needed to overcome the rolling moment and establish a new bank
angle.

Fig. 11.11 shows a new condition of steady straight level flight that may be established by applying
the aforementioned control inputs. The corresponding equilibrium equations in the air-path axes
(cf. Eq. 3.37) are reported below.

−D +T cosβ= 0

−S −T sinβ+W sinφ+Sv = 0

−L+W cosφ= 0

(11.11)
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Figure 11.11 Steady straight level sideslipping flight with bank angle

The forces S and Sv in the equations are the lateral forces due to the sideslipping motion and rudder
deflection, respectively. Recall that for consistency with lift and drag, the forces S and Sv are taken
positive in the direction of the negative Ya axis. Normally, a sideslip at β> 0 produces a side force
to port (S > 0). According to Eq. 4.15, we have S =CS

1
2ρV 2S, where CS is the lateral force coefficient

which varies essentially linearly with angle of sideslip. Note thatΦ< 0 in Fig. 11.11 because the bank
angle customarily is taken positive when the airplane is rotating clockwise about its longitudinal
axis.
Of special relevance is the flight condition at an angle of sideslip β = 0 and φ ̸= 0, represented in
Fig. 11.12 and corresponding to the following equations of equilibrium.

−D +T = 0

−W sinφ+Sv = 0

−L+W cosφ= 0

(11.12)

In this flight condition the lowest airplane drag will occur, furnishing maximum flight speed.
Emphasis is made that the maximum side force that the rudder can establish decreases with de-
creasing airspeed. The airspeed at which the maximum amount of moment exerted by full rudder
equals the unbalanced yawing moment developed by the inoperative engine, determines the low-
est speed at which the airplane can be flown while keeping straight. The latter airspeed is called
the minimum control speed, VMC, and represents the minimum speed for fully controlled flight at
a given airplane weight, configuration and altitude, and at any particular engine control setting.
Clearly, the airspeed always must be maintained above the minimum control speed in a flight with
one or more engines inoperative. During the take-off maneuver, especially, the minimum control
speed is an essential factor and must be at least 10% below the take-off safety speed V2 at the ob-
stacle height in Fig. 11.4. When engine failure occurs the operative engine(s) will be called on to
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Figure 11.12 Steady straight level non sideslipping flight with bank angle

generate extra thrust or power by choosing a higher control setting. We shall look at the effect of
changes of engine control setting on airplane performance in some detail in the next section.

11.3. EFFECT OF CHANGES OF ENGINE CONTROL SETTING
In order to get increased thrust or power, a higher engine control setting must be selected by the
pilot. The occurrence of engine failure, as discussed in the preceding section, is an example of a
condition in which additional thrust from the live engine may be asked to maintain height and/or
airspeed. Also in the flight with all engines operating, the pilot can affect the engine output by
changing the engine control setting. Typical performance curves for an airplane powered by tur-
boprop engines are sketched in Fig. 11.13. The power available curves are drawn for a number of
characteristic power settings. As we have learned in Chapter 8, airspeed and engine control set-
ting in climbing flight can be chosen independently of each other, whereas in steady level flight the
flight condition is fully determined by one of the variables, α,V or Γ. Thus, when flying at a given
altitude, particular values of flight speed and engine control setting are coupled. This is illustrated
in Fig. 11.13 by the intersections A to F, which define the relationship between engine control set-
ting and level flight velocity. When the engine throttles are fully opened, emergency or full power
will be obtained. This condition is represented in Fig. 11.13 by the upper power available curve. As
mentioned earlier in Chapter 6 full power can be allowed for a short time only. The maximum rat-
ing permitted for unlimited duration is therefore lower and is known as METO (maximum except
take-off) or maximum continuous.
The effects of lowering the engine control setting are apparent from Fig. 11.13; a decreasing max-
imum level flight speed and a decrease in rate of climb at each airspeed. Also note that at low
engine ratings the minimum flight speed is determined by the low-speed intersection of the Pa

and Pr curves. Then, steady level flight at either of two velocities is possible. One faster and one
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Figure 11.13 Performance diagram for various engine control settings

slower than the airspeed at which maximum excess power occurs (see also Fig. 9.21).
Operating at the greater airspeed is known as flying the normal or front side of the power curve,
while operation in the low-speed region is called flying the back side of the power curve or flying in
the region of reversed command (see Chapter 9). To explain this, suppose the pilot is flying in the
high-speed region and that due to an external cause, the airplane experiences a sudden change in
airspeed from the equilibrium condition in point E in Fig. 11.13. In the case that the pilot maintains
level flight at a fixed engine control setting, there will be a negative excess power when speed in-
creases and a positive excess power when speed falls off (Fig. 11.14). Hence, in both situations the
airplane will tend to restore the original airspeed. Apparently, the equilibrium condition in point E
is stable. On the other hand, in the low-speed region, for example in point F in Fig. 11.13, any speed
disturbance will tend to diverge the speed further from its original value. For this reason, flying in
the low-speed region must be avoided in all circumstances in which loss of airspeed or altitude may
be dangerous.
What is argued above about the behavior of the speed following a speed disturbance is all we can
state from considering equilibrium conditions. The transition from one steady flight condition to
another is, as a matter of course, intrinsically connected with unsteady motions and should be
studied by means of the full system of equations of motion as derived in Chapter 3. However, con-
sistent with the scope of this text, we need not concern ourselves with the dynamic behavior of the
airplane in response to the forces and moments developed.
The boundary between the two speed regions is found at the airspeed where the performance
curves have parallel tangents which, of course, is at the speed for fastest climb.
Provided that power available is constant with airspeed, the transition point occurs at the minimum
power required speed (Fig. 11.15a). Likewise, in the case of a jet airplane the transition point is
approximately the speed for minimum drag (Fig. 11.15b). The jet picture in Fig. 11.15b illustrates
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Figure 11.14 Variation of level flight speed at fixed engine control setting

Figure 11.15 Selection of flight region

that besides the variation of power available with airspeed, there is a second characteristic of a jet
airplane that is different from a propeller-driven airplane: the relative stretching and flatness of the
power required curve in the low-speed region.

In order to assure a sufficient degree of speed stability, the pilot will select a flight speed greater than
the minimum drag speed. Generally, for jet airplanes as well as propeller airplanes:

V ≥VM = 1.1VD min (11.13)

where VM is called minimum comfortable airspeed.

If an airplane is cruising at V <VM a loss of speed due to a disturbance will require immediate ele-
vator control as well as thrust increase to avoid undesired speed deviations and/or loss of altitude.

Assuming a parabolic variation of CL with CD , we obtain from Eqs. 9.22, 10.16 and 11.13 the ratio
of the minimum comfortable airspeed to the stalling speed as
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Figure 11.16 Reduction of minimum drag speed

VM

VS
= 1.1

√
CL maxp
CD0πAe

. (11.14)

Eq. 11.4 shows that for jet airplanes relative high values of the ratio VM /VS will occur, owing to their
comparative low values of zero-lift drag coefficient CD0 and wing aspect ratio A. This is especially
true for supersonic airplanes with slender delta wings.

The necessity to correct the engine control setting continually arises at all flight speeds lying in
the low-speed region and at which the pilot tries to maintain a straight flight path. A critical situa-
tion may be the approach path before landing, where application of an automatic throttle control
system may be needed to solve the problem artificially.

Eq. 11.14 indicates that lack of sufficient speed stability can also be corrected by increasing the zero-
lift drag coefficient and/or wing aspect ratio. In the case of highly swept supersonic wings, variable
wing geometry can be a suitable design feature providing, among other things, an improved aspect
ratio and thus a reduced approach speed (Fig. 11.16a).

In order to stabilize the descent speed on approach by drag increase, the airplane uses high-drag
devices. In addition to wing flaps and landing gear, the airplane may be equipped with speed-
brakes in the form of extensible panels attached to the fuselage (Fig. 11.16b). Use may be made of
spoilers as well. The latter high-drag devices are opening panels in the upper surface of the wing
positioned span wise between fuselage and ailerons (Fig. 11.16c). They are extended symmetrically
across the plane of symmetry of the airplane. When used in combination with flaps, a large extra
drag results. Besides for providing a high drag, spoilers are used to supply additional roll control.
For this purpose, only the spoilers on the down-going wing are up to cancel the lift at that wing and
thus rolling the airplane. They also have a practical meaning, in the case of a glider, as a control
to vary the lift-to-drag ratio and with that the glide angle (Chapter 13). Further, during ground
run with spoilers opened, the lift is destroyed to increase the frictional force between wheels and
ground surface (Chapter 16).
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Figure 11.17 Typical low-speed lift-drag polars

11.4. EFFECT OF AIRPLANE CONFIGURATION
In this section we shall illustrate the effect of landing gear position and flap deflection on low-
altitude flight performance.
The importance of landing gear down and flap deflection will be considered on the basis of the typ-
ical set of lift-drag polars in Fig. 4.16, which are re-shown in Fig. 11.17 for convenience. The curves,
which apply to a hypothetical two-engine turboprop airplane, show that a considerable contribu-
tion to the drag coefficient is supplied by the landing gear; approximately a doubling of the zero-lift
drag coefficient of the clean airplane. As explained earlier in Chapter 4, we also see that a flapped
configuration affects both drag and lift coefficients. Let us assume that our turboprop airplane has
a weight of 150 kN and that it flies at sea level (I.S.A.). Fig. 11.18a shows the corresponding graph
of power required versus airspeed for the clean airplane and for the configuration with landing
gear down. Representative power available curves at maximum continuous engine rating are also
sketched, considering the flight with two operative engines and the case of one inoperative engine
with propeller feathered. Expressed in terms of rate of climb against airspeed, the power data in
Fig. 11.18a look as plotted in Fig. 11.18b.
It appears that the landing gear drag causes a considerable deterioration of the performance of the
airplane. Especially, in the case of engine failure, the influence of the landing gear on maximum
rate of climb is dramatic.
The effect of flap deflection on the performance curves and rate of climb is presented in Fig. 11.19,
for the case of one and two operative engines. At a fixed airspeed V , the lift coefficient CL is also
fixed by the condition L =W , or

CL = W

S

2

ρ

1

V 2 (11.15)

This conclusion implies that at a given flight velocity, the drag coefficient CD increases with increas-
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Figure 11.18 Effect of undercarriage-drag on climb performance

.

Figure 11.19 Effect of flap-angle on climb performance

ing flap angle. As a consequence, power required enlarges and, hence, rate of climb worsens as the
flap setting becomes greater. On the other hand, flaps reduce the stalling speed VS by increasing
the maximum lift coefficient CLmax and/or wing area S. The relationship between these quantities
again follows from the condition that lift equals weight in steady flight

VS =
√

W

S

2

ρ

1

CLmax
(11.16)



11

256 11. FLIGHT AND AIRPLANE CONDITION EFFECTS

Apparently, when taking off, the effect of flap deflection is twofold; it decreases the ground run
distance by a reduced liftoff speed and it increases the airborne distance through reduced rate of
climb. Overall, a flapped configuration typically produces a shortening of the total take-off dis-
tance (Fig. 11.4). However, the flap angle for minimum take-off distance varies considerably with
runway and ambient conditions so that the selection of the optimum flap setting requires extensive
calculations.
Concerning the use of flaps, it is important to notice that the maximum flap angle that can be
applied is usually limited by the climb-out performance. To illustrate this statement, we recall that
according to the Federal Aviation Regulations (FAR) for transport category airplanes, compliance
with the climb gradient requirements at an airspeed V2 = 1.20VMS and at one engine inoperative,
must be shown (see Section 11.1). From Fig. 11.19b, we find that at a flap angle of 40 deg and with
one engine inoperative, the climb gradient is insufficient (γ< 2.4%). This observation also explains
why during take-off the flaps are virtually always partly deflected (δ f = 10deg — 15deg). For small
airplanes, even zero flap setting may be selected.
On the other hand, during landing operations it is necessary to apply full flaps in order to furnish
a high drag required to handle the airplane on the approach path and during the ground run after
landing. When an expedited descent is required, also a flap setting beyond the normal landing
setting (δ f = 50deg — 90deg) may be used.
It is worth to mention that all movable aerodynamic devices affixed to the airplane for producing
high lift or high drag, usually have a speed limitation for extension. Also the landing gear, when
used as a speed-brake, has such a speed limit, but when locked down it might be used up to higher
airspeeds.
We end this section by emphasizing that, although the evaluation of the low-speed capabilities in
the foregoing example pertains to a propeller-driven airplane, the picture for jet-powered airplanes
is practically the same.

11.5. PROBLEMS
1. For the aircraft introduced in Problem 1 of Section 9.6, calculate the performance metrics

when its weight is 75% of its maximum take-off weight.

2. Calculate the theoretical ceiling altitude for the aircraft described in the previous problem.

3. For the aircraft introduced in Problem 4 of Section 9.6, calculate the performance metrics
when its weight is 75% of its maximum take-off weight.

4. Calculate the theoretical ceiling altitude for the aircraft described in the previous problem.

5. Draw the boundaries of the flight envelope for the two aircraft mentioned in Problems 1 and
2, and compare it to those obtained by solving Problem 5 of Section 10.5

6. How should the pilot of a twin-engine jet aircraft act on the cockpit controls (rudder, ailerons,
elevator) to counteract the effects of the failure of the right engine? Explain your answer in
terms of the aerodynamic forces and moments acting on the aircraft.

7. What does it mean for an aircraft to be flying on the "back side of the power curve"? Why is it
important for the pilot to avoid this flight regime?
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8. Explain the concept of speed stability with reference to the power required and power avail-
able curves. How can different devices be used to mitigate a lack of speed stability?

9. For the aircraft introduced in Problem 1 or the one introduced in Problem 2 of Section 9.6,
calculate

(a) the minimum airspeed for level flight when its landing gear is down: assume that the
zero-lift drag coefficient CD0 increases by 0.02.

(b) the minimum airspeed for level flight when its flaps are set to 20 deg: assume that the
maximum lift coefficient CL max increases by 0.5 and the zero-lift drag coefficient CD0

increases by 0.015.

(c) the minimum airspeed for level flight when its flaps are set to 40 deg: assume that the
maximum lift coefficient CL max increases by 1.0 and the zero-lift drag coefficient CD0

increases by 0.03.





12
TURNING PERFORMANCE

12.1. GOVERNING EQUATIONS
As mentioned earlier in Section 3.5, the basic maneuver to change the flight path heading is the
true banked or coordinated turn. For that reason, in discussing the maneuverability of airplanes,
the emphasis is primarily on steady curvilinear flight with wings banked and without sideslip, as
visualized in the previous Fig. 3.8. Remember that in the coordinated turn we have the special con-
ditions that the inward centripetal force required to pull to airplane toward the center of the turn
is accomplished by the horizontal component of the lift and that both the resultant aerodynamic
force (R +T ) and the vector sum of the weight and the outward centrifugal force (W +C ) are in the
plane of symmetry of the airplane.
In accordance with our approach to analyzing point performance in Chapter 9 to Chapter 11, we
shall continue to adopt that the thrust vector is tangent to the flight path (αT = 0). Then, from the
system of equations from Eq. 3.40, we find that the instantaneous conditions on the spiral flight
path are described by (Fig. 12.1):

T −D −W sinγ= 0 (12.1)

W cosγsinµ−C cosµ= 0 (12.2)

−L+W cosγcosµ−C sinµ= 0 (12.3)

Rather than the conventional air-path axis system used for symmetric flight, it is more convenient
to employ for turning flight an additional axis system with axes X t , Yt , and Zt . With the origin of
the system at the center of gravity of the airplane, the X t axis coincides with the Xa axis (and thus
with the velocity vector). The Yt axis lies in the horizontal plane along the radius of curvature. The
Zt axis lies in the vertical plane and is perpendicular to both the X t and Yt axes (see Fig. 12.1.
Resolving the forces along the latter coordinate system produces the following series of equations
(cf. Eq. 3.41):

T −D −W sinγ= 0 (12.4)

259
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Figure 12.1 Forces in the coordinated turn

L sinµ−C = 0 (12.5)

−L cosµ+W cosγ= 0 (12.6)

In examining the instantaneous flight condition in a coordinated turn, it is customary to assume
level flight (γ = 0) since the resulting performance in level turning flight can be used to represent
the performance in all normal climbing and descending turns. Then, from Eq. 3.39, we see that the
aerodynamic angle of roll equals the angle of bank (µ=Φ). Further, the centrifugal force C is given
by

C = W

g

V 2

R
(12.7)

where R is the turning radius and g is the acceleration of gravity (g = g0 = 9.80665m/s2).
Thus, the governing force equations alter, for steady-level turning flight, to

T −D = 0 (12.8)

L sinΦ− W

g

V 2

R
= 0 (12.9)

−L cosΦ+W = 0 (12.10)

These equations can also be found directly from Fig. 12.2, where the forces in a turn to the right
are represented when looking from behind and down on the airplane. The figure illustrates that
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Figure 12.2 The airplane in a steady level true banked turn

in a true banked turn the centripetal force is completely balanced by the centrifugal force. This
condition provides that the airplane has no tendency to move either inward or outward so that the
airplane travels along a circular path. Fig. 12.2 also shows that the weight is balanced by the vertical
component of the lift and that the drag equals the thrust.
Substitution of the relationships L =CL

1
2ρV 2S and D =CD

1
2ρV 2S into Eq. 12.8 and Eq. 12.10 yields

T =CD
1

2
ρV 2S (12.11)

W

g

V 2

R
=CL

1

2
ρV 2S sinΦ (12.12)

W =CL
1

2
ρV 2S cosΦ (12.13)

For given values of W and ρ, the three Eq. 12.11, Eq. 12.12 and Eq. 12.13 contain five variables: α,
V , Γ, R andΦ so that the flight condition is determined by two control variables.
In the next section we will express the various performance items in terms of angle of attack α (CL

and CD ), and the angle of bankΦ.

12.2. EQUATIONS FOR THE PERFORMANCE IN A COORDINATED TURN
The airspeed in a constant altitude turn, from Eq. 12.13, is given by

V =
√

W

S

2

ρ

1

CL

1

cosΦ
(12.14)

The drag follows from Eq. 12.11 and Eq. 12.13 as

D =W
CD

CL

1

cosΦ
(12.15)
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An expression for the power required is found by multiplying Eq. 12.15 with Eq. 12.14 to give

Pr = DV =W

√√√√W

S

2

ρ

C 2
D

C 3
L

1

cos3Φ
(12.16)

The Eq. 12.14 to Eq. 12.16 can also be expressed in terms of angle of attack and load factor. Accord-
ing to its definition, the load factor n follows from Eq. 12.10 as

n = L

W
= 1

cosΦ
(12.17)

which shows that the load factor changes inversely as the cosine of the bank angle.
Using Eq. 12.17, we can write

V =
√

nW

S

2

ρ

1

CL
(12.18)

D =nW
CD

CL
(12.19)

Pr =nW

√√√√nW

S

2

ρ

C 2
D

C 3
L

(12.20)

Expressions for the radius of turn are obtained from Eq. 12.12 and Eq. 12.13, whence

R = W

S

2

ρ

1

g

1

CL

1

sinΦ
and (12.21)

R = V 2

g tanΦ
or (12.22)

R = W

S

2

ρ

1

g

1

CL

np
n2 −1

and (12.23)

R = V 2

g
p

n2 −1
(12.24)

These equations tell us that the larger the bank angle (hence the load factor) or the lower the air-
speed in a turn, the smaller the radius of turn will be. It is important to note that the bank angle
(hence the load factor) and the airspeed are constrained by the equilibrium equations to maintain
the conditions of steady horizontal coordinated turn. For this reason, it is not possible to indepen-
dently vary each of them without adjusting the other accordingly. The rate of turn can be found
from Eq. 12.22 and Eq. 12.24 as

Ω= V

R
= g tanΦ

V
= g

p
n2 −1

V
(12.25)

It might be interesting to mention that well-defined rates of turn are in common use. These turning
rates are expressed in terms of the number of degrees the airplane changes heading in one second,
namely:
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Figure 12.3 Turn with incorrect angle of bank

• Rate 1: Ω= 3deg/s

• Rate 2: Ω= 6deg/s

• Rate 3: Ω= 12deg/s

• Rate 4: Ω= 24deg/s

When turning at Rate 1, the airplane executes what is known as a standard rate turn, where a com-
plete reversal of flight direction (180 deg turn) takes one minute. From Eq. 12.25, we see that the
time needed to execute a 180 deg turn (π radians) is given by

Tπ = π

Ω
= πV

g tanΦ
= πV

g
p

n2 −1
(12.26)

Eq. 12.26 shows that the lower the airspeed the smaller the angle of bank (load factor) required for
a desired turning time Tπ . For example, at an airspeed of 300 km/hr (162 kts), the angle of bank for
a Rate 1 turn (Tπ = 1min) is 24 deg, and at V = 150km/hr (81 kts) we find: Φ= 12.5deg.
If for a given rate of turn the angle of bank is too small, the unbalanced centrifugal force will pull
the airplane to the outside of the turn. Under this condition, the airplane is said to be skidding out
of turn, whereby the nose of the airplane will swing toward the inside of the flight path (Fig. 12.3a).
On the other hand, if the airplane banking is too large for the rate of turn the airplane will be pulled
to the inside of the turn, and the nose will swing toward the outside; slipping into turn (Fig. 12.3b).
Obviously, during an incorrect banked turn, also the occupants will tend to slide inward or outward
on their seats.
To indicate to the pilot whether or not the angle of bank is correct for a particular rate of turn,
the instrument panel in the cockpit is equipped with a turn and slip indicator. This instrument is
actually a combination of two separate mechanisms, which are brought together in one casing; a
turn needle and a ball which can move freely in a curved transparent tube. The dial presentation of
a conventional turn and slip indicator is sketched in Fig. 12.4.
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Figure 12.4 Turn and slip indicator

Figure 12.5 Slip indicator

The turn needle is a gyroscopically controlled pointer mechanism and indicates the rate at which
the airplane is turning about its vertical axis. We leave the description of the way in which the turn
indicator works to specialized books on aircraft instruments. For instance, see Ref. 9.

For our aim it is merely of interest to understand the operation of the slip indicator. Therefore, let us
examine Fig. 12.5, where the position of the ball in the tube indicates skid or slip and is determined
by the gravitational forces acting on the ball.

During symmetric flight as well as in a coordinated turn, the ball is in the lowest point of the
tube because the resultant of the gravitational forces acts in the plane of symmetry of the airplane
(Fig. 12.5a and Fig. 12.5b). If the gravitational forces are unbalanced, such as during a skid or a
slip, the ball moves away from the center position in the direction of the horizontal excess force
(Fig. 12.5c and Fig. 12.5d).

The influence of banking and turning on drag and power required curves can be examined by con-
sidering flight conditions at different load factors (angles of bank) but at a fixed angle of attack
(fixed lift and drag coefficients). From Eq. 12.14 to Eq. 12.20, the following simple ratios are ob-
tained when flight conditions at load factors n1 and n2 are considered:
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V2

V1
=

√
n2

n1
=

√
cosΦ1

cosΦ2
(12.27)

D2

D1
= n2

n1
= cosΦ1

cosΦ2
(12.28)

Pr 2

Pr 1
=

√[
n2

n1

]3

=
√[

cosΦ1

cosΦ2

]3

(12.29)

These ratios indicate that at a given angle of attack the values of airspeed, drag and power required
increase as the load factor or the angle of bank becomes greater. Drag and power required curves
are plotted in Fig. 12.6 at various angles of bank for the former illustrative two-engine airplane with
turboprops. The lift-drag polar of the airplane is given in the previous Fig. 11.17. The curves in
Fig. 12.6 relate to the clean configuration (flaps and gear up), an airplane weight of 150000 N, and
an altitude of 0 m (I.S.A.). The following technique was used to obtain the drag and power required
curves at a given angle of bank:

1. Values of CL were chosen.

2. The associated values of CD were determined from the lift-drag polar in Fig. 11.17.

3. At each CL , the airspeed was found from Eq. 12.14, using ρ0 = 1.225kg/m3.

4. Drag and power required were computed from Eq. 12.15 and Eq. 12.16, respectively.

This procedure of finding drag and power required at successive values of CL was repeated for sev-
eral values of angle of bank, and in this fashion the system of curves in Fig. 12.6 was determined.
Clearly, also the stalling speed in a turn, VSΦ, increases proportional to the square root of the load
factor,

VSΦ =
√

nW

2

2

ρ

1

CL max
=VS

p
n (12.30)

where VS is the stalling speed in symmetric flight.
The dashed lines in Fig. 12.6 are formed by the points on the drag and power required curves that
correspond to a given lift coefficient.
From Eq. 12.27 to Eq. 12.29, we find that

D2

D1
=

[
V2

V1

]2

(12.31)

Pr 2

Pr 1
=

[
V2

V1

]3

(12.32)

Apparently, all corresponding points on the drag and power required curves are located on quadra-
tic and third-order curves, respectively.
The circling motion, in principle, has two effects on the drag characteristics of the airplane. The
first is a change in the flow direction relative to the airplane, and the second is that the outer wing
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Figure 12.6 Drag and power required at various angles of bank

travels faster than the inner wing (Fig. 12.7). Usually, the second of these is the most important
effect, implying the occurrence of nonuniform lift and drag distributions over the wing span, which
give rise to moments affecting the rotation of the airplane (see also Section 11.2). These additional
moments have to be trimmed by extra control surface deflections, resulting in more drag.
The difference between the wing tip velocity and the flight speed is given by (see Fig. 12.7)

∆V =Ωb

2
cosΦ (12.33)

By substitutingΩ from Eq. 12.25, cosΦ from Eq. 12.17, and V from Eq. 12.18 we can write the wing
tip velocity difference relative to the flight speed as

∆V

V
= bg

2V 2

p
n2 −1

n
= ρbSgCL

4W

p
n2 −1

n2 (12.34)

We can use Eq. 12.34 to judge the importance of the problem. For example, for an airplane having
a minimum stalling speed VMS of 60 m/s, a positive limiting load factor n1 of 2.5, and a wing span
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Figure 12.7 The airplane in circular motion

of 25 m, we get: ∆V /VA = 0.031. The latter result may indicate that in actual practice ∆V /V ≪ 1
so that the maneuvering capability of an airplane can be determined, to a first approximation, by
neglecting the effects of rotation on trim drag.
Finally, we may remark that in turning flight an additional trim drag also may occur because of the
fact that at the same airspeed the lift coefficient must be increased over that required for symmetric
flight according to the equation

CL = nW
1
2ρV 2S

(12.35)

The required equilibrium of moments about the lateral axis calls for a greater elevator angle and
hence more drag is produced. However, in the present discussion we shall also neglect this effect
on the drag characteristics of the airplane.

12.3. CALCULATION OF TURNING PERFORMANCE
The preceding analysis on turning performance can best be summarized by looking at an illustra-
tive example. Therefore, sea-level performance diagrams are shown in Fig. 12.8 at a given engine
control setting and at various angles of bank for the turboprop airplane of Section 12.2.
In order for the airplane to execute a level-flight turn, power required must be equal to power
available at each airspeed. Owing to this requirement, we make the interesting observation that
in Fig. 12.8 the total range of flight speeds, from the stalling speed (VS )Φ=0 up to the maximum level
flight speed Vmax, can be divided into two distinct parts, from (VS )Φ=0 to V ∗ and from V ∗ to Vmax.
In the first region (VS )Φ=0 < V < V ∗, the airplane can execute a turn at maximum lift coefficient.
Since power available prevails in this interval, the pilot must lower the engine control setting until
the power available becomes equal to the power required. The value of Pa can be found from

Pa = 1

2
ρV 3S (CD )CLmax (12.36)

It should be noticed that limiting values of lift coefficient from buffet onset phenomena may be rel-
evant to the possible stalling speeds in a turn. When a stall occurs during a turn, there is a tendency
for the airplane to follow a descending spiral path in its stalled-state. This yawing-rolling motion is
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wing area : 70 m2

lift-drag polar : Figure 11.17

airplane weight : 150 kN

altitude : 0 m (I.S.A.)

engine rating : maximum continuous

Figure 12.8 Performance diagrams for turning flight

called spin. To guard against the danger of a turning stall, it is usual practice to keep the permissible
maximum angle of attack below the critical value. In the second region (V ∗ < V < Vmax), the air-
plane cannot perform a level turn at CL max because of limitations imposed by the power available
curve in Fig. 12.8. Now, at a given airspeed the allowable turning drag coefficient follows from

CD = Pa
1
2ρV 3S

(12.37)

Starting from the conditions as specified by the Eq. 12.36 and Eq. 12.37, the turning performance
can be deduced from the envelope of the performance curves in Fig. 12.8, which for the sake of
clearness are repeated separately in Fig. 12.9a.
The calculation procedure can be carried out as follows. With the lift coefficient being fixed at its
maximum value CL =CLmax, the corresponding drag coefficient CD is found from the lift-drag polar
and is also fixed. Starting from the stalling speed (VS )Φ=0, lift is computed from L = 1

2ρV 2SCL , the
load factor from n = L/W , the drag required for such level turn from D = nW CD /CL , and the power
required from Pr = DV . At this point, it is possible to check if the available power Pa is sufficient
to maintain the turn in these conditions. If Pa > Pr , the airspeed can be increased in small steps,
and the procedure is repeated until V ∗ is reached. In the latter condition, Pa = Pr at CL = CLmax,
and the calculation procedure must change. For airspeeds V higher than V ∗, the required power
is fixed at its maximum available value Pa , drag is calculated from D = Pa/V , the drag coefficient
from CD = D/(1/2ρV 2S), the lift coefficient from the drag polar, and the load factor again from
D = nW CD /CL . This is repeated until the maximum level flight speed Vmax is reached, where the
load factor is equal to 1. For any combination of airspeed and load factor, the angle of bank can
now be calculated from Φ = cos−1(1/n), the radius of turn from R = V 2/g tanΦ, and the time in a
180 deg turn from Tπ = πR/V . Exemplary numerical results are tabulated in Tab. 12.1 and plotted
in Fig. 12.9b to Fig. 12.9d.
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Figure 12.9 Turning performance

Table 12.1 Calculation of turning performance

V , km/hr CD CL L, kN n Φ, deg R, m Tπ, s

176 0.124 1.45 150.0 1.00 0.0 ∞ ∞
200 0.124 1.45 192.2 1.28 38.6 395 22
240 0.124 1.45 276.6 1.84 57.1 293 14
260 0.118 1.44 321.8 2.15 62.3 279 12
300 0.079 1.26 374.9 2.50 66.4 309 11
340 0.056 0.99 378.3 2.52 66.6 393 13
380 0.040 0.71 339.5 2.26 63.7 561 17
420 0.030 0.45 262.8 1.75 55.2 967 26
450 0.024 0.20 150.0 1.00 0.0 ∞ ∞
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Evidently, at VS and Vmax the airplane is in steady level symmetric flight, where n = 1,Φ= 0, R =∞,
Ω= 0 and Tπ =∞. The curves show that the airspeed for minimum turning radius is not the same
as that for minimum turning time. Likewise, the speed for fastest turn differs from the speed at
which the bank angle and load factor are maximum. Apparently, we have:

VRmin <VTπmin <Vnmax

To prove that this order has a general validity, we write

Tπ = πR

V

This expression indicates that the location of the airspeed for fastest turn is found by drawing the
tangent from the origin to the R −V curve in Fig. 12.9b, giving VTπmin

> VRmin . From Eq. 12.26, the

angle of bank is tanΦ = π
g

V
Tπ

so that we find that the tangent to the Tπ−V curve in Fig. 12.9c lo-
cates the point where the angle of bank and the load factor are maximum, yielding Vnmax > Vπmin

.
To this point in our discussion, only sea-level turning performance has been exemplified. In order
to demonstrate the impact on maneuverability due to altitude effects, let us return to our transport
airplane with turbofan engines of which the aerodynamic data are given in Fig. 9.7, and having a
wing area of 365m2, a weight of 2500kN, and a maximum sea-level T /W of 0.25. Since for this
high-subsonic airplane compressibility drag may occur, at each flight velocity the lift and drag co-
efficients must be determined from the lift-drag polar for the turning flight Mach number.
Fig. 12.10 shows for three altitudes the radius of turn, turning time and load factor as functions of
airspeed for this turbofan airplane, when flying at constant engine control setting. As the general
tendency is for the thrust to decrease with altitude, also the resulting turning performance deterio-
rates strongly with increasing height.

12.4. ANALYTIC EXPRESSIONS FOR BEST TURNING PERFORMANCE
As we have seen in the preceding section, the airspeeds for maximum bank angle or load factor
and minimum turning radius, define a speed region where optimum conditions are present for
performing a turn.
Therefore, an interesting way of looking at the turning performance problem is to estimate the per-
formance features at the boundaries of this velocity range. Here, this will be done by means of
analytic expressions, which for their developments require the adoption of simplifying assump-
tions with regard to the variation of thrust and power available with flight speed. We first consider
the estimation of the bank angle. Inserting T = D and Pa = Pr into Eq. 12.15 and Eq. 12.16 results
in the following expressions,

cosΦ= W

T

CD

CL
and (12.38)

cosΦ=
[ W

S
2
ρ

(
C 2

D /C 3
L

)
(Pa/W )2

] 1
3

(12.39)

If we take up the case of a subsonic jet airplane, we recall from Fig. 9.11 that the thrust for this type
of airplane is more or less constant with airspeed. Using the idealized behavior that T does not
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Figure 12.10 Effect of altitude on turning performance

vary with airspeed, then from Eq. 12.38, we draw the conclusion that the steepest turn (maximum
bank angle and maximum load factor) occurs when the airplane is flown at the angle of attack for
maximum lift-to-drag ratio, (CL/CD )max.
Likewise, it appears from Eq. 12.39 that in the case of a propeller-driven airplane for which we can
make the working approximation that power available is independent of airspeed, the steepest turn
is obtained in the flight at the angle of attack for maximum climb factor, (C 3

L/C 2
D )max.

Furthermore, we see that at constant engine control setting, the maximum angle of bank falls off
with altitude due to the decrease of thrust or power available and air density with height. Note
that the height has the same deteriorating influence on the associated values of turning radius and
turning time, as can be seen from Eq. 12.21 and Eq. 12.26. The related airspeed, on the contrary,
will show a gradual increase with altitude, as may be appreciated when we consider the equilibrium
condition that the drag is equal to the thrust (see Eq. 12.11):

V =
√

T

ρ

2

S

1

CD
(12.40)

In terms of power available, we have

V = 3

√
Pa

ρ

2

S

1

CD
(12.41)

In analyzing the variation of the airspeeds for steepest turn, VΦmax , we may assume that the ratios
T /ρ and Pa/ρ both increase somewhat with height (see Chapter 9). Under these conditions, we find
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at constant CD an increasing value of VΦmax . The foregoing analysis shows anew that the maneu-
verability of an airplane improves as the flight altitude is decreased. When drawing this conclusion,
however, it is important to remember that the maximum achievable load factor may be greater than
the maximum allowable load factor. As mentioned in Chapter 8, the value of the limit maneuvering
load factor is based on strength requirements and may vary from 2.5 for transports up to roughly 7
for fighter airplanes. Moreover, passenger comfort in civil airplanes and the possibility of physical
damage of the human body due to large accelerations and decelerations in combat airplanes may
limit the maneuverability (Ref. 35).
From Eq. 12.21, the condition for the tightest turn (minimum radius of turn) can be expressed as

Rmin = W

S

2

ρ

1

g

1

(CL sinΦ)max
(12.42)

where, for a jet-powered airplane, the relationship between CL and Φ may be given by Eq. 12.38.
Elimination of the bank angle from Eq. 12.38 and Eq. 12.42 yields

Rmin = W

S

2

ρ

1

g

1[
CL

√
1− [W

T

]2
[

CD
CL

]2
]

max

(12.43)

This expression shows that at a given engine control setting and altitude (given value of T /W ), the
tightest turn occurs at an angle of attack which lies between the angle of attack for maximum lift
coefficient and that for maximum lift-to-drag ratio.
The exact lift coefficient for minimum turning radius can be derived by differentiating the quantity
between brackets in Eq. 12.43 with respect to CL and setting the result equal to zero,

d

dCL

CL

√
1−

[
W

T

]2 [
CD

CL

]2
= 0

This yields the following condition:
CD

CL

dCD

dCL
=

(
T

W

)2

(12.44)

Introducing in Eq. 12.44 a parabolic variation of CL with CD , that is CD = CD0 +C 2
L/(πAe), we find

the lift coefficient as

CL =
√

1

2

(
T

W

)2

(πAe)2 −CD0πAe (12.45)

From Eq. 12.45, it is apparent that the lift coefficient for the tightest turn decreases with increasing
height so that its largest value occurs at sea level, where the thrust is at a maximum. At low heights,
however, the lift coefficient demanded by Eq. 12.45 generally exceeds the maximum lift coefficient
of the airplane so that only an actual minimum turning radius can be realized at the (calibrated)
stalling speed in the turn, VSΦ. This observation also emphasizes the significance of a large value of
the maximum lift coefficient in obtaining a small turning radius. At the theoretical ceiling, where
R =∞, we have T /W =CD /CL in Eq. 12.44, yielding dCD /dCL =CD /CL , which is the condition for
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Figure 12.11 Effect of altitude on airspeeds for optimum turning performance

maximum lift-to-drag ratio (see Section 4.4). Therefore, the airspeed VRmin normally increases from
VSΦ at sea level up to the minimum drag speed in level flight, VDmin , at the theoretical ceiling.

In the same manner, we can readily produce an expression, giving the lift coefficient for minimum
radius of turn analogous to Eq. 12.45, for a propeller-driven airplane with power available indepen-
dent of airspeed.

The required lift coefficient then turns out to be

CL =
√√√√√27

64

(Pa/W )4[
W
S

2
ρ

]2 (πAe)4 −CD0πAe (12.46)

Now, the reader can easily determine that the lift coefficient given by the last equation will vary
from CL = CL max at sea level down to CL = p

3CD0πAe at the theoretical ceiling, where is flown at
the minimum power required speed. As a consequence, there is again the tendency for the airspeed
for tightest turn to increase with altitude.

It will also be evident from the foregoing analyses that as a result of the difference in wing loading
and in the variation of thrust with airspeed for jet-powered and propeller-driven airplanes, there
is the particular quality of the latter airplane types that most of the speeds for best turning perfor-
mance are somewhat less than those of their jet-driven counterparts.

We end this section with Fig. 12.11, where the qualitative relationships are sketched between the
three airspeeds for best turning performance. For the sake of completeness, the minimum and
maximum level flight speeds have also been indicated.
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12.5. CLIMBING AND DESCENDING TURNS
Sometimes it may be needed to execute a climbing or descending turn, for example, when height
must be altered in a flight over a restricted area.
From Eq. 12.4 to Eq. 12.6, the expressions for the airspeed, drag, power required and load factor in
a climbing turn may be written as follows:

V =
√

W

S

2

ρ

1

CL

cosγ

cosµ
(12.47)

D = CD

CL
W

cosγ

cosµ
(12.48)

Pr =W

√√√√W

S

2

ρ

C 2
D

C 3
L

cos3γ

cos3µ
(12.49)

n = cosγ

cosµ
(12.50)

According to Eq. 3.39, the aerodynamic angle of roll µ in these expressions is related to the bank
angleΦ and the flight-path angle γ by

sinµ= sinΦ

cosγ
(12.51)

Comparing Eq. 12.48 and Eq. 12.49 with Eq. 12.15 and Eq. 12.16 shows that for climbing flight, the
drag and power required at given angle of attack and bank angle are unequal to the corresponding
values for a constant altitude turn. Nevertheless, for small flight path angles, say, γ < 15deg, it is
acceptable to assume cosγ= 1 so that drag and power required are given by Eq. 12.15 and Eq. 12.16.
With this, the following approximations to the flight-path angle and the rate of climb in a climbing
turn hold:

sinγ= T −D

W
= T

W
− CD

CL

1

cosΦ
(12.52)

RC = Pa −Pr

W
= Pa

W
−

√√√√W

S

2

ρ

C 2
D

C 3
L

1

cos3Φ
(12.53)

Of course, the extension of a symmetric climb with a turn will have the effect that the rate of climb
becomes less than that in straight flight, provided that during the maneuver the engine control
setting remains unchanged.
Similarly, a greater rate of descent occurs in a descending turn than in a symmetric descent. As
we have remarked in Chapter 3, in order to lose height in approaching for landing, small airplanes
may perform a straight sideslipping flight. In this respect it may be more effective to execute a
descending turn and in particular a slipping turn, where the airplane is subjected to a large drag.
The latter maneuver is characterized by the fact that the bank angle is too large for the rate of turn.
Under this condition, the airplane slips into the turn with its nose pointing toward the outside of
the turn (see Fig. 12.3b). Fig. 12.12 gives by way of illustration the forces acting on the airplane in a
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Figure 12.12 Forces in a slipping turn

slipping level turn to the right (β > 0). When resolving the forces along the X t , Yt and Zt axes, we
get the following equations for level slipping turning flight:

−D +T cosβ= 0 (12.54)

L sinΦ−T sinβcosΦ−S cosΦ−C = 0 (12.55)

−L cosΦ−T sinβsinΦ−S sinΦ+W = 0 (12.56)

A special type of flight is the gliding turn, which for example is carried out by a glider pilot when
circling in rising air to gain height and also as a means to lose height when descending toward the
airfield for landing. We shall look at this type of maneuver in Chapter 13.
As we have previously mentioned, in a turn the outer wing will move faster than the inner wing, and
therefore will produce more lift. As a consequence, it may be found necessary to apply opposite
aileron deflections in order to maintain the desired angle of bank. This intervention of the pilot
is called holding off bank. A point to note is that this phenomenon is different in climbing and
descending turns. To explain this, we consider the three rotations of the airplane about its body
axes.
Recalling thatΩ= dψ/ dt , we find from Eq. 1.22 the angular velocities as follows (see also Fig. 1.20).
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rate of roll p =−Ωsinθ (12.57)

rate of pitch q =Ωcosθ sinφ (12.58)

rate of yaw r =Ωcosθcosφ (12.59)

In these equations, θ is the angle of pitch and φ is the angle of roll. Note that the rate of turn Ω is
positive when pointing along the positive Ze axis (vertically downward).
In a climbing turn (θ > 0), the airplane is besides pitching and yawing, also rolling outward. Con-
versely, in a descending turn the airplane is rolling inward.
The roll to the outside of the turn in a climb increases the angle of attack at the outer wing above
that of the inner wing. In combination with its higher velocity, the outer wing generates more lift
so that the airplane may have a tendency to over-bank.
The inward roll of the descending turn causes a greater angle of attack at the inner wing. The addi-
tional lift obtained in this fashion may balance the extra lift furnished by the outer wing due to its
higher speed. Accordingly, in a descending turn, the problem of hold-off bank is generally absent.

12.6. PROBLEMS
1. An airplane is in a steady level symmetric flight condition. The true airspeed equals 100 m/s.

The pilot initiates a steady level coordinated turn by banking the aircraft to 30 deg and has
the intention to maintain airspeed and altitude. After banking the aircraft, the pilot must

(a) increase the pitch attitude and thereby the angle of attack

(b) increase the thrust

(c) none of the above

(d) increase the pitch attitude and the thrust

2. Consider an airplane conducting a turn at a bank angleφ of 60 deg and an airspeed of 80 m/s.
Calculate the corresponding load factor.

3. Air traffic control requests an airplane to conduct a level rate-one turn at an airspeed of
70.0 m/s and 1000 m altitude (I.S.A.). Determine the bank angle needed to execute the turn
and the corresponding turn radius and load factor.

4. A general aviation airplane has a maximum lift coefficient CL max of 1.4, a weight W of 8 kN
and a wing surface area S of 10 m2.

(a) Calculate the stall speed of this airplane in (a) steady level symmetric flight and in (b) a
steady level coordinated turn at a load factor n = 2.

(b) Discuss the effect of bank angle on stall speed.

5. A subsonic jet airplane is flying with a true airspeed V of 75 m/s at 1500 m altitude (I.S.A). The
following data are available at this specific flight condition.
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Parameter Value

Weight 150 kN
Wing surface area 250 m2

Wing span 50 m
Oswald’s efficiency factor 0.80
Maximum lift coefficient 1.2
Flight altitude 1500 m (I.S.A.)
Maximum thrust at 1500 m altitude 25 kN

The aerodynamic characteristics of this airplane can be represented with a parabolic lift drag
polar. The maximum thrust can be assumed constant as a function of airspeed.

(a) Calculate the maximum achievable load factor when flying at 75 m/s.

(b) Is the turning performance in this condition limited by the maximum available thrust
or by the maximum lift coefficient?

(c) Calculate the minimum turn radius when flying at 75 m/s and the corresponding time
to execute a 180 deg turn.

6. For the airplane of problem 5, consider flight steady level coordinated turning flight condi-
tions at different angles of bank (φ= 30deg, 45 deg and 60 deg) but at a fixed angle of attack
of 5 deg. The airplane has a linear lift curve slope up to the maximum lift coefficient.

CL = 5.15 · (α+0.009) with α expressed in radians

Calculate the aerodynamic drag D , power required Pr and corresponding true airspeed V ,
for each angle of bank specified.

7. The propulsion system characteristics of the subsonic jet airplane of problem 5 can be de-
scribed as a function of altitude with the following relation.

T

T0
= ρ

ρ0

where T0 and ρ0 represent the sea level static thrust and the air density at sea level conditions
(I.S.A.).

(a) Redo the calculation of problem 5 for a flight altitude of 3000 m.

(b) Discuss the effect of altitude on turning performance in terms of airspeed, power re-
quired and aerodynamic drag.

(c) Explain whether the maximum achievable load factor of this airplane will increase, de-
crease or remain the same with increasing altitude.

8. An airplane powered by two turboprop engines has the following characteristics
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Parameter Value

Weight 140 kN
Wing surface area 70 m2

Wing aspect ratio 12
Oswald’s efficiency factor 0.76
Maximum lift coefficient 1.5
Flight altitude 1000 m (I.S.A.)
Zero-lift drag coefficient 0.013

The airplane flies at 250 km/hr (true airspeed) and is performing a climbing turn at a bank
angle of 40 deg. At this airspeed and altitude, the combined maximum power available is
1200 kW.

(a) Calculate the maximum rate of climb in this climbing turn.

(b) Is the achievable rate of climb in a turn larger than, equal to, or smaller than the rate of
climb in horizontal level flight at the same lift coefficient? Give a thorough explanation
with your answer.



13
GLIDING FLIGHT

13.1. SYMMETRIC FLIGHT
Gliding flight, by definition, is the flight with zero thrust. Naturally, this is true in the case of an
engineless glider or sailplane, but it is also true when an airplane is flying with the engine(s) at
idling. In the latter case, the propulsive force is usually sufficiently small that its contribution to
the resultant aerodynamic force can be ignored. Furthermore, zero thrust can be expected when
an airplane has shortage of fuel or when a single-engine airplane has engine failure.
Setting T = 0 in Eq. 9.1 and Eq. 9.2, we obtain the following equations (see also Fig. 9.1)

−D −W sinγ= 0 (13.1)

L−W cosγ= 0 (13.2)

Eq. 13.1 and Eq. 13.2 describe the equilibrium of forces for symmetric un-powered flight and show
that the weight must be balanced by the lift and drag only. Since the drag is directed along the neg-
ative Xa axis, a state of equilibrium exists if the weight furnishes a force component in the direction
of flight. In other words, the airplane must travel downward so that γ< 0 (Fig. 13.1).
When an airplane flies at a negative flight-path angle, it is said to be in either a descent or a dive.
The term descent is used when the flight path makes a relatively small angle with the horizontal
plane, whilst a dive concerns the occurrence of a steep slope of the flight path. Descents and dives
may be executed in the flight with either power-on or power-off. The subject of the present chapter
is the glide, which is thus a descending or diving flight with T = 0.
In order to avoid the use of negative flight-path angles in formulae, one conventionally defines:

γd =−γ (13.3)

Hence, the angle γd is counted positive downward and is called the angle of descent or angle of
glide. Similarly, a negative rate of climb may be replaced by a positive rate of descent (rate of sink),

RD =−RC (13.4)

279
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Figure 13.1 Steady symmetric glide conditions

Substituting γd = −γ into Eq. 13.1 and Eq. 13.2 and using the familiar expressions; L = CL
1
2ρV 2S

and D =CD
1
2ρV 2S, we obtain in a glide

D =CD
1

2
ρV 2S =W sinγd (13.5)

L =CL
1

2
ρV 2S =W cosγd (13.6)

From Eq. 13.6, the airspeed can be written as

V =
√

W

S

2

ρ

1

CL
cosγd (13.7)

Dividing Eq. 13.5 by Eq. 13.6 gives

tanγd =CD /CL (13.8)

From Eq. 13.7 and Eq. 13.8, the rate of descent in gliding flight is found to be

RD =V sinγd =V
CD

CL
cosγd =

√√√√W

S

2

ρ

C 2
D

C 3
L

cos3γd (13.9)

Note that, at low subsonic flight speeds and ignoring Reynolds number effects, the quantities V ,γd

and RD in Eqs. 13.7 to 13.9, are fully determined by the angle of attack, which in its turn is controlled
by the elevator.
Eqs. 13.7 to 13.9 form the basis of our analyses on performance in gliding flight. In the following
we proceed by examining the variations of V ,γd and RD with angle of attack for a specified type of
glider. Let us assume that this airplane has a parabolic lift-drag polar with CD = 0.012+0.02C 2

L and
a maximum lift coefficient of 1.5. Fig. 13.2 shows a graph of the drag equation, where the variations
of the lift-to-drag ratio CL/CD and the climb factor C 3

L/C 2
D with lift coefficient are also plotted. The
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Figure 13.2 Plot of parabolic lift-drag polar for glider

Table 13.1 Calculation of glide performance. Airplane weight W = 4000N, wing area S = 10m2, altitude H = 2000m (I.S.A),
configuration: clean.

CL CD CL/CD C 3
L/C 2

D γd , deg V , km/hr RD , m/s Vh , km/hr

1.50 0.0570 26.3 1038.8 2.176 82.8 0.874 82.8
1.40 0.0512 27.3 1046.8 2.094 85.7 0.871 85.7
1.30 0.0458 28.4 1047.4 2.018 89.0 0.870 88.9
1.20 0.0408 29.4 1038.1 1.947 92.6 0.874 92.6
1.10 0.0362 30.4 1015.7 1.885 96.7 884 96.7
1.00 0.0320 31.3 976.6 1.833 101.5 0.901 101.4
0.90 0.0282 31.9 916.7 1.795 107.0 0.930 106.9
0.80 0.0248 32.3 832.5 1.776 113.4 0.976 113.4
0.70 0.0218 32.1 721.7 1.784 121.3 1.049 121.2
0.60 0.0192 31.3 585.9 1.833 131.0 1.164 130.9
0.50 0.0170 29.4 432.5 1.947 143.5 1.354 143.4
0.40 0.0152 26.3 277.0 2.176 160.4 1.692 160.3
0.30 0.0138 21.7 141.8 2.634 185.2 2.364 185.0
0.20 0.0128 15.6 48.8 3.662 226.7 4.022 226.3
0.10 0.0122 8.2 6.7 6.956 319.8 10.757 317.4
0.00 0.0120 0.0 0.0 90.000 926.8 257.435 0.0

computations are made in Tab. 13.1, presuming a flight at an altitude of 2000 m (I.S.A.) and a wing
loading of 400 N/m2. The airplane data specified for our numerical example may illustrate the
general features that airplanes designed for gliding have a comparatively low wing loading, a low
induced drag factor (large wing aspect ratio), and a small CD0 value. A graphic representation of the
point performance in symmetric flight is sketched in Fig. 13.3 in the form of the hodograph curve.
As we have seen in Chapter 9, this diagram is a plot of the vertical velocity RD =V sinγd versus the
horizontal velocity Vh = V cosγd . Clearly, the length of the vector from the origin O to a point on
the hodograph represents the magnitude of the airspeed along the flight path that corresponds to
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Figure 13.3 Hodograph curve for gliding flight

that point. The angle confined between a radius vector and the horizontal axis is a measure of the
angle of descent.
From an inspection of the hodograph curve, the following features are apparent:

• From the stalling speed at maximum lift coefficient, the airspeed increases continuously with
decreasing lift coefficient. When flying at CL = 0, the airplane is in a steady vertical dive(
γd = 90deg

)
, where the flight velocity is maximum.

• The minimum value for the rate of descent occurs at that point where the hodograph has a
horizontal tangent.

• The point on the hodograph that corresponds to the minimum angle of descent is found by
drawing a line from the origin tangent to the curve.

An expression for the terminal-speed in the vertical dive is obtained by substituting CD = CD0and
sinγd = 1 in Eq. 13.15, which furnishes

Vmax =
√

W

S

2

ρ

1

CD0
(13.10)

For our illustrative glider we find Vmax = 927km/hr, which value will strongly exceed the design
diving speed for which the airplane is designed to withstand loads that may be expected during
normal operation. A typical value of the maximum allowable airspeed for a glider is of the order of
250 km/hr (Ref. 36).
Minimum rate of descent is of interest to the pilot who wants to perform a flight with maximum
endurance, that is, the maximum length of time that the glider can stay in the air,
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Figure 13.4 Maximum distance covered In quasi-steady glide

tmax =
∫ 0

H

−dH

RDmin
=

∫ 0

H

dH

RDmin
(13.11)

Minimum angle of descent is of importance to the pilot who wants to glide as far as possible
(Fig. 13.4),

smax =
∫ 0

H

dH

tanγd min
= H

tanγd min
(13.12)

From Eq. 13.8 we see that the smallest angle of descent, and hence the maximum horizontal dis-
tance that the glider can travel, is obtained when the angle of attack is such that the lift-to-drag
ratio is the maximum, so that

smax = H

[
CL

CD

]
max

(13.13)

Notice that there is no effect of weight on the minimum angle of descent and so on maximum range.
On the other hand, weight affects the airspeed at a given height and lift coefficient and with that
the corresponding endurance.
From Tab. 13.1, we observe that when considering a glide in the normal range of airspeeds, the an-
gle of descent remains small enough to assume cosγd = 1. Using this approximation in the Eq. 13.7
to Eq. 13.9 yields the following expressions for gliding flight:

V =
√

W

S

2

ρ

1

CL
(13.14)

γd = tan−1
[

CD

CL

]
= sin−1

[
CD

CL

]
(13.15)

RD =
√√√√W

S

2

ρ

C 2
D

C 3
L

(13.16)
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Figure 13.5 Glide performance hodograph assuming γd = 1

Eq. 13.16 shows that with the assumption cosγd = 1, the minimum rate of descent is obtained
when the climb factor C 3

L/C 2
D is the maximum. We also see that at the speed for best glide angle the

airplane drag is minimum,

Dmin =W sinγd min = W

(CL/CD )max
(13.17)

Likewise, it follows that at the speed for minimum rate of descent, the power required is minimum,

Prmin = (DV )min = (
W V sinγd

)
min =W (RDmin ) (13.18)

Fig. 13.5 gives again the hodograph for our illustrative glider, but now calculated from Eq. 13.14
to Eq. 13.16, and for the speed range extending from the stall to about the maximum allowable
airspeed. With the adoption of a parabolic lift-drag polar, CD = CD0 +C 2

L/(πAe), the airspeeds for
best glide angle and for minimum rate of descent can easily be deduced from Eq. 13.14 as

Vγd min =
√

W

S

2

ρ

1p
CD0πAe

(13.19)

VRDmin =
√

W

S

2

ρ

1p
3CD0πAe

(13.20)

For our glider the lift coefficients for flattest glide and for minimum rate of descent are 0.78 and 1.34,
respectively. As discussed in Chapter 4, a large part of the lift-drag polar is indeed roughly parabolic,
but there may be some additional drag at lift coefficients above about 1.0. This means that the
actual minimum rate of descent tends to be worse than the parabolic drag equation forecasts.

13.2. EFFECT OF ALTITUDE
To investigate the effect of altitude on the performance in gliding flight, two flight conditions at
different altitudes but at the same angle of attack are considered. The latter requirement says that
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the lift and drag coefficients remain constant as the altitude varies, provided that slight Reynolds
number effects on the lift-drag polar can be ignored. Since from Eq. 13.8 the glide angle is com-
pletely determined by the lift-to-drag ratio, we discover that this angle also remains unchanged.
Using the subscripts “1” and “2” to denote the set of conditions at altitudes H1 and H2 the ratio of
the horizontal velocities is

Vh2

Vh1
=

√
W
S

2
ρ2

1
CL

cosγd cosγd√
W
S

2
ρ1

1
CL

cosγd cosγd

=
√
ρ1

ρ2
(13.21)

Similarly, for the ratio of the vertical velocities we obtain

RD2

RD1
=

√
W
S

2
ρ2

1
CL

cosγd sinγd√
W
S

2
ρ1

1
CL

cosγd sinγd

=
√
ρ1

ρ2
(13.22)

Combining Eq. 13.21 and Eq. 13.22 yields

Vh2

Vh1
= RD2

RD1
(13.23)

Let us now consider Fig. 13.6a, where the hodograph curves are shown for our illustrative glider
at three altitudes. According to Eq. 13.23, corresponding points on the curves shift to the left and
upward along a straight line through the origin when altitude decreases (increasing air density).
Consequently, all curves have a joint tangent which defines the minimum angle of glide. Note that
the related airspeed decreases with decreasing height. Likewise, we find that at a given angle of
attack the rate of descent and the corresponding airspeed both fall off with decreasing altitude.
Looking at Eqs. 13.11 to 13.16, we see that the flight program for maximum range as well as for
maximum endurance requires that the pilot controls the airplane in such a way that throughout
the glide the dynamic pressure remains constant. In other words, the equivalent airspeed must
be kept constant and the the true airspeed increases when the airplane descends. Because the
acceleration is typically small, though, it is neglected in the equations of motion, and the flight is
said to be quasi-steady. It will be evident from the foregoing discussion that plotting the hodograph
curves on the basis of equivalent airspeeds will lead again to a single curve applying at all altitudes
(Fig. 13.6b).
In this respect, it is worth to note that the pilot is faced with two sorts of speed data. The airspeed
indicator, in principle, displays equivalent airspeeds, whereas the readings of the vertical-speed
indicator are close to true speeds. Widely used for indicating the vertical velocity of a glider is the
mechanical variometer, which, like the vertical speed indicator discussed earlier in Chapter 5, is
a pressure-operated device. As shown in Fig. 13.7, one side of the variometer is connected to the
static pressure tapping on the glider and the other to a vacuum-insulated capacity. When the air-
plane descends, the increasing pressure forces air to flow into the device through the clearance be-
tween the vane and the case; the flow direction, naturally, is reversed when climbing. The pointer,
which is directly connected to the vane, shows a displacement owing to the different pressures act-
ing on the two sides of the vane.
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Figure 13.6 Effect of altitude on glide performance

So far, hodograph curves have been considered, which relate low-subsonic flight speeds. However,
as the angle of glide and/or the wing loading of the airplane are greater, the glide will be executed
at a higher airspeed.
Of special note is the orbiter stage of the United States Space Shuttle. The Orbiter is a reusable
delta-winged space vehicle/glider, powered by three rocket engines, which are contained in the
aft fuselage (Fig. 13.8). The liquid propellants for these engines are carried in an external jettison-
able tank, attached to the vehicle at liftoff. In addition, two jettisonable and reusable solid rocket
boosters are mounted on the fuel tank for liftoff. The complete Space Shuttle system is launched
vertically, with all engines operating.
The Orbiter can deliver to Earth orbit a crew of seven persons and a mass of 29500 kg payload. After
completion of a mission, the orbiter reenters the atmosphere and returns to the surface of the Earth
where it lands as a conventional airplane.
In the upper layer of the atmosphere, the spacecraft is steered by a reaction control system, but in
the lower more dense atmosphere, the vehicle is controlled aerodynamically by rudder and elevons.
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Figure 13.7 Principle of variometer

When traveling back from orbit to Earth, the Orbiter behaves as a lifting vehicle, performing a glide
through the flight corridor, as shown in the previous Fig. 10.14. During the return to sea level the
orbital speed range is encountered so that the lift-drag polar will strongly depend on flight Mach
number.

CL =CL(α, M) (13.24)

CD =CD (α, M) (13.25)

Not only the Orbiter, but also the conventional jet airplanes with their high wing loadings attain

Figure 13.8 Space shuttle system and orbiter
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Figure 13.9 Establishing the angle of attack from known value of CR

flight speeds at which the effects of compressibility cannot be ignored. Consequently, the glide
performance of all these airplane types can no longer be represented by a single hodograph curve
as in Fig. 13.6b. If we want to determine their hodograph curves, we now have for the point perfor-
mance (given values of altitude and airplane weight) at a given flight Mach number:

V = Mc (13.26)

CL = W

S

2

ρ

1

V 2 cosγd = f1(α) (13.27)

CD =CD0 +kC 2
L = f2(α) (13.28)

γd = tan−1
[

CD

CL

]
= f3(α) (13.29)

RD =V sinγd = f4(α) (13.30)

Since Eq. 13.27 to Eq. 13.30 contain the angle of attack in implicit form, we must solve the problem
iteratively starting from cosγd = 1.
The angle of attack can also be determined graphically from the condition R =W or (cf. Eq. 4.14)

CR = W
1
2γpM 2S

(13.31)

For the lift-drag polar at a given Mach number we have at each angle of attack the relationship
(Fig. 13.9)

CR =
√

C 2
L +C 2

D (13.32)

Since at a given airplane weight, altitude and Mach number, the value of CR is known from Eq. 13.31,
we obtain the corresponding values of CL and CD at that point on the lift-drag polar where the curve
intersects a circle having a radius CR and of which the center is located at the origin O.
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13.3. EFFECT OF WIND
It is important to realize that in our discussions on gliding flight so far the atmosphere is supposed
to be at rest with respect to the Earth. As we have learned in Chapter 1, in the presence of wind, the
velocity of the airplane relative to the ground or ground speed Vg is the vector sum of the airspeed
V and the wind velocity VW (see Fig. 1.21).
In considering the effect of wind on gliding, for simplification, we shall assume a steady wind. We
shall also assume that the wind blows in a direction parallel to the plane of symmetry of the air-
plane. Under these conditions, the wind velocity can be added to the flight velocities given by the
hodograph curve in still air to give the ground speed.

The hodograph curve of Fig. 13.5 is plotted again in Fig. 13.10, together with a hodograph illustrat-
ing the effect of a steady wind. The latter curve shows that as a result of the upward component of
the wind velocity, a positive rate of climb is possible. Apparently, the presence of wind may be of
great importance to gliding since in the case of an upwind that is greater than the rate of descent,
the airplane will climb relative to the Earth.

The resulting type of flight is known as soaring, which mostly is performed using rising currents
of warm air. These vertical updrafts usually are called thermals and occur due to local heating of
the Earth’s surface by the Sun (see Section 2.6). Obviously, to gain the maximum rate of climb in
a thermal, the pilot must select the airspeed which provides the minimum rate of descent with
respect to the air.

Fig. 13.11 illustrates the usual technique to find the performance in soaring against wind from the
hodograph curve in still air. For this purpose, ground speed Vg is measured relative to replaced axes
of which the origin is shifted over a distance equal to the wind velocity and in a direction opposite to
the wind direction. The angle γd g is the actual glide angle (glide angle relative to the Earth’s surface).

Fig. 13.12 illustrates the effects of horizontal and vertical wind velocities on flattest glide. If the
pilot wants to achieve the best glide angle over the ground in the presence of an upwind, then the
best airspeed to glide will correspond to point A in Fig. 13.12a, such that O′A is the tangent to the
hodograph curve. In the case of a downwind the origin is displaced upward and the minimum
angle of glide is found by drawing the tangent O′B .

When a pilot wants to fly at the best angle of glide relative to the ground in the presence of a head-
wind or tailwind, then points C and D in Fig. 13.12b represent the best airspeeds.

Emphasis is made that the foregoing analyses are based on a wind blowing in a direction parallel

Figure 13.10 Hodograph for gliding with and without wind



13

290 13. GLIDING FLIGHT

Figure 13.11 Effect of wind in the hodograph diagram

Figure 13.12 Vertical and horizontal wind velocities in the hodograph diagram

to the flight path. Under most circumstances, however, the wind velocity will be directed at some
angle to the desired flight path of the airplane over the ground. Fig. 13.13a shows, as an example,
the path of an airplane in level flight as resulting from its airspeed and a horizontal wind velocity.
Since the wind is blowing from the left, the airplane will drift to the right, through which the velocity
vector of the ground speed is at a drift angle with the intended course. Therefore, in addition to the
preceding simplified treatment of the wind, it is worth to recognize that the pilot often must coun-
teract the wind velocity by changing the heading of the airplane in order that the track coincides
with the intended course. The latter situation is depicted in Fig. 13.13b. Apparently, the ground
speed is given by

Vg =V cosδ−Vw cosϵ (13.33)

where δ is the angle between the flight velocity vector and the track, the so-called wind correction
angle, and ϵ is the angle between the wind velocity vector and the desired path. Eq. 13.33 can be
manipulated to yield
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Figure 13.13 Effect of wind on heading

Vg =V

√
1−

[
Vw

V

]2

sin2 ϵ−Vw cosϵ (13.34)

An inspection of Eq. 13.34 indicates that a wind directed perpendicular to the track reduces the
flight speed relative to the ground, although it has no component along the track. Clearly, this
effect occurs because the heading of the airplane is into the wind in order that the actual flight path
over the ground shall be in the right direction.

13.4. TURNING FLIGHT
In the preceding section, we have seen that a glider can gain height by flying in ascending warm air
masses. Owing to their small horizontal dimensions, the glider pilot must execute turning flights
to utilize these thermals. A horizontal cross-section through a thermal may be taken as circular,
with the greatest vertical velocity at the center and falling off toward the outside. The most appro-
priate radius of turn and the associated values of angle of bank and airspeed for optimum climb
performance will then depend on the manner in which the vertical velocity in the thermal varies
with radius. For this reason, the relationship between the minimum rate of descent and the radius
of turn of the airplane is of importance. To investigate this connection, let us consider the equa-
tions governing the translational motion of the airplane in a steady coordinated turn. Then, by
substitution of T = 0 and γ=−γd in Eq. 12.4 to Eq. 12.6, we obtain

−D +W sinγd = 0 (13.35)

L sinµ−C = 0 (13.36)

−L cosµ+W cosγd = 0 (13.37)
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where, from Eq. 3.35, the centrifugal force C is

C = W

g
VΩcosγd = W

g

V 2

R
cos2γd (13.38)

With the substitution of Eq. 13.38, D =CD
1
2ρV 2S and L =CL

1
2ρV 2S, the equations for turning in a

glide become

CD
1

2
ρV 2S =W sinγd (13.39)

CL
1

2
ρV 2S sinµ= W

g
VΩcosγd = W

g

V 2

R
cos2γd (13.40)

CL
1

2
ρV 2S cosµ=W cosγd (13.41)

For a given airplane weight and atmospheric conditions, Eq. 13.39 to Eq. 13.41 contain five vari-
ables, namely: α,V ,γd ,µ and R so that each instantaneous flight condition is defined by the selec-
tion of two control variables. Expressing the performance items in terms of angle of attack (CL and
CD ) and the aerodynamic angle of roll µ, we readily find

V =
√

W

S

2

ρ

1

CL

cosγd

cosµ
(13.42)

tanγd = CD

CL

1

cosµ
(13.43)

RD =
√√√√W

S

2

ρ

C 2
D

C 3
L

cos3γd

cos3µ
(13.44)

n = L

W
= cosγd

cosµ
= CL

CD
sinγd (13.45)

R = V 2 cosγd

g tanµ
= W

S

2

ρ

1

g

1

CL

cos2γd

sinµ
(13.46)

Ω= V cosγd

R
= g tanµ

V
(13.47)

Tπ = π

Ω
= πR

V cosγd
(13.48)

However, in consonance with our earlier experience that in a normal glide the angles of descent
remain small, we may assume that cosγd is approximately equal to unity in the equations listed
above. Moreover, because we are considering coordinated turns, we get from Eq. 3.39 that in con-
sequence of the assumption cosγd = 1, the aerodynamic angle of roll µ is equal to the angle of bank
Φ. Then the governing series of equations reduce to
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V =
√

W

S

2

ρ

1

CL

1

cosΦ
(13.49)

tanγd = CD

CL

1

cosΦ
(13.50)

RD =
√√√√W

S

2

ρ

C 2
D

C 3
L

1

cos3Φ
(13.51)

n = L

W
= 1

cosΦ
= CL

CD
tanγd (13.52)

R = V 2

g tanΦ
= W

S

2

ρ

1

g

1

CL

1

sinΦ
(13.53)

Ω= V

R
= g tanΦ

V
(13.54)

Tπ = π

Ω
= πR

V
(13.55)

The effect of banking on the hodograph curve can be examined by considering again two flight
conditions at different bank angles but at a fixed angle of attack. Assuming that at constant α also
the lift and drag coefficients remain the same, we find

Vh2

Vh1
=

[
cosΦ1

cosΦ2

]1/2

=
[

n2

n1

]1/2

(13.56)

Figure 13.14 Effect of angle of bank on hodograph curve
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RD2

RD1
=

[
cosΦ1

cosΦ2

]3/2

=
[

n2

n1

]3/2

(13.57)

RD2

RD1
=

[
Vh2

Vh1

]3

(13.58)

where the subscripts “1” and “2” indicate the conditions at bank angles Φ1 and Φ2, respectively.
The hodograph curves of Fig. 13.14 show the performance of our illustrative glider when turning
at fixed angles of bank. The curves are deduced from the hodograph curve in straight flight, in the
way described before. The points on the curves that correspond to the same value of CL are joined
by dashed lines. Fig. 13.15 presents the rate of descent as a function of radius of turn for various
angles of bank, as calculated from Eq. 13.51 and Eq. 13.53. Here the points are connected that
correspond to the same value of V . The upper dashed line in Fig. 13.15 represents the minimum
rate of descent which can be obtained at each particular radius of turn. Along this line the airspeed
and the bank angle increase as the radius of turn decreases. A mathematical formulation of the
relationship between RD and R is derived by elimination of the angle of bank from Eq. 13.51 and
Eq. 13.53. This yields the equation

RD =

√√√√√√√√W

S

2

ρ


C 2

D[
C 2

L −
(

W
S

2
ρ

1
g

1
R

)2
]3/2

. (13.59)

Apparently, at given values of airplane weight, air density and radius of turn, the minimum rate of
descent will be obtained when the term between brackets in Eq. 13.59 is a minimum. An expression
for the corresponding lift coefficient is derived by taking the derivative of that term with respect to
CL and equating it to zero. Using the parabolic
drag equation, CD = CD0 +C 2

L/(πAe), the optimum lift coefficient for minimum rate of descent is
found to be

CL =
√

3CD0πAe +4

(
W

S

2

ρ

1

g

1

R

)2

(13.60)

This equation shows that for minimum rate of descent the glider should obviously fly at a large lift
coefficient that varies between the value at which the climb factor is the maximum (R =∞) and a
value close to the maximum lift coefficient (R = Rmin ). In order to demonstrate the determination
of the maximum rate of climb, we will assume the presence of a very simple thermal in which the
variation of the vertical velocity with radius r is given by

VW =VW max

[
1− r

rmax

]
(13.61)

The linear velocity profile of this thermal is shown as the upper line in Fig. 13.16, assuming VW max =
4m/s and rmax = 200m.
By taking various points at particular radii on the thermal line and subtracting from the vertical air
velocity the minimum rate of descent of the glider in still air when turning at the same radius (see
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Figure 13.15 Rate of descent versus radius of turn for various angles of bank

the upper dashed curve in Fig. 13.15), we find the lower curve in Fig. 13.16. This curve shows the
eventual result since it gives the rate of climb relative to the Earth versus radius of turn when circling
concentrically with the thermal. Clearly, the maximum rate of climb for our example is achieved at
a radius of about 80 m. According to Fig. 13.15, the corresponding lift coefficient is approximately
1.5 (= CL max ). Using these figures in Eq. 13.53 learns that optimum climb performance is achieved
at an angle of bank of 43 and an air-speed of 97 km/hr.
We end this section by noting that it may be possible to execute a glide which combines turning in
thermals with some “dolphin” flying. The latter term denotes the performance condition in which a
glider flies through a series of updrafts during a straight glide. Then the resulting flight path exhibits
a series of leaps, somewhat comparable with the manner of moving on of a dolphin.

13.5. CROSS-COUNTRY FLIGHT
The normal flight of a glider consists of a series of climbs made by turning in thermals and a series
of straight symmetric glides between the thermals (Fig. 13.17a).
In Section 13.4 we have demonstrated how to determine the maximum rate of climb in a given
thermal. Here we will consider the problem of maximizing the average speed for the whole flight.
For that end, all the climbs and all the straight glides are taken together and represented by a single
climb followed by a single glide. In order to represent all the climbs as a single climb, it is assumed
that the thermals have all the same strength. Further, the assumption is made that the start and the
end of the flight are at the same height and that the glide takes place in still air (Fig. 13.17b).
Presuming that the mean rate of climb of the airplane in the thermal is RCg and the gain of height
is ∆H , then the time spent in the climb is



13

296 13. GLIDING FLIGHT

Figure 13.16 Determination of maximum rate of climb In a given thermal

Figure 13.17 Representation of cross-country flying
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Figure 13.18 The average cross-country speed in the hodograph diagram

tC = ∆H

RCg
(13.62)

Similarly, the time gone in the glide is

tD = ∆H

RD
(13.63)

Thus the total time for the whole flight becomes

tC + tD =∆H

(
1

RCg
+ 1

RD

)
= ∆H

RCg ×RD

(
RCg +RD

)
(13.64)

The distance traveled can be expressed as the average speed ∇ times the total time. Hence, the
horizontal distance s becomes

s =V (tC + tD )cosγd (13.65)

Making use of the relationships s =∆H/tanγd and RD =V sinγd , we obtain

∇= ∆H

(tC + tD )

V

RD
(13.66)

By combination of Eq. 13.64 and Eq. 13.66, we find the average speed as

∇= RCg
V(

RCg +RD
) (13.67)

Clearly, the problem is to select the flight speed V in the glide so as to make V an extremity at a
known value of the rate of climb RCg . Therefore, consider the hodograph diagram in Fig. 13.18a
where from a point A, such that the length OA expresses RCg , a line is drawn to a point B on the
hodograph curve.
With the approximation that Vh ≈V the distance DB represents the flight speed V during the glide.
Observing that the triangles AOC and ADB are similar, we find that the relationship between the
various speeds in Fig. 13.18a corresponds to Eq. 13.67 if the speed ∇ is represented by OC. It is also
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Figure 13.19 Determination of the optimum airspeed during glide between thermals

clear that the optimum value for ∇ is found by drawing the tangent from point A to the hodograph
curve (Fig. 13.18b).

By considering a large number of rate of climb values RCg inFig. 13.5, for our illustrative glider the
curves of Fig. 13.19a can be produced. A convenient tool in optimizing a cross-country flight is
the MacCready ring, which is a rotatable ring added to the variometer (Fig. 13.19b). When gliding
between the thermals, the datum mark on the ring is set opposite the figure on the rate of climb
scale which equals the prevailing value of RCg . The ring is calibrated such that the connection be-
tween the airspeeds V on the ring and the rates of descent RD on the variometer scale corresponds
to the relationship between V and

(
RCg +RD

)
in Fig. 13.19a. This makes that, for a given wing

loading and height, the pointer designates directly the airspeed for optimum cross-country flying
on the ring. It should be understood that the airspeed thus found depends entirely on the pilot’s
assessment of RCg (2 m/s in Fig. 13.19b).

Modern gliders may be equipped with water tanks so that their weight can be increased by carry-
ing water ballast. This provision can lead to an improved cross-country performance, at least as
the vertical velocities in the thermals are sufficiently large. To illustrate the influence of the ex-
tra weight on the optimum value for the speed ∇, we consider Fig. 13.20, where the hodograph
curves are sketched for an airplane weight W1 and for an increased weight W2. From Eq. 13.14 and
Eq. 13.16, it is immediately apparent that the two hodograph curves relating to the higher wing
loading are obtained by multiplying corresponding V and RD values on the initial curves by the
factor

p
W2/W1. It is interesting to note that the effect of an increased weight on the hodograph

curve is precisely the same as the effect of an increase in altitude, i.e., the curve is displaced down-
ward and to the right (cf. Fig. 13.6a). As depicted in Fig. 13.20, the rate of climb RCg in a given
thermal will decrease and the best speed in the glide V will increase with weight. This visualization
of the problem indicates that in the case of strong thermals, the average speed V may increase and
hence the presence of ballast in the airplane promises to be beneficial (Fig. 13.20a). When, on the
other hand, the thermals are quite weak, it does not pay to fly with ballast, and jettisoning water
may be gainful (Fig. 13.20b).



13.6. PROBLEMS

13

299

Figure 13.20 Effect of airplane weight on optimum speed

13.6. PROBLEMS
1. Consider a glider performing a quasi-steady symmetric glide at 1000 m altitude (I.S.A.). The

atmosphere is completely at rest (no wind). This airplane has a parabolic lift drag polar with
CD =CD0 +kC 2

L and a maximum lift coefficient of 1.6. The airplane weight is 3000 N and the
wing surface area equals 15 m2.

(a) Calculate the best (minimum) glide angle and the corresponding airspeed.

(b) Calculate the minimum rate of descent and the corresponding airspeed.

2. The glider of the previous problem is now performing a quasi-steady symmetric glide at
2000 m altitude (I.S.A.) and it has extra weight on board in the form of water ballast. The
total airplane weight is now 3500 N.

(a) Calculate the best (minimum) glide angle and the corresponding airspeed.

(b) Calculate the minimum rate of descent and the corresponding airspeed.

(c) Discuss the effect of altitude on gliding performance in terms of best glide angle, mini-
mum rate of descent and the corresponding airspeeds.

(d) Explain the main advantage of having extra weight on board.

3. A flight test has been performed with a glider with the objective to quantify the parameters of
the parabolic lift drag polar based on the gliding performance. The airplane has a weight
of 2500 N and a wing surface area of 10 m2. When performing a quasi-steady symmetric
glide (no wind) at 1000 m altitude and a true airspeed of 139 km/hr, the resulting glide an-
gle is 3 deg. A quasi-steady symmetric glide at the same altitude and an increased airspeed of
165 km/hr results in a glide angle of 4 deg. Assume that the aerodynamics can be represented
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with a parabolic lift drag polar with the form CD = CD0 +kC 2
L . Determine the zero lift drag

coefficient CD0 and the induced drag coefficient k.

4. A twin engine jet aircraft has the following lift drag polar CD = 0.042+ 0.05 ·C 2
L and a max-

imum lift coefficient of 1.8. It has a weight of 250 kN and is flying at 5000 m (I.S.A.). Find
the maximum value of the glide distance for this airplane in quasi-steady symmetric flight in
case there is no wind.

5. A twin engine propeller aircraft with a weight of 60 kN experiences problems with its fuel
system when flying at an altitude of 3000 m (I.S.A.). As a result, both engines have stopped.
The runway is located at a distance of 50 km. The airplane has the following lift drag polar
CD = 0.02+0.04·C 2

L and a maximum lift coefficient of 1.6. Is this airplane able to glide towards
the runway?

6. For the airplane of the previous problem, compute the best airspeed for maximum glide dis-
tance at an altitude of 3000 m (I.S.A.) in case a headwind of 10 m/s is present. Hint, draw a
hodograph to determine the optimum condition.

7. In the presence of a thermal with a radius of 300 m, a glider is performing a turn and gaining
height. The thermal has a linear vertical velocity profile VW as a function of its radius r .

VW = 5 ·
(
1− r

300

)
Make use of the glider characteristics provided in problem 1. The glider is at 500 m altitude
(I.S.A) and it performs a turn with a bank angle of 30 deg and a radius of 100 m. Compute the
rate of climb and the corresponding airspeed for this condition.

(Suggestion: Repeat this exercise for various bank angles and turn radii in order to estimate
the optimal climb performance in this thermal. Make sure that the maximum lift coefficient
is not exceeded.)
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SYMMETRIC CLIMB AND DESCENT

14.1. QUASI-STEADY SYMMETRIC FLIGHT
To this point, we have dealt mainly with point performance problems. For the remainder of this
book, emphasis will be placed on the path performance or integral performance values, which, as
we have defined in Chapter 8, are related to the course of the flight. With regard to the climb to a
particular altitude, three integral performance values are of paramount importance, namely,

• the length of time required to climb

• the horizontal distance covered during climb

• the amount of fuel consumed during climb.

In the absence of wind, the time rate of change of altitude is the rate of climb of the airplane, which
is equal to the vertical component of the airspeed,

dh

dt
= RC =V sinγ and (14.1)

dt = dh

RC
= dH

RC
(14.2)

The time to climb from an altitude H1 to an altitude H2 is obtained by integrating Eq. 14.2 between
H1 and H2

t =
∫ H2

H1

dH

RC
(14.3)

where, for a given airplane, RC is a function of airplane weight, engine control setting, selected
flight speed and altitude. The related range (= horizontal distance) in the absence of wind is given
by

301



14

302 14. SYMMETRIC CLIMB AND DESCENT

s =
∫ t2

t1

V cosγ dt =
∫ H2

H1

dH

tanγ
(14.4)

The weight of the fuel consumed during a climb from H1 to H2

W f =
∫ t2

t1

F dt =
∫ H2

H1

F

RC
dH (14.5)

where F is the fuel weight flow rate.
Let us look at the determination of the minimum time to climb from sea level to a given altitude,
using the approach of quasi-steady flight conditions. Then, Eq. 14.3 tells us that to minimize t , the
rate of climb must be maximum at each altitude (cf. Eq. 10.6).

tmin =
∫ H

0

dH

RCmax
(14.6)

Note that this is true exclusively in light of the assumption of quasi-steady flight. In more generic,
and realistic, assumptions, the solution to the minimum time to climb problem is more involved,
and will be discussed in the following Section 14.2. Assuming that the maximum rate of climb
decreases linearly with height, we can write

RCmax

RCmax0

= Hth −H

Hth
(14.7)

where the subscripts “0” and “th” denote sea level and theoretical ceiling, respectively.
Using this relationship, Eq. 14.6 can be integrated to give

tmin = Hth

RCmax0

ln
1(

1− H
Hth

) (14.8)

When no analytic expression is obtainable that relates RCmax to H , the integration of Eq. 14.6 can be
accomplished graphically. Then, as shown in Fig. 14.1b, the minimum time to climb to a given alti-
tude is derived by plotting the curve RC−1

max against H and determining the shaded area on the left-
hand side of the curve. The present relationship is based on the RCmax versus H curve in Fig. 14.1a.
This curve is repeated from the previous Fig. 10.3, and concerns our illustrative two-engine turbo-
prop airplane of Chapter 10. The result in Fig. 14.1c shows that the minimum time needed to reach
the service ceiling (H = 9250m) is 47.5 min.
The time required to climb to a given altitude may also be obtained by adding increments in time
between altitude intervals,

t =
n∑

i=1

[
∆H

RCi

]
(14.9)

In this summation form of Eq. 14.6, RCi is the average value of the rate of climb within each inter-
val ∆H . The mean and cumulative values for the airplane considered in Fig. 14.1, are tabulated in
Tab. 14.1. When using this numerical procedure, it is fairly simple to include the effect of the varia-
tion of airplane weight due to the consumption of fuel. For this purpose, at the end of each interval
∆H , the weight of the fuel consumed is determined, ∆W f i = Fi∆ti , where Fi is the average value
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Figure 14.1 Time to climb determination

of the fuel weight flow rate within an interval ∆H . Then, the rate of climb in the adjacent interval
is calculated at an airplane weight, Wi+1 = Wi −∆W f i . Of course, the total fuel consumed during
climb can be found from W f =

∑
∆W f i .

We conclude this section with the observation that the downward flight with engine(s) working
differs from the climb only in that at the descent speed the sign of the flight-path angle is negative so
that the thrust will be less than the drag. Therefore, the formulae for descending flight are included
in the preceding general performance theory and need not to be developed separately.
Descent programs may be expressed as a constant engine control setting and constant Mach num-
ber schedule until a particular operating speed is reached, after which a constant E.A.S. is main-
tained. Needless to say that local air traffic control regulations may cause considerable alterations
to recommended schedules.

14.2. THE UNSTEADY QUASI-RECTILINEAR CLIMB
In Fig. 14.1 and Tab. 14.1, the determination of minimum time to climb was carried out using quasi-
steady-state climb data. In fact, the airspeed at which the maximum rate of climb occurs, increases
with height, as can be seen in Fig. 10.4. This implies that we must use a portion of the available
excess power to accelerate the airplane along its flight path. In order to examine the effect of the
dynamic behavior of the airplane on the rate of climb, we consider the equation of motion in the
direction of flight (cf. Eq. 8.7),

W

g

dV

dt
= T −D −W sinγ (14.10)

where the thrust vector lies along the velocity vector.
Assuming quasi-rectilinear flight, we have normal to the flight path the following approximate
equilibrium condition, determining the angle of attack,

L =W cosγ (14.11)
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Table 14.1 Calculation of time to climb

H RCmax RCi ∆ti t
m m/s m/s min min

0.00
0 8.60

8.50 0.98 0.98
500 8.40

8.25 1.01 1.99
1000 8.10

7.90 1.05 3.04
1500 7.70

7.55 1.10 4.14
2000 7.40

7.20 1.16 5.30
2500 7.00

6.80 1.23 6.53
3000 6.60

6.35 1.31 7.84
3500 6.10

5.90 1.41 9.25
4000 5.70

5.50 1.52 10.77
4500 5.30

...

H RCmax RCi ∆ti t
m m/s m/s min min

...
5.05 1.65 12.42

5000 4.80
4.60 1.81 14.23

5500 4.40
4.15 2.01 16.24

6000 3.90
3.65 2.28 18.52

6500 3.40
3.25 2.56 21.08

7000 2.90
2.65 3.15 24.23

7500 2.40
2.15 3.88 28.11

8000 1.90
1.65 5.05 33.16

8500 1.40
1.10 7.58 40.74

9000 0.80
0.65 6.41 47.15

9250 0.50

With the assumption of a small flight-path angle, so that cosγ can be set equal to unity, Eq. 14.11
reduces to

L =W (14.12)

Eq. 14.10 can be rewritten by multiplying with V as

W

g
V

dV

dh

dh

dt
= T V −DV −W V sinγ (14.13)

Using dh/ dt =V sinγ= RC , T V = Pa and DV = Pr , and rearranging Eq. 14.13 yields

RC

[
1+ V

g

dV

dh

]
= Pa −Pr

W
(14.14)

where the numerator of the right-hand term is the excess power, that can be used for climb and
acceleration. The excess power per unit airplane weight is called the specific excess power.
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When performing a quasi-steady climb, the excess power is used for climbing only. Neglecting the
possible effects of accelerations on the lift-drag polar, allows that power required in Eq. 14.14 can
be taken equal to its value in quasi-steady flight at the same momentary conditions. Hence,

Pa −Pr

W
= RCs (14.15)

where the subscript “s” is used to denote a quasi-steady flight condition. When we put Eq. 14.15
into Eq. 14.14, we obtain

RC = RCs

1+ V
g

dV
dh

= RCs

1+ V
g0

dV
dH

(14.16)

where the acceleration of gravity g0 has the standard sea-level value (9.80665 m/s2). The denom-
inator of the far right-hand term represents the effect of the acceleration of the airplane along the
flight path on the actual rate of climb RC , and is called the kinetic energy correction factor.
Division of Eq. 14.16 by V yields a similar expression for the climb angle

sinγ= sinγs

1+ V
g0

dV
dH

(14.17)

where γ and γs are the angles of climb in actual flight and in quasi-steady climb, respectively.
The results derived above can be applied to particular climb programs, like the climb at constant
equivalent airspeed, which we go through as a first example of an unsteady airplane motion. In
this case the relationship between true airspeed V (T.A.S.) and equivalent airspeed Ve (E.A.S.) (Sec-
tion 5.4) is

V =Ve

√
ρ0

ρ
(14.18)

In the climb with constant equivalent airspeed, the true airspeed continually increases with height
so that the airplane is gaining kinetic energy (dV /dH > 0). Consequently, the actual rate of climb
values are smaller than their quasi-steady-state counterparts (RC < RCs ).
Using Eq. 14.18 and Ve = constant, the kinetic energy correction factor can be written as

1+ V

g0

dV

dH
= 1+ 1

2g0

dV 2

dH
= 1+ V 2

e

2g0

d
(
ρ0/ρ

)
dH

. Then (14.19)

RC

RCs
= sinγ

sinγs
= 1

1+ V 2
s

2g0

d(ρρ/ρ)
dH

(14.20)

For the International Standard Atmosphere, the density ratio ρ0/ρ and altitude H are related by
the previous Eq. 2.13 and Eq. 2.16. Using the equation of state p = ρRT , the relationship 1

2ρV 2 =
1
2γpM 2 and the hydrostatic equation dp = −ρg0 dH , we can easily develop the following detailed
expression for the kinetic energy correction factor in terms of the instantaneous flight Mach num-
ber,
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Figure 14.2 Kinetic energy correction factor

1+ V

g0

dV

dH
= 1+ γM 2

2

[
1+ R

g0

dT

dH

]
(14.21)

When we put Eq. 14.21 into Eq. 14.21, we find in the troposphere (I.S.A.) with dT /dH =−0.0065K/m
(see Fig. 2.3),

RC

RCs
= sinγ

sinγs
= 1

1+0.567M 2 (14.22)

In the lower stratosphere (I.S.A.), where dT /dH = 0, we obtain

RC

RCs
= sinγ

sinγs
= 1

1+0.7M 2 (14.23)

Note that in the case of climb with constant equivalent airspeed, the Mach number in Eq. 14.22 and
Eq. 14.23 increases with altitude according to 1

2ρ0V 2
e = 1

2γpM 2, or

M =Ve

√
ρ0

γp
(14.24)

In Fig. 14.2, the ratio RC /RCs is plotted against equivalent airspeed for a number of altitudes. The
points on the curves that correspond to the same value of V are connected by dashed lines. Clearly,
the kinetic energy correction factor increases with increasing airspeed and altitude.
Climb programs commonly consist of a constant E.A.S. schedule until the cruise Mach number is
reached, followed by a climb at this Mach number toward the cruise altitude (determination of the
optimum cruise Mach number is explained in the following Chapter 15, while limit speeds in the
flight envelope are presented in Section 10.4). Therefore, as a second example of a practical flight
technique we consider the climb at constant flight Mach number. Using V 2 = M 2c2 = M 2γRT , we
find that
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1+ V

g0

dV

dH
= 1+ 1

2
γM 2 R

g0

dT

dH
(14.25)

For a climb in the troposphere (I.S.A.), we get

RC

RCs
= sinγ

sinγs
= 1

1−0.133M 2 (14.26)

Climbing in this region at constant Mach number means that airspeed is decreasing with altitude.
Eq. 14.26 confirms that which we would expect: RC > RCs and γ> γs .
In the lower part of the stratosphere (I.S.A.), the airspeed remains unchanged and hence RC = RCs .

14.3. OPTIMUM CLIMB
In Section 14.1, we demonstrated the usual method for obtaining the minimum time to climb to a
given altitude. The relationship between maximum rate of climb in quasi-steady flight and altitude
for a given engine control setting was used to establish the required time duration in simplifying
assumptions.
In Section 14.2, we made clear that the actual rate of climb values may differ from the correspond-
ing quasi-steady-state values because some of the excess power must be used to accelerate the
airplane along its flight path. Therefore, the conventional approach may be inadequate for high-
subsonic and supersonic airplanes since the problem not only concerns climbing to a given height
but also attaining effectively any desired airspeed at that height. The mathematical method which
is capable of handling the problem of optimizing the dynamic performance of airplanes is the op-
timal control theory or the calculus of variations. A discussion of this subject, however, is definitely
beyond the scope of this book. The interested reader is referred to Ref. 37 and Ref. 38 which contain
detailed teaching texts in the field of airplane performance optimization.
As mentioned already in Section 14.1, there are three dynamic performance problems of special
interest. They are fastest climb or least time to climb, steepest climb or minimum range during
climb, and most economical climb where the smallest amount of fuel is consumed. A fairly simple
approach to these climb trajectories is to formulate the dynamics of the airplane in terms of its total
energy. This is the so called energy-state approximation that will be explained briefly in this section.
The present dynamic model neglects accelerations normal to the flight path and assumes a flight
in a single vertical plane and a no-wind condition (Ref. 39 and Ref. 40).
Then the total energy of the airplane, E , is given by the sum of the potential energy and the kinetic
energy. Thus

E =W H + 1

2

W

g0
V 2 (14.27)

The total energy per unit airplane weight is termed energy height and denoted here by the symbol
He ,

He = H + V 2

2g0
(14.28)

The energy height is a measure of the geopotential and geometric altitude that can be attained if
the airplane loses all its kinetic energy by trading it to increase potential energy in an ideal way, that
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is as if no dissipative forces were acting and the total mechanical energy would therefore remain
constant. By differentiating Eq. 14.28 with respect to time, and using dH/ dt =V sinγ, we obtain

dHe

dt
= dH

dt
+ V

g0

dV

dt
=V

[
sinγ+ 1

g0

dV

dt

]
(14.29)

Combining Eq. 14.10, Eq. 14.15 and Eq. 14.29 furnishes

dHe

dt
= (T −D)V

W
= RCs (14.30)

This remarkable result says that the time derivative of the energy height is equal to the rate of climb
of the airplane in quasi-steady flight. Therefore, dHe / dt is also called specific excess power. From
Eq. 14.3 and Eq. 14.16, the time to climb can be expressed as

t =
∫ H2

H1

[
1+ V

g0

dV
dH

]
dH

RCs
(14.31)

By differentiating Eq. 14.28 with respect to H and substituting the result into Eq. 14.31, we can write
the time to climb from one energy height to another as follows:

t =
∫ He2

He1

dHe

RCs
(14.32)

By the same token, Eq. 14.4 and Eq. 14.5 can also be transformed into integrals with independent
variable He ,

s =
∫ He2

He1

dHe

tanγs
(14.33)

W f =
∫ He2

He1

F

RCs
dHe (14.34)

Thus the trajectories for minimum time, steepest climb and minimum expenditure of fuel between
any two altitude/airspeed combinations are optimized by maximizing the quasi-steady-state per-
formance parameters RC , RCs /F , and γs at each energy height. In this connection, it is impor-
tant to remember that the time-history of the airplane motion is fully determined if two control
variables are specified as a function of time, and appropriate boundary conditions are known, for
example, the initial flight condition (see Chapter 8).
The importance of the energy height concept is exemplified here by applying this approach to
the minimum time to climb problem. Therefore, typical contours of constant RCs are plotted in
Fig. 14.3a for a high-subsonic airplane and in Fig. 14.4 for a supersonic airplane. These curves are
constructed by determining the RCs values for a series of altitudes, assuming a constant engine
control setting and airplane weight. The RCs equal to zero contours represent the level flight speed
envelopes as portrayed in the previous Fig. 10.6 and Fig. 10.10.
The plots in Fig. 14.3a and Fig. 14.4 are enhanced by superimposing lines of constant energy height,
which are calculated from Eq. 14.28. Since a base of H versus V 2/(2g0) is used, the constant He lines
are straight.
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Figure 14.3 Determination of minimum flight time from an initial to a final energy height

Figure 14.4 Curves of constant rate of climb for a supersonic airplane
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From Eq. 14.32 it follows that the condition for minimum time to climb is given by[
∂ (RCs )

∂V

]
He

= 0 (14.35)

In other words, the minimum flight time in Fig. 14.3a and Fig. 14.4 is obtained when flying through
the points on the RCs curves that are tangent to the constant energy height lines. This means that,
for a minimum-time climb, the aircraft should either fly along the lines of constant energy height
whenever possible, or alternatively move between these lines in the locally orthogonal direction
(that is, in the direction of the gradient of the energy height) whenever necessary. In general, it can
be proven that the minimum-time evolution of a dynamic system in a conservative force field is
such that the total mechanical energy remains constant along the trajectory, signifying that kinetic
and potential energy can be dynamically exchanged in the most time-effective manner. This is a
direct consequence of the principle of least action.
The loci of these points of tangency describe the optimum trajectories. Note that in the supersonic
case, the optimum path consists of a number of stages. Successively we have in Fig. 14.4: an accel-
erated climb from the initial condition to an appropriate energy height, a zoom dive through the
transonic speed range along a constant energy height line, a continued accelerated climb at super-
sonic speeds, and a zoom climb to the final point at almost constant energy height. The zoom-dive
is executed correctly by decreasing altitude while increasing speed, therefore trading potential en-
ergy for kinetic energy while keeping total mechanical energy constant. The zoom climb is the
inverse process. These maneuvers become available for the pilot when a constant energy height
line is tangent to two different rate of climb curves. This allows the airplane to accelerate while
diving, or to climb while decelerating, in a very time-effective way.
To calculate tmin, first plot RC−1

s against He for various points along the trajectory, as constructed
in Fig. 14.3b for the high-subsonic airplane. The shaded area under the curve represents the mini-
mum flight time from V =VA at sea level (H = 0) to V =VB at He = 13800m.
As indicated by the dashed line in Fig. 14.3a, the quasi-steady fastest climb schedule occurs at alti-
tude/airspeed combinations at which the RCs curves are tangent to the horizontal lines of constant
geopotential altitude. Apparently, this trajectory does not differ seriously from the unsteady climb
schedule so that the associated times to climb will only be slightly different. In contrast, the su-
personic airplane in Fig. 14.4 has a significantly different time schedule and in this case the energy
concept leads to substantial savings in flight time.

14.4. EFFECTS OF VERTICAL WIND GRADIENTS
In this section the situation is considered in which the airplane is faced with the occurrence of a
varying wind velocity during climb and descent. The variations of wind speed with height and time
are called wind shear. It is the object of the following analysis to show the importance of wind on
climb angle and rate of climb and to derive a suitable means of correcting for its effect.
For simplicity, we shall presume the presence of an increasing or decreasing headwind or tailwind
which varies with height only: VW =VW (H).
From Fig. 14.5a, we find at an airspeed V and headwind VW the components of the ground speed
along the axes of the Earth axis system as (cf. Eq. 1.26)

VXg =V cosγ−VW (14.36)
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Figure 14.5 Effect of wind on velocities and accelerations

VYg = 0 (14.37)

VZg =V sinγ (14.38)

The associated acceleration of the airplane is described by the two equations:

dVXg

dt
= dV

dt
cosγ−V sinγ

dγ

dt
− dVW

dt
(14.39)

dVZg

dt
= dV

dt
sinγ+V cosγ

dγ

dt
(14.40)

In Eq. 14.39, the term dVW / dt is the time rate of change of the wind velocity as experienced by the
airplane. The components of the acceleration along the air-path axes are given by Fig. 14.5b.

dVXa

dt
=

dVXg

dt
cosγ+

dVZg

dt
sinγ (14.41)

dVZa

dt
=−

dVXg

dt
sinγ+

dVZg

dt
cosγ (14.42)

After substitution of Eq. 14.39 and Eq. 14.40 into Eq. 14.41 and Eq. 14.42, we get

dVXa

dt
= dV

dt
− dVW

dt
cosγ (14.43)

dVZa

dt
=V

dγ

dt
+ dVW

dt
sinγ (14.44)

Thus, in the presence of a wind gradient, the equations of motion for the airplane in symmetric
flight read:

W

g

[
dV

dt
− dVW

dt
cosγ

]
= T −D −W sinγ (14.45)
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W

g

[
V

dγ

dt
+ dVW

dt
sinγ

]
= L−W cosγ (14.46)

Note that with dVW / dt = 0, the equations of motion become identical to the Eq. 8.7 and Eq. 8.8,
which were derived in Chapter 8 for the no-wind condition. Hence, we can conclude that the mo-
tion of the airplane relative to the air is not affected by a horizontal wind with a constant velocity.
However, when the magnitude of the wind velocity varies with altitude, also the motion of the air-
plane relative to the air changes. This may be seen by writing,

dV

dt
= dV

dH

dH

dt
= dV

dH
V sinγ and (14.47)

dVW

dt
= dVW

dH

dH

dt
= dVW

dH
V sinγ (14.48)

where dVW /dH is the vertical wind gradient.
Assuming a quasi-rectilinear climb and using g = g0, we obtain by putting Eq. 14.47 and Eq. 14.48
into Eq. 14.45,

W

g0

[
dV

dH
V sinγ− dVW

dH
V sinγcosγ

]
= T −D −W sinγ (14.49)

Assuming also that the flight-path angle is sufficiently small, so that its cosine can be replaced by
unity, we can change Eq. 14.49 into the forms:

sinγ

[
1+ V

g0

dV

dH
− V

g0

dVW

dH

]
= T −D

W
= sinγs and (14.50)

RC

[
1+ V

g0

dV

dH
− V

g0

dVW

dH

]
= (T −D)V

W
= RCs (14.51)

Examining Eq. 14.50 and Eq. 14.51, we note that the effect of a wind gradient (dVW /dH ̸= 0) can
be treated in a similar fashion as the effect of accelerated flight. Furthermore, we note that in the
case of a headwind that increases with height (dVW /dH > 0), a wind gradient has the tendency
to improve the climb performance, at least as V is held constant. Due to the resulting decrease
in acceleration with respect to the ground there is a conversion from kinetic to potential energy,
through which both the climb angle and the rate of climb will increase. Conversely, a negative wind
gradient (dVW /dH < 0) will reduce the climb performance.
As discussed in Chapter 2, due to the surface friction effect of the ground on the wind, for an open
area there will normally be a continuous increase in wind velocity from ground level up to some
height (see Fig. 2.19). Clearly, large wind gradients may occur close to the ground so that wind
shear effects are of special significance when taking off or landing in wind.
Before closing this section, we remark that variations in the horizontal wind direction will change
the magnitude of the headwind or tailwind component and therefore will have a similar effect as a
change of wind velocity with height.
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Figure 14.6 The Eustachian tube

14.5. LIMITATIONS ON VERTICAL VELOCITY
The adjustment of the pressures within the air spaces in our head to varying atmospheric pressure
during climb and descent can be experienced as unpleasant and even as painful.
Of special significance is the matching of the air pressure in the middle ear cavity (Fig. 14.6). When
the exterior pressure changes, the eardrum bulges outward if the atmospheric pressure is decreas-
ing, and inward if it is increasing. Equalization of pressures is obtained by means of the Eustachian
tube, which connects the middle ear with the oral cavity.
When climbing, the higher pressure in the middle ear causes air to escape through the Eustachian
tube. This occurs each time a pressure difference of about 2000 Pa is built up between the inside
and outside air. The process of balancing the pressure in the middle ear is fairly automatic and the
occupant is aware only of a click as the air passes through the Eustachian tube.
When descending, however, the equalization process is most often more difficult. In going from
lower to higher atmospheric pressure, the Eustachian tube does not open by itself and yawning,
swallowing, or blowing with mouth and nose closed is required in order that compensating air can
enter the middle ear. But if there is a common cold or a sore throat, the Eustachian tube may
be blocked. In such circumstances, over-inflation of the eardrums occurs and severe pain will be
experienced during descent.
Generally, the influence of ambient pressure changes on the ears fails to appear if the time rate of
change of pressure is kept within the following limits:

−30 < dp

dt
< 18Pa/s (14.52)

In relating the change in pressure to the rate of climb of the airplane, we write

RC = dH

dt
= dH

dp

dp

dt
(14.53)

By making use of the hydrostatic equation: dp =−ρg0 dH , we can express the rate of climb as
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RC =− 1

ρg0

dp

dt
(14.54)

Obviously, the vertical velocities determined by Eq. 14.52 and Eq. 14.54 decrease as altitude de-
creases. For example, the maximum allowable rate of climb at sea level should not exceed 2.5 m/s
(500 ft/min) and the rate of descent 1.5 m/s (300 ft/min).
The use of pressurized airplanes has greatly solved the problem mentioned above. In this case, the
limit on the vertical velocities of the airplane is determined by the rate of change of cabin pressure.
At the normal cruising altitude, the cabin pressure, pc , is equivalent to a geopotential pressure
altitude of approximately 1800 m (≈ 6000ft), i.e., pc /p0 = 0.8. Under this condition, the minimum
time needed to increase the cabin pressure to the sea-level standard value becomes

t = p0
(
1−pc /p0

)
dp/ dt

= 101325 · (1−0.8)

18
= 1125s (18.8min)

Note that this length of time is independent of the cruising altitude. For instance, during a descent
from 9000 m, the mean allowable rate of descent of the airplane is 9000/1125 = 8 m/s (1575 ft/min).

14.6. PROBLEMS
1. An aircraft has a true airspeed of 100 m/s and a climb rate of 15 m/s.

(a) What is the climb angle of this aircraft?

(b) If the aircraft is at sea-level altitude, will it be able to climb safely over an obstacle of
175 m height located 1 km away if the climb angle and airspeed are held constant?

2. An aircraft is flying at 130 m/s with a lift-to-drag ratio of 14 What is the thrust-to-weight ratio
required to achieve a climb rate of 5 m/s?

3. A propeller aircraft has a maximum available power of 647 kW, a zero lift drag coefficient of
0.02, a wing area of 26 m2, an aspect ratio of 9.55, an Oswald span efficiency factor of 0.8, and
a mass of 3995 kg. It is flying at sea-level altitude at a true airspeed of 95 m/s.

(a) Calculate the rate of climb in these conditions, if the airspeed is constant.

(b) How does this value of change if the aircraft was 500 kg lighter?

(c) How does this value change if the aircraft was equipped with an engine that could de-
liver 680 kW?

(d) How does this value change if the aircraft is also accelerating so that the equivalent air-
speed remains constant?

4. A jet aircraft is about to land with an airspeed of 100 m/s, at sea-level altitude, and along
a glideslope inclined by 3 deg. It has a weight of 55000 N, a reference area of 30 m2 and a
parabolic drag polar with CD0 = 0.02 and k = 0.044. What is the thrust required to maintain
constant speed in this flight condition?
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5. A propeller aircraft is descending at sea level altitude along a glideslope inclined by 3 deg. It
has a speed of 93 m/s, a weight of 39000 N, a reference area of 30 m2 and a parabolic drag
polar with CD0 = 0.017 and k = 0.044. If the piston engine generates 150 kW of power at the
shaft, what is the propulsive efficiency of the propeller?

6. The climb performance of an aircraft when climbing at a constant IAS is provided in the fol-
lowing table.

Altitude (m) I.A.S. (m/s) T.A.S. (m/s) Rate of Climb (m/s)

0 50.00 50.00 4.6
300 50.00 50.73 4.4
600 50.00 51.47 4.2
900 50.00 52.23 4.0

1200 50.00 53.00 3.8
1500 50.00 53.80 3.6
1800 50.00 54.61 3.4

(a) Plot the rate of climb against altitude.

(b) Calculate the total time required to fly from sea level to 1800m altitude.

(c) Calculate the required ground distance to climb from sea level to 1800m.

7. An aircraft is climbing at a true airspeed of 102 m/s, at a rate of climb of 7 m/s, which is 60.0%
of its maximum rate of climb in steady flight. What is its acceleration (in m/s2)?

8. During an unsteady climb, an aircraft increases its speed by 1 m/s every second. At a certain
instant, the ratio between its actual rate of climb and the one it would have in steady flight is
0.55. What is its angle of climb?

9. An aircraft is flying at M = 0.5 at 5000 m altitude. It weighs 400 kN.

(a) What is its energy height?

(b) What would its speed be if it converted all its potential energy into kinetic energy?

10. An aircraft is cruising at 4300 m altitude with a true airspeed of 190 m/s. If it wants to reach
a Mach number equal to M = 0.79 in the shortest time possible, to what altitude does it have
to transfer?

11. An aircraft is flying at sea-level altitude with a true airspeed of 100 m/s and a climb rate of
15 m/s. A strong headwind of 20 m/s is present.

(a) What is the aircraft climb angle relative to the ground?

(b) If the aircraft is at sea-level altitude, will it be able to climb safely over an obstacle of
175 m height located 1 km away if the climb angle and airspeed are held constant?
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CRUISE PERFORMANCE

15.1. RANGE AND ENDURANCE
As depicted in Fig. 15.1, here, the term range is used for the horizontal straight-line distance an
airplane travels in cruising flight, whereas the distance traversed in climb, cruise, and descent is
called total range, stage length or block distance. Maximum total range is the distance an airplane
can fly between takeoff and landing as limited by its fuel capacity. The fuel consumption per unit
time is

F = dWf

dt
(15.1)

where Wf is the total fuel load. Since dWf =−dW , the fuel weight flow rate is related to the weight
of the airplane by (see also Chapter 8)

F =− dW

dt
(15.2)

The range is obtained from the following definite integral,

R =
∫ t2

t1

V dt =
∫ W2

W1

−V

F
dW =

∫ W1

W2

V

F
dW (15.3)

where V /F is the specific range (range per unit weight of fuel). The subscripts “1” and “2” refer to
the initial and final conditions at start and end of cruise, respectively.
The term endurance is used for the length of time spent in cruising flight. The endurance can be
written as

E =
∫ t2

t1

d t =
∫ W2

W1

− dW

F
=

∫ W1

W2

dW

F
(15.4)

At this point it is important to remember that in symmetric flight, the time history of the flight
condition depends on the specification of two control laws, that is to say, the description of the
variation of two control variables with time (see Chapter 8).
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Figure 15.1 Mission nomenclature

Generally, both control variables are held constant throughout the cruise so that the flight con-
dition only changes due to the influence of fuel consumption on airplane weight. For airplanes
propelled by air-breathing engines, however, there is only a slow variation of airplane weight. This
observation allows us to consider the flight as a continuous succession of uniform motions under
slowly varying conditions. In other words, the instantaneous values of V /F and F can be deter-
mined as though the airplane is in quasi-steady-state flight.
The procedure for determining F and V /F as a function of airplane weight may be illustrated by
reference to Fig. 15.2a and Fig. 15.2b for a propeller-driven and a jet-driven airplane, respectively.
In both cases it is assumed that the airplane is performing a level flight at constant engine control
setting.
In the case of propeller propulsion, the problem requires the computation of the level flight speed
at a number of airplane weights from the equilibrium condition Pa = Pr . To each flight velocity,
there corresponds a particular value of propulsive efficiency η j and specific fuel consumption cP .
Then, successive engine powers can be found by using Eq. 6.1,

Pbr =
Pa

η j
. (15.5)

The corresponding fuel weight flow rates can be computed from Eq. 6.15,

F = cP Pbr. (15.6)

Analogously, for the jet picture we may use the respective points of intersection of the thrust and
drag curves to give the successive values of airspeed V , thrust T , and specific fuel consumption cT .
According to the definition of cT , Eq. 6.64, the fuel weight flow rates can be obtained from

F = cT T. (15.7)
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Figure 15.2 Determination of V /F and F for cruise flight at constant altitude and engine control setting

Figure 15.3 Calculation of range and endurance for cruise flight at constant altitude and engine control setting

Now, Eq. 15.3 and Eq. 15.4 can be evaluated graphically to give the values of range and endurance
for the chosen cruise technique of constant altitude and constant engine control setting.

Range follows from plotting V /F against W , as shown in Fig. 15.3a. The shaded area under the
curve from the final cruise weight W2 to the initial cruise weight W1 represents the range. Similarly,
the endurance follows from the plot of 1/F versus W , as shown in Fig. 15.3b.

If the preceding calculation procedure is done systematically a so-called cruise chart can be de-
duced as exemplified in Fig. 15.4. The diagram gives the typical variations of specific range with
airspeed and airplane weight, showing the various cruise techniques for a specified altitude. In
Fig. 15.4, the constant engine rating program is represented by the line AB, the constant speed
program by the line AC , and the maximum range program by the line AD, all for the same initial
cruising speed. Of these, the most realistic cruise program is to maintain a constant airspeed at a
fixed altitude (line AC). In this connection, it may be remarked that, practically, the range achieved
by this cruise technique is virtually the same as that gained by the maximum range program (Ref.
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Figure 15.4 Typical specific range performance at a specified altitude

41). The instantaneous airspeeds which give the greatest distance on a given quantity of fuel (line
AD), may be called maximum range speeds or economic speeds, Vec . Obviously, for a particular
cruise program, the relationship between specific range and airplane weight follows directly from
the chart and so the resulting range for a given amount of fuel.

15.2. APPROXIMATE ANALYTIC EXPRESSIONS FOR RANGE AND ENDUR-
ANCE: PROPELLER PROPULSION

To obtain analytic expressions for range and endurance, we note that specific range and fuel weight
flow rate can be related to the characteristics of the airplane and propulsion system by using Eq. 15.5
and Eq. 15.6. Assuming quasi-level and quasi-steady flight, we can write

F = cP Pbr = cP
Pa

η j
= cP

Pr

η j
= cP

DV

η j
(15.8)

Making use of the relationships of Chapter 9 that V =
√

W
s

2
ρ

1
cL

and D = cD
cL

, we obtain

V

F
= η j

cP

CL

CD

1

W
(15.9)

F = cP

η j
W

√√√√W

S

2

ρ

C 2
D

C 3
L

(15.10)

Substituting Eq. 15.9 into Eq. 15.3, and Eq. 15.10 into Eq. 15.4 gives

R =
∫ W1

W2

η j

cP

CL

CD

dW

W
(15.11)
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Figure 15.5 Best range and endurance conditions in level flight for propeller-driven airplanes

E =
∫ W1

W2

η j

cP

dW

W
√

W
s

2
ρ

(
C 2

D /C 3
L

) (15.12)

An examination of Eq. 15.11 and Eq. 15.12 reveals that from an analytical point of view it is in-
teresting to consider the cruise technique where the angle of attack is held constant throughout
the flight. Furthermore, η j and cP usually exhibit only small variations over the band of cruising
speeds so that it is possible to assume that they have constant average values. Then, Eq. 15.11 can
be integrated to give an approximate analytic expression for the range,

R = η j

cP

CL

CD

∫ W1

W2

dW

W
= η j

cP

CL

CD
| lnW |W1

W2
= η j

cP

CL

CD
ln

W1

W2
(15.13)

This expression is the classic Breguet formula for range, derived by the Frenchman Louis-Charles
Breguet (1880-1955). Inspection of Eq. 15.13 learns that to maximize range, flight must be carried
out at the angle of attack at which CL/CD is the maximum. This is the flight condition for mini-
mum airplane drag (Fig. 15.5). Also note that Eq. 15.13 can be used for both constant altitude and
climbing flight. If the altitude is kept constant, then we see from the relationship W = CL

1
2ρV 2S

that the airspeed must be steadily reduced as fuel is consumed. On the other hand, if the airspeed
is held constant, the cruising height must be gradually increased during the course of the flight.
Therefore, the latter cruise technique is commonly referred to as cruise-climb flight. It should be
remarked that this type of flight may not be tolerable in many situations because of the require-
ments of air traffic control (A.T.C.). For propeller airplanes powered by piston engines, the term
η j /cP in Eq. 15.13 remains nearly constant when airspeed or altitude are changed. Consequently,
there will be no difference in range when the two cruise programs are compared; only an increase in
cruising speed for the cruise-climb flight. For turboprop airplanes, however, high cruising altitudes
are essential, since at a given engine rating the specific fuel consumption decreases with height.
Also it is important that at the economic airspeed the engines operate at their maximum permitted
cruise rating in order to achieve the lowest possible specific fuel consumption. Obviously, the only
way to attain the optimum cruising condition is to fly at a high altitude.
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To obtain a closed form solution for the endurance we shall consider the realistic cruise technique
of a flight at constant altitude. Then, carrying out the integration of Eq. 15.12, with η j and cP as-
sumed constant throughout the flight, produces the following formula

E = η j

cP

√√√√C 3
L/C 2

D
1
S

2
ρ

∫ W1

W2

dW

W
p

W
= η j

cP

√√√√C 3
L/C 2

D
1
S

2
ρ

∣∣∣∣ −2p
W

∣∣∣∣W1

W2

= η j

cP

√√√√C 3
L/C 2

D
1
S

2
ρ

[
2p
W2

− 2p
W1

] (15.14)

Introducing the airspeed at the starting point of the cruising flight, that is

V1 =
√

W1

S

2

ρ

1

CL
(15.15)

we modify Eq. 15.14 to obtain

E = 2
η j

cP

CL

CD

1

V1

[√
W1

W2
−1

]
(15.16)

Combination of Eq. 15.13 and Eq. 15.16 yields the following expression for the average velocity
during the flight

Vav = R

E
= V1 ln(W1/W2)

2
(p

W1/W2 −1
) (15.17)

Eq. 15.14 indicates that for best endurance, the airplane must fly at the angle of attack at which
C 3

L/C 2
D is the maximum. This is the flight condition for minimum power required and minimum

fuel weight flow rate. Inspection of Fig. 15.5 shows that level flight speeds less than the speed for
best endurance are in the region of reversed command. As was demonstrated in Section 11.3,
flying in this region introduces the problem of speed instability. Because of this phenomenon
the actual cruising speed lies somewhat above the minimum power required speed, for example,
Vcr ≥ 1.1VD min (cf. Eq. 11.13).

15.3. APPROXIMATE ANALYTIC EXPRESSIONS FOR RANGE AND ENDUR-
ANCE: JET PROPULSION

Assuming quasi-steady level flight and using the relationship D = CD
CL

W , the thrust can be written
as

T = D = CD

CL
W (15.18)

With Eq. 15.7 and the relationship V =
√

W
S

2
ρ

1
CL

, the specific range is found to equal

V

F
= 1

cT W

√
W

S

2

ρ

CL

C 2
D

(15.19)
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Substituting Eq. 15.19 into Eq. 15.3 yields

R =
∫ W1

W2

1

cT W

√
W

S

2

ρ

CL

C 2
D

dW (15.20)

The corresponding integral, expressing the endurance is obtained by insertion of Eq. 15.7 and
Eq. 15.18 into Eq. 15.4,

E =
∫ W1

W2

1

cT

CL

CD

dW

W
(15.21)

In deriving analytic expressions for range and endurance, first, we shall consider cruising at a fixed
height and at a constant angle of attack. Moreover, we shall continue to assume that the specific fuel
consumption remains constant for the duration of the flight. The analysis will be further simplified
by neglecting the variation of the effects of compressibility on the aerodynamic characteristics of
the airplane as the flight speed reduces during the course of the flight. Integrating Eq. 15.20, we
find

R = 1

cT

√
2

Sρ

CL

C 2
D

∫ W1

W2

dWp
W

= 2

cT

√
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W |W1
W2

= 2

cT

√
2

Sρ
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C 2
D

[√
W1 −

√
W2

]
(15.22)

It should be remarked that
p
ρ is present in the denominator of Eq. 15.22, and that this is the essen-

tial reason why high cruising altitudes are desired for jet powered airplanes. By using Eq. 15.15, we
can rewrite Eq. 15.22 as follows,

R = 2

cT

√
W1

S

2

ρ

CL

C 2
D

[
1−

√
W2

W1

]
= 2

V1

cT

CL

CD

[
1−

√
W2

W1

]
(15.23)

where V1 is the initial airspeed.
Performing the integration of Eq. 15.21 gives

E = 1

cT

CL

CD

∫ W1

W2

dW

W
= 1

cT

CL

CD
| lnW |W1

W2
= 1

cT

CL

CD
ln

W1

W2
(15.24)

From Eq. 15.23 and Eq. 15.24 the average airspeed during the flight is found to be

Vav = R

E
= 2V1

(
1−p

W2/W1
)

ln(W1/W2)
(15.25)

An inspection of Eq. 15.22 and Eq. 15.24 shows that:

• For best range, the airplane should be flown at the angle of attack for maximum CL/C 2
D . From

the relationships V =
√

W
S

2
ρ

1
CL

and D = Cρ

CL
W , it may be seen that this requirement corre-

sponds to the flight condition for minimum D/V (Fig. 15.6).

• At a given angle of attack, range increases with altitude up to the typical cruising altitude.
The favorable effect of a higher altitude is augmented by the tendency of the specific fuel
consumption to decrease with increasing altitude up to the tropopause (I.S.A.).
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Figure 15.6 Best range and endurance conditions in level flight for jet-powered airplanes

• Maximum endurance will be obtained when CL/CD is the maximum. This is the flight con-
dition for minimum airplane drag (Fig. 15.6).

A second cruise technique of interest for turbojet and turbofan airplanes is the flight at constant
airspeed and angle of attack. For this cruise technique, we pointed out in Section 15.2 that as fuel is
burned, the airplane should ascend in altitude. The flight-path angle occurring in this cruise-climb
schedule, however, is normally sufficiently small so as to approve the use of the level-flight condi-
tions that lift is equal to weight and thrust is equal to drag. From Eq. 15.3, Eq. 15.7 and Eq. 15.18,
we then have

R =
∫ W1

W2

V

cT

CL

CD

dW

W
(15.26)

If again cT and CL/CD are assumed to have constant values throughout the flight, Eq. 15.26 can be
readily integrated to give the expression

R = V

cT

CL

CD
ln

W1

W2
(15.27)

where the quantity V
cT

CL
CD

is called the range factor.
Sometimes it may be convenient to express the range in terms of the overall efficiency of the propul-
sion system. According to Eq. 6.65, we have

ηtot = gV

HcT
(15.28)

Insertion of Eq. 15.28 into Eq. 15.27 gives

R = ηtot
H

g

CL

CD
ln

W1

W2
(15.29)

As mentioned earlier in Chapter 6, the heating value H of all common aviation fuels (hydrocar-
bon fuels) is about 4.3 × 107 J/kg so that the ratio H/g in Eq. 15.29 is about 4390 km. Eq. 15.27
and Eq. 15.29 are also labeled Breguet range equations, although Breguet’s name was originally
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Figure 15.7 Condition for maximum V (CL /CD )

associated with range performance of airplanes driven by the combination of piston-engines and
propellers. In this light, it is worthwhile to remark that Eq. 15.29 also holds for propeller-driven air-
planes. This statement can easily be verified by substitution of Eq. 6.16 and Eq. 6.17 into Eq. 15.13.
At constant airspeed and angle of attack, the endurance is directly found as

E = R

V
= 1

cT

CL

CD
ln

W1

W2
(15.30)

Obviously, the greatest endurance will be obtained when CL/CD is the maximum. Also note that
Eq. 15.30 is identical to the expression for the endurance in level flight (see Eq. 15.24).
Eq. 15.27 indicates that for a given initial weight and fuel load, the airplane should fly at that altitude
and airspeed at which the product V (CL/CD ) is a maximum, provided that variations in specific
fuel consumption can be neglected.
The derivation of this flight condition will be demonstrated from a numerical example. For this,
we return to our illustrative turbofan airplane with its lift-drag polars given in the previous Fig. 9.7.
From this data, the curves in Fig. 15.7a are deduced, which give the maximum lift-to-drag ratio
and the associated lift coefficient as a function of flight Mach number. The graph manifests the
characteristic behavior that both quantities drop off sharply at Mach numbers greater than 0.6. The
required (I.S.A.) altitudes are plotted versus M in Fig. 15.7b, as computed from the relationship W =
CL

1
2γpM 2S where CL is the lift coefficient at which CL/CD is the maximum. The related airspeeds

follow from V = Mc. The final result is shown in Fig. 15.7c, in the form of a plot of the product
V (CL/CD )max against flight Mach number. Clearly, there is an optimum flight Mach number and
an optimum altitude at a given airplane weight. Fig. 15.7b also demonstrates that as the weight of
the airplane decreases during cruise the airplane should climb in altitude to maintain the optimum
flight condition.
Note from Eq. 15.27 that with the assumptions of constant cT and CL/CD , the range has no absolute
maximum. Without compressibility drag, a constrained optimum is obtained when the magnitude
of the airspeed is specified. In this case, the maximum range will also occur when CL/CD is the
maximum. This condition requires that the instantaneous height should be that height at which
the minimum drag speed becomes equal to the chosen airspeed. When our cruise-climb flight is
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Figure 15.8 Relative range

conducted in the lower stratosphere (I.S.A.), where the speed of sound is constant, a fixed airspeed
also means a fixed flight Mach number. Consequently, the aerodynamic ratio in Eq. 15.27 is exactly
constant (see Chapter 4). If we look at the force equation

T =CD
1

2
ρV 2S (15.31)

we see that the thrust is directly proportional to the air density. However, at a constant value of
T /ρ, turbo-engine performance in the lower stratosphere (I.S.A.) is such that engine control setting
is fixed. As a result, also specific fuel consumption remains unchanged (see Chapter 6). Therefore,
the desired flight program is realized if the pilot simply maintains constant readings on the Mach
meter and the engine-speed indicator. The appropriate expression for the range is then obtained
by substituting Eq. 15.31 into Eq. 15.27. The resulting form becomes

R = 1

cT

√√√√T

S

2

ρ

C 2
L

C 3
D

ln
W1

W2
(15.32)

We observe that the condition for maximum range when flying in the lower stratosphere (I.S.A.) at
a given engine control setting and airspeed exists when C 2

L/C 3
D is the maximum.

A third constrained optimum is derived for a specified altitude at the starting point of the cruise-
climb flight. Then, insertion of Eq. 15.15 into Eq. 15.27 leads to the expression

R = 1

cT

√
W1

S

2

ρ1

CL

C 2
D

ln
W1

W2
(15.33)

where ρ1 is the air density at the initial height H1.
Examination of the above equation reveals that to obtain maximum range, flight must be executed
at maximum CL

C 2
D

.

Taking the initial height of the cruise-climb flight to be the cruising height of the constant altitude
flight and assuming the same angle of attack and specific fuel consumption, we can derive a simple
relationship between the two ranges. Dividing Eq. 15.27 by Eq. 15.23 yields
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Figure 15.9 Stepped altitude flight

RV ,α

RH ,α
= lnW1/W2

2
(
1−p

W2/W1
) (15.34)

The above ratio is presented in Fig. 15.8. The graph indicates that the increase in range by per-
forming a cruise-climb flight becomes greater as the weight ratio W1/W2 increases. In other words,
flying cruise-climb appears to be more economical than level flight, especially when the airplane
executes a long-distance flight.
In practice, a cruise-climb flight may be approximated by a sequence of segments of level flight
(Fig. 15.9). However, when the cruise is executed under the jurisdiction of flight traffic control
regulations, each altitude change needs approval. Then cruising altitudes as well as cruising speeds
and headings are assigned by air traffic control in order that sufficient spacing is ensured vertically,
longitudinally, and laterally for safe flight.

15.4. EFFECT OF WIND ON CRUISE PERFORMANCE
In this section we shall pay some attention to the effect of wind on cruising performance. For
simplicity, we shall consider the presence of a constant headwind or tailwind only, directed along
the flight path.
From our analysis in Chapter 14, we know that if an airplane flies in a steady wind, the motion
is governed by the same equations as used in still air. Thus, drag and power required curves are
unaffected although now ground speed differs from airspeed.
In level and quasi-level flight, the relationship between ground speed Vg , airspeed V , and wind
velocity VW , is given by (cf. Eq. 1.24)

Vg =V −VW (15.35)

where, according to our sign convention, a headwind is taken positive and a tailwind negative.
Wind does not affect the endurance of an airplane because it is a function only of fuel consumption
per unit time. On the contrary, wind has a pronounced effect on range.
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Figure 15.10 Effect of steady headwind and tailwind on airspeed for maximum specific range

The specific range with respect to the ground can be expressed as

Vg

F
= V −VW

F
= V

F

[
1− VW

V

]
(15.36)

Eq. 15.36 indicates that the with-wind and zero-wind specific ranges are different. For example,
when V =VW the distance traveled relative to the ground is zero. Clearly, the presence of wind also
affects the economic speed. This can be investigated by considering the following relationships:

Vg

F
= Vg

cP Pbr
= η j

cP

[
V −VW

Pr

]
(15.37)

Vg

F
= Vg

cT T
= 1

cT

[
V −VW

D

]
(15.38)

Note that Eq. 15.37 and Eq. 15.38 concern the specific range of propeller-driven airplanes and jet
powered airplanes, respectively. As shown in Fig. 15.10, with wind the economic speeds with re-
spect to the ground are found by determining new origins on the airspeed axes and drawing tan-
gents to the power required curve and the drag curve. From the constructions shown, it is seen that
for both airplane types the airspeed for maximum specific range with a headwind is greater than in
still-air conditions. The reverse is true when flying with a tailwind. Further, it may be understood
from Fig. 15.10 that maximum specific range, and so the maximum range, is increased by a tail-
wind and decreased by a headwind. An expression for the range relative to the ground with a wind
of velocity VW is given by

R =
∫ W1

W2

Vg

F
dW =

∫ W1

W2

(V −VW )

F
dW =

∫ W1

W2

V

F
dW −VW

∫ W1

W2

dW

F
= R(VW =0) −VW E (15.39)

Again this equation shows that range is affected advantageously by a tailwind and adversely by a
headwind. Therefore, it will be clear that the actual fuel load of the airplane not only is determined
by the flight distance but also by the prevailing winds along the flight path. These may be known
from meteorological forecasts, completed with seasonal wind data for the airway.
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Figure 15.11 Typical flight profile

15.5. WEIGHT BREAKDOWN
The total weight of the airplane Wto, may be written as the sum of the structural weight Wc, the
weight of the propulsion system We, the payload WP, the fuel weight Wf, and the weight of the
reserve fuel Wfr.

Wto =Wc +We +WP +Wf +Wfr (15.40)

The total weight is the weight at takeoff brake release (TOW), and depends on the loading condition.
TOW should not exceed the maximum takeoff weight (MTOW), which is generally determined by
structural considerations. The reserve fuel must be onloaded above the trip fuel to provide for
changes in the intended flight profile or flight program and for diversion to an alternate airport due
to a balked landing at the airport of destination. The amount of reserve fuel is usually determined
by the operator in accordance with operational procedures. Typically, the procedure allows for a
flight to alternate and a standard stacking time (Fig. 15.11). Payload is the weight of passengers and
cargo. The sum of the payload and trip fuel may be called the useful load Wu.

Wu =WP +Wf (15.41)

The structural weight will include not only the weight of the airframe but also the weight of fixed
and removable equipment, furnishings, and the weight of the complete crew. The structural weight
and the weight of the propulsion system may be combined into the operational empty weight
(OEW) or basic operational weight Wb,

Wb =Wc +We (15.42)

Thus, Wb is the weight of the airplane fully equipped excluding only payload and fuel,

Wto =Wb +Wp +Wf +Wfr (15.43)

If we divide through by the total weight, we obtain the weight breakdown in terms of weight frac-
tions,

1 = Wb

Wto
+ Wp

Wto
+ Wf

Wto
+ Wfr

Wto
(15.44)
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Figure 15.12 Typical weight breakdowns

Because of their usefulness, weight fractions are often employed in airplane performance and de-
sign considerations. For example, when we assume that the entire journey length is performed in
cruising flight, from Eq. 15.27 and Eq. 15.29, the ratio Wf/Wto can be written as

Wf

Wto
= 1−e

− R
cT (CL /CD ) = 1−e

− R
ntot

H
g (CL /CD ) (15.45)

where now R is the total range. Eq. 15.45 and Eq. 15.44 show that the aim is obviously to make
the range factor as large as possible and to keep the fraction Wb/Wto low in order to obtain a large
payload fraction. The weight fraction Wb/Wto may be regarded as the structural efficiency since the
lighter the airplane is built, the greater is the useful load fraction. Typical weight fractions for a stage
length of 6500 km are shown in Fig. 15.12, for a high-subsonic turbofan airplane and a supersonic
transport with turbojet engines. Due to its lower range factor, the fuel fraction for the supersonic
airplane is higher than for the turbofan airplane. Consequently, the payload fraction for the su-
personic transport is considerably smaller, notwithstanding its higher structural efficiency. We also
conclude from Eq. 15.45 that at a given range factor, a greater fuel fraction is required as the range
becomes longer. This implies that, for a given airplane, the payload fraction decreases with range
as can be seen from Eq. 15.44.
In Fig. 15.13a, the weight breakdown is sketched with respect to stage length in still air for a typ-
ical transport airplane. The line AB gives the takeoff weight at the maximum payload that can be
carried. Point B corresponds to the maximum stage length with maximum payload. This range is
called the design range. Increasing the total range above the design range requires that payload is
replaced by fuel. This is represented by the line CD. At point D the ultimate range is reached (zero
payload and reserve fuel unconsumed). Usually, the fuel tank capacity is such that the range cannot
be increased beyond point E. The line EF, finally, indicates that some further increase of the total
range is possible by reducing the takeoff weight when consuming the full fuel load.
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Figure 15.13 Payload-range characteristics

The line GH in Fig. 15.13a represents a limit to the takeoff weight that may be dictated on short
ranges by the maximum allowable weight of the airplane at the landing. The maximum landing
weight (MLW) is imposed by structural design requirements. Another weight limit is the maximum
zero fuel weight (MZFW), the maximum allowable weight of the airplane without fuel. Normally,
the maximum landing weight is greater than the maximum zero fuel weight plus the reserve fuel.
Otherwise, payload might be restricted by the limited strength of the landing gear or airframe struc-
ture under particular landing conditions.
The payload-range relationship of Fig. 15.13a is separately portrayed in Fig. 15.13b. In both charts,
the the boundary edge lines are in reality not straight but slightly curves, in light of the exponen-
tional (or logarithmic) relations between range and weight (as shown inEq. 15.45, for example).
The second chart, often called the payload-range diagram, may be regarded as the basis of the eco-
nomic value of a transport airplane.

15.6. THE ECONOMIC PERFORMANCE OF TRANSPORT AIRPLANES
The most valuable parameters determining the commercial merit of a transport airplane are sum-
marized in this section. These performance items are given below and will be explained in the order
listed:

• block time, EB

• block speed, VB

• transport product, PR

• transport productivity, Ph
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Figure 15.14 Block time and block speed versus range

• revenue-earning capacity, Py

The block time is the total time elapsing from starting engines at the departure airport to engines
off at the destination place. Thus, the block time includes taxi time from the loading point to the
takeoff runway, checks, takeoff, ascent to cruising height, cruise, descent, final circuits, approach
and landing, and taxi time to the terminal point. The block speed is the block distance divided by
the block time,

VB = R

EB
(15.46)

Evidently, the block speed is lower than the cruising speed. According to Ref. 42 the relationship
between block time, block distance and cruising speed can be written as

EB = R

Vcr
+∆t (15.47)

where R is the block distance, Vcr is the cruising speed and ∆t is the length of time that accounts
for the field operations and the lower airspeeds in flight phases other than the cruise. Combining
Eq. 15.46 and Eq. 15.47 results in the following expression for the block speed,

VB = R
R

Vcr
+∆t

(15.48)

Typical variations of block time and block speed with total range are plotted in Fig. 15.14, using
∆t = 50 minutes. The graphs show that at a given cruising speed both block time and block speed
increase with increasing block distance, and that raising the cruising speed is more beneficial as
the range is greater.
Obviously, the revenues which are gained by transport of passengers and/or freight are dependent
on payload as well as range. Therefore, the transport performance is given by the product of pay-
load and range,
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Figure 15.15 Economic parameters for transport airplane

PR =WpR (15.49)

where PR is named the transport product and may be expressed in the units ton·km or pax·km.
For a transport airplane with payload-range characteristic as depicted in Fig. 15.13b and Fig. 15.15a,
the variation of the transport product versus stage length is as shown in Fig. 15.15b. It is of interest
to note that the peak value of the transport product occurs at a flight distance which is equal to
half the ultimate range. In the case that the latter distance is shorter than the design range, the
optimum value occurs at the design range. Also note that the revenues are directly proportional to
the load factor, the ratio of the payload actually carried over a given route distance to that payload
that could have been carried over the same distance. The reader should note that the term “load
factor” is also used in Chapter 8 in the context of the loads from flight maneuvers on the airplane
structure.
The transport productivity is defined as the transport product delivered per unit time. Usually, it is
based on block time, so that we can write

Ph = WpR

EB
=WpVB (15.50)

From the combination of the payload range diagram in Fig. 15.15a and the block speed-range re-
lationship in Fig. 15.15c, we obtain the curve of Fig. 15.15d. This shows the typical variation of
transport productivity with block distance. From the diagrams, we see that the maximum value of
Ph occurs at the design range.
The revenue-earning capacity is the transport product per year. If U is the annual flight utilization
of the airplane in hours, we have

Py = PhU =WpVBU (15.51)

For long-haul routes, the annual utilization might reach a value of 4500 hours. This figure gradually
decreases as the route distance (block time) becomes shorter (Ref. 43).
Besides the preceding parameters, the specific costs of operating a commercial airplane, that is to
say, the costs per ton·km or costs per hour are as much of importance to its economic value.
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The operating costs are usually broken down into direct and indirect costs. The direct operating
costs (DOC) are those which are associated with flying operations. These may include mainte-
nance, crew, airplane service, landing fees, depreciation of capital invested, insurance, and fuel.
The indirect operating costs (IOC), on the other hand, are independent of the characteristics of the
airplane since they are connected with the costs of operating an airline. They may encompass man-
agement, administration, sales, housing, and depreciation of ground properties and equipment.
Beyond doubt, when considering the economic value of an airplane we shall specially be interested
in the direct operating costs as a criterion.
As a means of estimating DOC for comparative purposes, standard methods were published by
the Society of British Aircraft Constructors (SBAC) in 1959 and by the Air Transport Association of
America (ATA) in 1967 (Ref. 43 and Ref. 44). To reflect the effects of inflation and changing tech-
nology, renewed and updated cost models are regurarly developed and updated. See, for example,
Ref. 45 and Ref. 46. These sources will aid the reader in obtaining a proper understanding of the
airplane related cost problem.

15.7. PROBLEMS
1. Look up the nominal range and payload of popular commercial aircraft currently in opera-

tion.

• How do these aircraft compare to one-another on the payload-range diagram?

• How do they compare to the Spirit of St. Louis, the first aircraft to fly non-stop across
the Atlantic Ocean?

• How do they compare to the Rutan Voyager, the first aircraft to fly non-stop around the
world without stopping or refueling?

2. Why do airplanes fly at high altitudes? Explain what cruise flight parameters are affected by
altitude and how they are beneficial to the cruise performance of any airplane.

3. It is possible to design aircraft that have a different energy source than kerosene (jet fuel).
You can think of liquid hydrogen, liquefied natural gas, batteries, or hydrogen for fuel-cells.
Search the internet for the values of energy density, in terms of J/kg and J/L, of various en-
ergy sources, and report these two parameters on a chart. Why do you think kerosene has
historically been the preferred energy source for commercial aircraft?

4. An aircraft is cruising over a range of 13200 km, at a constant CL/CD ratio of 14, and burning
fuel with an overall efficiency of the powerplant equal to ηtot = 0.35. By the end of the cruise
phase, it has lost 45% of its initial weight. What is the specific energy of the fuel?

5. A simplified jet aircraft cruises over a range of 5200 km, at constant altitude and lift coeffi-
cient, with a lift-over-drag ratio of 12.8. Its thrust-specific fuel consumption is 0.000195 N/(N·
s). If its initial speed is 240 m/s, what is its final speed (in m/s)?;

6. A simplified jet aircraft with a surface area of 93 m2 is loaded with a fuel weight equal to 30%
of the total weight at the beginning of the cruise phase Wini = 440kN. It has a parabolic polar
with C D0 = 0.0202 and K = 0.043 and a thrust-specific fuel consumption of 0.82 N/(N·hr). It
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is cruising at constant speed and CL in the conditions of maximum endurance. How much
time does it take to fly its range in these assumptions?

7. A twin-engined propeller aircraft is flying at an altitude of 50000 m. It has a wing area of
91.7 m2, a power-specific fuel consumption cP = 2.03×10−7 kg/(W·s), and a propulsive effi-
ciency of 0.75. Its drag polar is non parabolic, and given by

CD = 0.0165−0.0023CL +0.0478C 2
L

It is flying at the lift coefficient for maximum endurance, and weighs 112 kN. What is the fuel
flow in this condition?

8. With a constant tailwind of 145 km/hr, a jet aircraft is capable to fly over a maximum range of
14000 km. If it has a nominal endurance of 13.6 hr, what is its nominal range (in km)?

9. An aircraft cruises over a range of 1150 km at a ground speed of 740 km/hr. The time it takes
for all other flight phases and ground operations is 18% of the time spent in cruise. What is
its block speed?

10. An aircraft takes a total time of 7.8 hr to transport 25000 kg of payload over a cruise range of
4200 km. What is its transport productivity?
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AIRFIELD PERFORMANCE

16.1. THE TAKEOFF MANEUVER
The takeoff can be defined as the maneuver by which the airplane is accelerated from rest on the
runway to the climb-out speed VC over a 10.7 m (35 ft) obstacle (screen height) for civil transports
or a 15.2 m (50 ft) obstacle for light propeller-driven and military airplanes (Fig. 16.1).
The takeoff distance may be considered to consist of two main parts: (1) the ground run distance,
and (2) the airborne distance. The ground run comprises the pre-rotation phase and the rotation
phase, where the airplane successively accelerates from standstill to the rotation speed VR and from
VR to the lift-off speed VLOF. The rotation speed is the speed at which the pilot initiates upward ro-
tation of the airplane and is perhaps the most important reference speed for the pilot since varying
VR can greatly affect the takeoff distance and the overall safety level of the takeoff maneuver.
During the first part of the ground run, the airplane incidence remains fairly unchanged. Beyond
the rotation speed the angle of attack is gradually increased from the ground attitude toward the
lift-off condition such that at VLOF the lift equals the weight and the airplane becomes airborne.
The airborne distance is usually divided into the transition to climbing flight and the rectilinear
climb to the screen height. The transition phase, where the flight-path angle is increased from zero
at VLOF to that of steady climb at screen speed VC , is flown with an incremental lift coefficient in
order to provide sufficient lift to accomplish an adequate curvature of the flight path. During the
takeoff maneuver, flap deflection and engine control setting remain constant. However, to improve
climb performance, the landing gear is retracted soon after the airplane has become airborne.
After passing the screen height, the airplane travels along the takeoff flight path until it reaches a
safe flight condition at an altitude of about 450 m (1500 ft), where the continued climb to cruising
altitude begins (see Fig. 11.4).
According to the airworthiness requirements, for multi-engine civil transport airplanes the occur-
rence of single engine failure during the takeoff ground run must be awaited. To warrant never-
theless adequate safety and handling, a number of reference speeds are of significance in airfield
performance computations. These speeds are indicated in Fig. 16.2 in the order in which they nor-
mally occur during the takeoff maneuver.
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Figure 16.1 The takeoff maneuver

Figure 16.2 Takeoff reference speeds for conventional transports

The decision speed V1 is selected such that when at this speed an engine failure is recognized, the
pilot is able to abort the takeoff and make a full stop on the runway, or to continue the takeoff to
the screen height with one engine out, in the same distance (Fig. 16.3a).
Takeoff distances based on this condition are called balanced field lengths. The scheduled takeoff
distances are usually determined by the balanced field lengths or by the distances over the screen
height for the all-engines case multiplied by a factor 1.15, whichever is greater.
The decision speed V1 is determined by computing the so-called accelerate-stop and accelerate-
climb distances as functions of the engine failure speed, VEF . The former distance is the length
required to accelerate to VEF and thereafter stop the airplane on the runway. The other distance is
the length required to accelerate to VEF and then continue the takeoff over the screen height with
one engine inoperative.
Plotting the two distances as sketched in Fig. 16.3b yields the balanced field length and the decision
speed. If an engine should stop at a speed below V1 the pilot should abandon the takeoff, whereas,
if an engine fails beyond V1 the pilot should continue the takeoff because of the fact that there
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Figure 16.3 Balanced field length concept

may remain not enough runway length for deceleration to standstill. The decision speed may be
recommended to be somewhat less for wet runway conditions then for dry conditions to guarantee
that the same accelerate-stop distance can be achieved.
Returning to Fig. 16.2, we see that the decision speed is higher than the minimum control speed,
VMC , which is the minimum speed above which it is possible to maintain adequate airplane control
for takeoff (see Section 11.2). We also see that the decision speed is lower than the rotation speed
VR . In its turn, the minimum acceptable value of VR may not be less than 1.05 VMC .
The airworthiness requirements also distinguish the minimum lift-off or unstick speed VMU , the
calibrated minimum speed at which the airplane can safely lift off the ground, and continue the
takeoff. The actual lift-off speed VLOF depends on the rotation speed VR . The latter speed must
be chosen such that VLOF ≥ 1.1VMU with all engines operating or VLOF ≥ 1.05VMU with one engine
out. The requirements prevent a rotation to an attitude exceeding that at the demonstrated VMU

and with that the occurrence of a ground stall and so insufficient ability to lift-off. Further, VR must
allow the takeoff safety speed V2 to be reached at the screen. The speed V2 is referenced as the
lowest speed to ensure an adequate and safe climb-out with the critical engine inoperative and the
live engine(s) developing full takeoff thrust.
For turboprop airplanes the requirements quote: V2 ≥ 1.1VMC and V2 ≥ 1.2VMS for two-engine and
three-engine airplanes and V2 ≥ 1.15VMS for airplanes with more than three engines. For jet-driven
airplanes the takeoff safety speed shall not be less than: V2 = 1.1VMC and V2 = 1.2VMS irrespective
of the number of engines. The speed VMS , is the minimum stalling speed measured in a flight where
the airspeed is steadily reduced at a rate of 1 knot per second, as already defined in Section 8.4. For
further details and the regulations in the non-transport categories the reader should consult the
airworthiness requirements.

16.2. TAKEOFF GROUND RUN
The forces on the airplane during ground run are shown in Fig. 16.4. The weight of the airplane is
balanced by the lift and the reaction force of the ground surface on the wheels. Thrust is opposed
by the rolling friction between wheels and ground surface in addition to the drag of the airplane.
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Figure 16.4 Forces acting during takeoff ground run

The frictional force Dg may be written as

Dg = Dg m +Dg n =µr (Nm +Nn) =µr (W −L) =µr

(
W −CLg

1

2
ρV 2S

)
(16.1)

where CLg is the lift coefficient in the ground run attitude andµr is the coefficient of rolling friction.
Typically, µr may be taken as 0.02 for a concrete or asphalted runway and 0.05 for an airstrip with
short cut grass. The equation of motion in forward direction is (assuming zero wind and no runway
slope)

W

g

dV

dt
= T −D −Dg = T −CDg

1

2
ρV 2S −Dg (16.2)

where CDg is the drag coefficient in the ground running condition. Both CLg and CDg will vary
during the rotation phase of the ground run. Combining Eq. 16.1 and Eq. 16.2, the acceleration of
the airplane during ground run at a speed V becomes

dV

dt
= g

[
T

W
−µr −

(
CDg −µr CLg

) 1
2ρV 2

W /S

]
(16.3)

Denoting dV / dt = a and using V = ds/ dt , the distance traveled in accelerating from rest to the
lift-off speed can be expressed in the form

sg =
∫ VLOF

0

V dV

a
=

∫ VLOF

0

V dV

g

[
T
W −µr −

(
CDg −µr CLg

) 1
2ρV 2

W /S

] (16.4)

This equation shows that the distance sg depends on the acceleration during the ground run, which
is a function of V . Introduction of the lift coefficient (CL)LOF defined by the condition that the lift
at VLOF is equal to the weight of the airplane

W = L = (CL)LOF
1

2
ρV 2

LOFS (16.5)

yields for the ground run distance

sg =
∫ VLOF

0

V dV

g

[
T
W −µr −

(
CDg −µr CLg

)
(CL )LOF

V 2

V 2
LOF

] (16.6)
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Figure 16.5 Graphic determination of ground run distance

The length of the ground run may be determined by stepwise integration of Eq. 16.4, that is, calcu-
late the acceleration of the airplane at a number of forward speeds and then plot V /a against V as
shown in Fig. 16.5. The area under the curve from V = 0 to V =VLOF is the value for sg .
The ground run distance may be estimated analytically by assuming that the thrust to weight ratio
T /W is represented by a mean value of the thrust T (W is assumed constant during takeoff). Fur-
ther, we assume that the angle of attack is constant. In the case of a nose-wheel type landing gear,
this is achieved by keeping the nose wheel on the ground until lift-off. Under this condition the
quantity (CDg −µr CLg ) in Eq. 16.4 may be assumed constant throughout the ground run.

Eq. 16.6 can be integrated by realizing that the integrand function is of the form V /(a +bV 2), and
when substituting y = a +bV 2, then dV = dy/(2b). The expression of the integral between V = 0
and V =VLOF is

sg = W /S

ρg
(
CDg −µr CLg

) ln
T
W −µr

T
W −µr −

(
CDg −µr CLg

)
(CL )LOF

(16.7)

The actual value of T may be described by the relationship T = kTstatic, where the factor k is a
function of the ratio TLOF/Tstatic. The latter ratio depends on the type of propulsion system owing
to the different variation of thrust with forward speed (see Fig. 9.11). Another approach to the
analytic estimation of the ground run distance is the use of a mean acceleration a, giving the same
distance as the actual variable acceleration.
Then, from Eq. 16.4, we get

sg = V 2
LOF

2a
(16.8)

Usually, a is taken as the acceleration at a speed VLOF/
p

2 = 0.7VLOF.
It should be remarked that in determining the aerodynamic forces and moments on the airplane
during the ground run, we have to account for the effects of the proximity of the ground on the flow
field around the airplane. The presence of the ground reduces the induced downwash from the tip
vortices since there cannot be a flow going into the ground (Fig. 16.6). Consequently, the airplane’s
CL−α and CD−α curves change as sketched in Fig. 16.7 (see also Fig. 4.10), through which at a given
altitude of the airplane the lift coefficient increases and the (induced) drag coefficient decreases.
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Figure 16.6 Effect of ground on tip vortices

Figure 16.7 Typical effect of ground on lift and drag coefficient

The proximity of the ground also may have an effect on the contribution of the horizontal stabilizer
to longitudinal stability at large angles of attack. The ground surface straightens the flow stream-
lines, thereby decreasing the downwash behind the wing (Fig. 16.8). This results in a greater angle
of attack at the tail, which requires an increased upward deflection of the elevator to keep the air-
plane in equilibrium.
The ground effects decrease with increasing wing aspect ratio and are dependent on the relative
distance between wing and ground surface (Ref. 47). Practically, ground effects are of importance
during ground run and may be ignored when the airplane is airborne. Before leaving our examina-
tion of the ground run distance, let us call some attention to the effect of a runway slope. Looking
at the forces in Fig. 16.9, the equation of motion reads:

W

g

(
dV

dt

)
ζ

= T −D −µr (W cosζ−L)−W sinζ (16.9)

where ζ is the runway slope, uphill positive. Adopting in Eq. 16.9 the approximation that cosζ= 1,
we obtain

Figure 16.8 Effect of ground on down-wash
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Figure 16.9 Presence of a runway slope

(
dV

dt

)
ζ

= g

[
T

W
−µr −

(
CDg −µr CLg

) 1
2ρV 2

W /S
− sinζ

]
(16.10)

By combining Eq. 16.10 with Eq. 16.3, the relationship between the accelerations with and without
runway slope can be written as (

dV

dt

)
ζ

= dV

dt
− g sinζ (16.11)

Any numerical consideration on the effect of g sinζ on the magnitude of the acceleration may show
the strong influence of a runway slope on the length of the ground run.

16.3. THE AIRBORNE PHASE OF THE TAKEOFF MANEUVER
The airborne distance depends strongly on the way in which the pilot controls the airplane and
can, therefore, only be evaluated when the two control laws are specified. One of these is already
defined by the condition that the engine control setting is constant during the takeoff maneuver.
The second control law may concern the time-history of the lift coefficient, the normal accelera-
tion, or the rate of pitch, from the moment the airplane leaves the ground until it reaches the steady
climbing attitude at the end of the transition.
An accurate determination of the flight path between the lift-off point and the screen height is
usually made by step by step calculations, adopting a particular control law.
Also analytic procedures are developed, assuming CL = constant or dθ/ dt = constant during tran-
sition. For a detailed description of these techniques, the reader is referred to Ref. 48 and Ref. 49.
In order to examine the airplane motion in the transition flare, let us return to Eq. 8.7 and Eq. 8.8,
which can be written as (Fig. 16.10a)

W

g
V

dV

d s
= T cosαT −D −W sinγ (16.12)

W

g

V 2

R
= L+T sinαT −W cosγ (16.13)

Assuming that the thrust and the velocity vectors are coincident (αT = 0) and that the flight-path
angle is small (sinγ= γ and cosγ= 1), the governing equations of motion reduce to (Fig. 16.10b).
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Figure 16.10 Equilibrium of forces during transition

Figure 16.11 Schematic for transition to steady climb

W

g
V

dV

d s
= T −D −W γ (16.14)

W

g

V 2

R
= L−W (16.15)

Here, a simple analytic approach to the problem is made by supposing that the path is circular
of radius R. Accordingly, we have to consider the transition on the condition that at the lift-off
point the pilot instantaneously increases the angle of attack and thereby applies an increment of
lift, forcing the airplane to follow a curved path (Fig. 16.11a).
Just after lift-off, the transition lift coefficient, CLt , may be expressed as

(CLt )LOF = (CL)LOF +∆ (CL)LOF (16.16)

where (CL)LOF is defined by Eq. 16.5. The lift coefficient at any point on the transition flight path
may then be written as (Fig. 16.11b)



16.3. THE AIRBORNE PHASE OF THE TAKEOFF MANEUVER

16

345

CLt = (CL)LOF +∆CL (16.17)

When we insert Eq. 16.5 and Eq. 16.17 into Eq. 16.15, we get

1

g R
= 1

V 2
LOF

− 1

V 2 + ∆CL
2
ρ

W
S

(16.18)

This expression shows that due to the increase in flight velocity, the value of∆CL and so of CLt must
decrease during the transition (see Fig. 16.11b).
By combining Eq. 16.5, Eq. 16.15 and Eq. 16.16, we can express the radius R as

R = 2 W
S

ρg∆ (CL)LOF
= V 2

LOF

g

(CL)LOF

∆ (CL)LOF
= V 2

LOF

g (nLOF −1)
(16.19)

where nLOF is the load factor at lift-off. When the flight-path angle reaches the value

γC =
(

T −D

W

)
C

(16.20)

the transition is completed and a steady climb at an airspeed VC begins. At that point of the flight
path the instantaneous value of the transition lift coefficient is suddenly reduced to a value CLC

associated with the steady speed VC ,

CLC = W

S

2

ρ

1

V 2
C

(16.21)

If R and γC are known, it is an easy matter to obtain from the geometrical pattern in Fig. 16.11a the
following relationships:

st = RγC (16.22)

ht = R
(
1−cosγC

)= R
γ2

C

2
= 1

2
stγC (16.23)

Note that in Eq. 16.23 we have employed the trigonometric relationship 1−cosα= 2sin2 (α/2). With
dh = γds, the speed increment attained during transition follows from integrating Eq. 16.14,∫ VC

VLOF

W

2g
dV 2 =

∫ st

0
(T −D)ds −

∫ ht

0
W dh or (16.24)

V 2
C −V 2

LOF

2g
=

∫ st

0

(
T −D

W

)
ds −ht (16.25)

If the specific excess thrust (T −D)/W in Eq. 16.25 is assumed constant and equal to its value at
VLOF, we obtain

V 2
C −V 2

LOF

2g
= γLOFst −ht (16.26)

where γLOF is the steady flight-path angle at the speed VLOF,
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γLOF =
(

T −D

W

)
LOF

(16.27)

As the variation of the airspeed during transition is usually very small, it is permissible to make the
approximation that γC = γLOF. Then, after substitution of Eq. 16.19, Eq. 16.22, and Eq. 16.23 into
Eq. 16.26, the following expression is derived:

VC

VLOF
=

[
1+γ2

LOF
(CL)LOF

∆ (CL)LOF

] 1
2

(16.28)

The quantity (∆CL)LOF is often expressed in terms of the normal acceleration an or the load factor
nLOF at lift-off (see also Section 8.3),

W

g

V 2
LOF

R
= W

g
(an)LOF =W (nLOF −1) =∆ (CL)LOF

1

2
ρV 2

LOFS (16.29)

or with Eq. 16.5,

(an)LOF

g
= nLOF −1 = ∆ (CL)LOF

(CL)LOF
(16.30)

As an example we may take (CL)LOF = CL max/1.44 (VLOF = 1.2VMS ) and an instantaneous rotation
at lift-off to an angle of attack such that (CLt )LOF = 0.8CL max. This gives

(an)LOF

g
− (CL)LOF − (CL)LOF

(CL)LOF
= 0.8×1.44−1 = 0.152, and nLOF = 1.152

This result represents a typical value for the normal acceleration as the practical upper limit may
be about 0.2g (nLOF = 1.2). Sometimes, the screen height is cleared before transition to the steady
climb attitude is completed. Then the flight-path angle at the screen and the airborne distance
follow from the relationships (Fig. 16.12a):

hs = R
(
1−cosγs

)= Rγ2
s /2 and sa = Rγs (16.31)

If hs is greater than ht , then the airborne distance is (Fig. 16.12b)

sa = st + sc (16.32)

where sc = (hs −ht )/tanγC is the climb distance.

16.4. EFFECT OF WIND ON TAKEOFF
The effect of wind on the takeoff length is examined by considering a steady headwind of speed
VW . The acceleration relative to the ground and the distance traveled along the runway are given
by

ag = dVg

dt
=Vg

dVg

dsg
(16.33)
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Figure 16.12 Transition and screen height

(
sg

)
w =

∫ (Vg )LOF

0

Vg dVg

ag
(16.34)

In these equations Vg is the ground speed (Vg = V −Vw ). At a constant wind velocity we have
dVg = dV and ag = a so that the ground run distance with headwind Vw becomes

(
sg

)
w =

∫ VLOF

Vw

(V −Vw ) dV

a
=

∫ VLOF

0

V dV

a
−

∫ Vw

0

V dV

a
−Vw

∫ VLOF

Vw

dV

a
= sg −sg 0−Vw

(
tg

)
w (16.35)

where sg is the ground run distance from standstill to VLOF in the absence of wind, sg 0 is the dis-
tance from V = 0 to V =Vw , and (tg )w is the time elapsed from V =Vw to V =VLOF.
Eq. 16.35 shows that a headwind reduces the ground run distance required to attain the lift-off
speed VLOF. A steady headwind has the same effect on the elapsed time. From a = dVg / dt , we can
write

(
tg

)
w =

∫ (Vg )LOF

0

dVg

a
=

∫ VLOF

Vw

dV

a
=

∫ VLOF

0

dV

a
−

∫ Vw

0

dV

a
= tg − tg 0 (16.36)

where tg is the time during ground run in still air and tg 0 is the time elapsed from V = 0 to V =Vw .
The analyses of the effect of wind in Chapter 14 have learned us that the presence of a headwind
that increases with height is to increase the rate of climb and therefore to decrease the horizontal
distance required to attain a particular height. In rough considerations, the effect of a wind gradient
during the airborne phase is accounted for as the effect of a constant headwind with a velocity equal
to that at half the height of the screen. Now the airborne distance with headwind Vw is

(sa)w = sa −Vw ta (16.37)

where ta is the airborne phase time. At an average airspeed V , we get
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Figure 16.13 Landing maneuver

(sa)w

sa
=

sa −Vw
sa

V

sa
= 1− Vw

V
(16.38)

This expression shows that the effect of a headwind Vw during transition and climb may be ob-
tained by multiplying the airborne distance in still air by the factor 1− (Vw /V ), where V = (VLOF +
VC )/2.
It must not be forgotten that our analyses have been based on the presence of a headwind, and that
it is of frequent occurrence that the wind makes some angle with the runway. Therefore, as a final
note, during a so-called crosswind takeoff there is a tendency of the airplane to rotate about the
vertical axis through its center of gravity. In order to hold heading, wings level and wheels on the
ground during ground run, use of rudder and aileron is necessary.
After lift-off, heading is changed adequately to maintain straight track from the runway (Fig. 13.13).
Typically, maximum safe crosswind-component velocities may vary from about 15 kts (7.7 m/s) for
light airplanes up to 30 kts (15.4 m/s) or more for civil transports.
Similarly, high crosswind components during approach and landing also will require application of
rudder and aileron to overcome the forces acting sidewise on the airplane (Fig. 3.5).

16.5. THE LANDING MANEUVER
The landing is the maneuver by which the airplane is brought from a steady approach speed VA

over a 15 m (50 ft) obstacle at the runway threshold (screen location) to standstill on the runway
(Fig. 16.13).
Airworthiness requirements stipulate that the steady approach speed shall not be less than 1.3VMS ,
where VMS is now the calibrated minimum stalling speed for the airplane in the landing configura-
tion. For analysis, the landing distance can be divided into four parts:

1. The part of the final approach in the direction of the extended runway centerline. The dis-
tance covered during this phase is the horizontal length of the flight path between the screen
location and the point where the transition flare starts. During approach flight landing gear
and wing flaps are extended.
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2. The flare to transit the airplane to a horizontal motion by the time the airplane arrives at
ground level. During the flare the engine control setting is progressively throttled back to
flight idling so that at touchdown the thrust is zero and the associated touchdown speed VT is
below the speed VA at the screen. Further, we may assume that under touchdown conditions
the vertical velocity of the airplane is zero and the lift equals the weight.

3. A free roll during which the airplane is rotated down to the ground altitude.

4. The major ground run where the retarding force is increased by application of the wheel
brakes and additional aerodynamic and propulsive means.

Commonly, the required field length is specified as 10/6 times the shortest landing distance ob-
tained from tests conducted on a dry runway. The factor 10/6 is used as a safety factor to take
care of possible deviations in regular operation. For wet runway operation, it has become usual to
impose an extra 15% on the landing distance.
Finally, we remark that the effects of wind on the landing distance are very similar to those on the
takeoff distance. The presence of a headwind component shortens the landing distance, whereas a
tailwind component increases the landing distance.

16.6. THE AIRBORNE DISTANCE OF THE LANDING MANEUVER
The airborne distance is the horizontal length between the screen location and the touchdown
point at the end of the flare. The approach part covers a distance (see Fig. 16.13)

sd = hs −ht

tanγd A
(16.39)

where γd A is the slope of the descent path. The governing equations for steady descending flight
are (Fig. 16.14)

−D +T cosαT +W sinγd A = 0 (16.40)

−L−T sinαT +W cosγd A = 0 (16.41)

Assuming again that αT = 0 and cosγd A = 1, and using the relationships L = CL A
1
2ρV 2

A S and D =
CD A

1
2ρV 2

A S, we find

CL A = W

S

2

ρ

1

V 2
A

(16.42)

sinγd A =
[

CD

CL

]
A
− T

W
(16.43)

If the engines are idling during final approach (glide approach), then the airspeed VA corresponds
to a fixed slope of the flight path:

γd A = sin−1
[

CD

CL

]
A

(16.44)
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Figure 16.14 Forces in steady symmetric descent

Figure 16.15 Schematic for landing flare analysis

When performing a power-on approach, the slope of the flight path can be chosen independent
of the angle of attack. The powered descent is always executed in regular service operations of
transport airplanes, which normally fly toward the runway by means of the Instrument Landing
System (ILS). This navigational system provides vertical guidance above and below an approach
path established at a fairly small angle of descent of about 3 deg. Clearly, this condition requires
that the engines deliver a rather high thrust. Maintaining adequate thrust is also needed to control
the flight path and to cope safely with an aborted final approach or a balked landing.
An assessment of the flare distance st and the height ht can be made by representing the landing
flare by a circular arc (Fig. 16.15a). This requires, as we know from the analysis in Section 16.3, that
the angle of attack at the beginning of the flare is instantaneously increased to (Fig. 16.15b)

(CLt )A =CL A +∆CL A (16.45)

In this case the formulae for the radius of curvature of the flare are identical to those in Eq. 16.19,
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except that here VLOF must be replaced by VA , so that

R = 2 W
S

ρg∆CL A
= V 2

A

g

CL A

∆CL A
= V 2

A

g (nA −1)
(16.46)

Since at the end of the flare the flight path is tangential to the ground surface, the horizontal dis-
tance covered by the flare and the initial height of the flare can be expressed as

st = Rγd A and ht = R
(
1−cosγd A

)= R
γ2

d A

2
= 1

2
stγd A (16.47)

Using appropriate values for γd A , VA and nA , we find from Eq. 16.46 and Eq. 16.47 the dimensions
of the landing flare. From known values of st and ht it is possible to estimate the reduction in speed
by integration of Eq. 16.14, ∫ VT

VA

W

2g
dV 2 =

∫ st

0
(T −D)ds −

∫ 0

ht

W γds (16.48)

With γds =−γd ds = dh, we obtain∫ st

0

(
T −D

W

)
ds = V 2

T −V 2
A

2g
−ht (16.49)

Using a mean value for the excess thrust during the transition phase, we may write

V 2
T −V 2

A

2g
= (T −D)

W
st +ht (16.50)

In order to transform Eq. 16.50 into a suitable form, we set the excess thrust (T −D) equal to the
mean of its values at the start and the end of the flare. At the speed VA , from Eq. 16.40, we have

(T −D)A =−W γd A (16.51)

and at touchdown we find with W =CLT
1
2ρV 2

T S, D =CDT
1
2ρV 2

T S and T = 0,

(T −D)T =−DT =−W

[
CD

CL

]
T

(16.52)

The mean value of the specific excess thrust is therefore

(T −D)

W
= (T −D)A + (T −D)T

2W
=−1

2

[
γd A +

[
CD

CL

]
T

]
(16.53)

Insertion of Eq. 16.53 into Eq. 16.50 produces the following expression for the flare distance

V 2
A −V 2

T

2g
= 1

2
st

[
γd A +

[
CD

CL

]
T

]
−ht (16.54)

As mentioned already in Section 16.5, to comply with most airworthiness regulations, the airspeed
VA at the start of the transition flare is more than or equal to 1.3VMS . Usually, the pilot technique is
such that at touchdown the airspeed is reduced to about 1.15VMS .
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Figure 16.16 Forces acting during landing ground run

16.7. THE LANDING GROUND RUN
After touchdown, an adjustment in incidence must be made to settle the airplane in its ground
attitude. This requires some rotation of the airplane, during which a free roll is traversed before the
wheel brakes are applied.
However, for the sake of simplicity, we shall neglect the distance covered during the rotation phase.
In other words, we shall presume that at touchdown the pilot instantaneously accomplishes an
angle of attack reduction to the ground attitude value at which CL =CLg (see Fig. 16.15b).
The forces on the airplane during the landing ground run are shown in Fig. 16.16. The equation of
motion in forward direction reads:

W

g

dV

dt
= T −D −Dg , where (16.55)

Dg =µ (Nn +Nm) =µ(W −L) (16.56)

is the frictional force resulting from the adhesion forces acting between the tires and the ground
(Fig. 16.17a). When a brake torque is applied to a wheel, it is reacted by an increased frictional force,
through which the wheel is forced to slow its rotational speed ωr relative to the forward speed V of
the wheel. At a brake torque Q, the rotational motion, approximately, is governed by

I
dω

dt
= Dg r −Q (16.57)

where I is the moment of inertia of the wheel with respect to its axis of rotation, ω the angular
velocity of the braked wheel, and r is the wheel radius.
For steady braking, from Eq. 16.57, we have the condition

Dg =µN =Q/r (16.58)

where Q/r is the brake force applied to the wheel. The generated friction coefficient µ varies with
the so-called braking slip ratio, s, defined by

s = V −ωr

V
(16.59)

The variation of µ with s is illustrated in Fig. 16.17b. As the slip ratio increases, the friction coef-
ficient rises from its free roll value µr at s = 0 to a peak value µmax at a slip ratio sµmax . It should
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Figure 16.17 Application of brake torque on a rolling wheel

be remarked that up to this slip ratio, practically, there is only an apparent slip due to the elastic
deformation of the tire.
After sµmax is reached, unless the brake is released, the slip ratio increases rapidly which leads to
skidding of the wheel at s = 1.0 and a low value of the associated friction coefficient, µskid.
From Fig. 16.17b and Eq. 16.57, it can also be understood that for s < sµmax the wheel rotational mo-
tion is in a condition of stable equilibrium. On the contrary, in the region s > sµmax , any rotational
speed disturbance will tend to diverge the slip ratio further from its original value.
From the foregoing discussion, it is evident that rolling wheels are forced by braking action to slow
their angular velocity from the free roll condition (ω=V /r ) to a locked condition (ω= 0), provided
the brake forces continuously exceed the produced frictional forces.
When the brakes are controlled manually, it is not easy for a pilot to adjust and maintain a con-
sistent braking condition at sµmax . This problem is largely solved by the use of anti-skid devices in
which brake control is achieved automatically by reference to the slip ratio. These systems avoid
excessive tire wear and effectuate an optimum friction coefficient µb at a slip ratio below sµmax (see
Fig. 16.17b). Modern systems may produce a value of µb up to 90 percent of µmax. As portrayed in
Fig. 16.17c, the attainable value of the friction coefficient depends strongly on the surface condition
of the runway and the forward speed (Ref. 34, Vol. 3).
At the start of the ground run only a fraction of the available brake torque can be applied owing
to the low normal force on the wheels at high forward speeds. Therefore, the ground run must be
divided into two parts (Fig. 16.18). During the first part, we can assume that the friction coefficient
is constant and equal to µb . This implies that the brake force must be gradually increased with
decreasing forward velocity. During the second part, the “torque-limited” brake force, Qmax/r , is
insufficient to generate the maximum attainable frictional force,

Qmax/r <µb(W −L) (16.60)

Under this condition, the brakes can operate at full capacity and a constant frictional force is ob-
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Figure 16.18 Attainable frictional force during ground run

tained at a decreasing friction coefficient as the airplane slows down,

Dg max =Qmax/r =µ(W −L) (16.61)

On a dry runway, the frictional force Dg max may be 30 to 40 percent of the weight of the airplane.
The speed VB at which the lift is sufficiently reduced that full braking is permitted follows from the
equality

Dg max =µb

(
W −CLg

1

2
ρV 2

B S

)
(16.62)

where CLg is the lift coefficient in the ground running condition. Thus, in the speed range from VT

down to VB , the wheels can be made to skid except if use is made of automatic brakes.
The distance covered from the touchdown speed to rest, in general, is given by

sb =
∫ 0

VT

V dV

a
(16.63)

where a = dV / dt < 0.
For an accurate calculation of sb , Eq. 16.63 can be evaluated by step-by-step integration. In the fol-
lowing, however, we will develop analytic expressions which allow direct calculation of the ground
run distance. For that end, we assume automatic brakes, zero thrust, and a constant angle of attack
throughout the ground run. Then from Eq. 16.55, Eq. 16.56 and Eq. 16.63, we readily obtain for the
ground run distance between the speeds VT and VB ,

sb1 =
∫ VB

VT

V dV

g
[
−µb −

(
CDg −µbCLg

) 1/2ρV 2

W /S

] (16.64)

where the lift and drag coefficients CLg and CDg are, of course, the appropriate values considering
the effect of ground proximity. Using the condition W = CLT

1
2ρV 2

T S, we can transform Eq. 16.64
into the form
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Figure 16.19 Thrust reversal

sb1 =
∫ VB

VT

V dV

−gµb

[
1+ (CDg −µbCLg )

µbCLT

)
V 2

V 2
T

] =
∫ VB

VT

V dV

−gµb
[
1+Z

(
V 2/V 2

T

)] , (16.65)

where Z = (
CDg −µbCLg

)
/
(
µbCLT

)
. Integrating Eq. 16.65 yields

sb1 =
V 2

T

2gµb Z
ln

1+Z

1+Z
(
V 2

B /V 2
T

) (16.66)

Below the speed VB , the acceleration is given by

a = dV

dt
= g

W

(
−CDg

1

2
ρV 2S −Dg max

)
(16.67)

From Eq. 16.63, with VT replaced by VB , the ground run distance between the speed VB and stand-
still is

sb2 =
∫ 0

VB

V dV

− g
W

(
CDg

1
2ρV 2S +Dg max

) (16.68)

Integration gives

sb2 =
W

CDgρg S
ln

[
CDg

1
2ρV 2

B S

Dg max
+1

]
(16.69)

The results of the analysis in this section manifest that for a short ground run distance we need a
large deceleration force.
An adequate aid in dissipating kinetic energy of jet-driven airplanes is to divert the exhaust gas
flow of the engines in a forward direction by means of thrust reversers (Fig. 16.19). In the case of
a turbofan engine, negative thrust is obtained by reversing the cold jet through the fan. Because
this airflow provides enough reverse thrust, the hot jet is then only directed in a normal direction
to avoid it neutralizing the reversal effect from the cold jet.
On propeller-driven airplanes, reverse thrust is accomplished by using reversible pitch propellers
(see Fig. 7.19).



16

356 16. AIRFIELD PERFORMANCE

Figure 16.20 Special types of braking devices

In addition to wheel brakes and propulsive means, ground spoilers on the wings are used to destroy
or reduce the lift. This condition increases the ground friction drag as the normal force on the
wheels is increased (see also Section 11.3).
Another aerodynamic means to increase the retardation force during the landing run is the braking
parachute for use on high-performance (military) airplanes (Fig. 16.20a). A very special form of a
brake system is a cable laid across the flight deck of an aircraft carrier for catching the arrester hook
on the airplane (Fig. 16.20b).

16.8. PROBLEMS
1. What are the most important take-off airspeeds, and in which order are they typically en-

countered?

2. How is the balanced field length defined? And what are the properties of the decision speed
V1 in relation to it?

3. Derive the equations of motion for take-off and landing ground runs in case of a downward
runway slope of angle ξ.

4. A small propeller airplane is characterized by the following data:

• Take-off weight: 8500 N

• Wing area: 9.84 m2

• Drag polar for the take-off configuration: CDg = 0.03+0.0637C 2
Lg

• Maximum lift coefficient: CL max = 1.4

• Lift coefficient during take-off roll: CLg = 0.8

• Maximum engine shaft power at sea level conditions: 115 kW

• Tire friction coefficient during take-off roll: µ= 0.05

• Lift-off speed: 1.05Vmin

• Propeller efficiency: ηp = Pa/Pbr

• Propeller efficiency during take-off roll: ηpg = 0.5

• Propeller efficiency during airborne phase: ηpa = 0.8
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Determine the ground run distance, the transition distance, and the climb-out distance at
sea level altitude and in still air. What is the total take-off distance? What is the ratio between
the total airborne distance and the total take-off distance?

5. For the same aircraft, determine the total take-off distance in each of the following scenarios
obtained with respect to the nominal condition of problem 3:

• Altitude of 2000 m, assuming that the available power decreases with altitude as Pa =
Pa0ρ/ρ0

• Increased payload, so that the take-off weight is now 9000 N

• A wet runway, so that the tire friction coefficient is reduced to µ= 0.03

• A steady headwind of 10 m/s

6. A subsonic business jet is characterized by the following data:

• Landing weight: 60 kN

• Wing area: 30 m2

• Drag polar in landing configuration: CDg = 0.07+0.055C 2
Lg

• Maximum lift coefficient in landing configuration: CL max = 2.0

• Lift coefficient in ground run attitude: CLg = 1.1

• Approach angle: γd A = 3deg

• Airspeed at touchdown: VT = 1.2Vmin

• Friction coefficient of maximum brake power: µb = 0.4 (constant)

Assuming that the airspeed is constant and equal to the touchdown speed throughout the
entire maneuver, determine the flare distance and theground run distance at sea level alti-
tude and in still air. What is the total landing distance? What is the ratio between the airborne
distance and the total landing distance?

7. For the same aircraft, determine the total landing distance in each of the following scenarios
obtained with respect to the nominal condition of problem 4:

• Altitude of 1500 m

• Increased payload, so that the landing weight is now 70 kN

• A wet runway, so that the friction coefficient is reduced to µb = 0.3

• A steady headwind of 5 m/s





A
NEWTONIAN MECHANICS

A.1. NEWTON’S LAWS OF MOTION
The essential equations describing the motion of bodies are based on Newton’s laws of motion.
Below these laws are stated for a particle, that is, a constant mass concentrated in a point.

• Law 1: Every particle continues in a state of rest or uniform motion in a straight line unless
compelled to do otherwise by forces acting on it.

• Law 2: The time rate of change of linear momentum of a particle is proportional to the im-
pressed force and is effective in the direction of the force.

• Law 3: Action = reaction; or, the mutual forces that two particles exert on each other are equal
in magnitude and opposite in direction.

A.2. NEWTON’S FIRST LAW
It should be fully appreciated that Newton’s first law holds only with respect to a frame of reference
which is in a state of absolute rest. For instance, we may think on a coordinate system rigidly asso-
ciated with the “fixed stars” in our solar system. Such a hypothetical coordinate system is called an
inertial frame of reference.
However, Newton’s first law also holds with respect to reference frames which translate uniformly
relative to our inertial frame of reference at rest. To prove this, let X0Y0Z0 be the inertial frame, and

assume a frame X1Y1Z1 to be translating uniformly with velocity
−→
V 10 relative to X0Y0Z0 (Fig. A.1).

The instantaneous position of a particle in point P with respect to X0Y0Z0 and X1Y1Z1 is given by
the vectors −→r0 and −→r1 , respectively. The vector R in Fig. A.1 indicates the position of the origin of
X1Y1Z1 relative to X0Y0Z0 at a given point of time. The three vectors are related by

−→r0 =−→
R +−→r1 (A.1)

Differentiating Eq. A.1 gives

d0
−→r0

dt
= d0

−→
R

dt
+ d0

−→r1

dt
(A.2)
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Figure A.1 Transformation of coordinates

where the subscript “0” denotes that the time derivative is taken with respect to the inertial frame
X0Y0Z0.
Because the position of the particle changes by the same relative amount with respect to both
frames, Eq. A.2 can be written as

d0
−→r0

dt
= d0

−→
R

dt
+ d1

−→r1

dt
(A.3)

in which the subscript “1” indicates that the derivative of −→r 1 is taken with respect to the frame
X1Y1Z1. If the particle is free of force, then its velocity relative to the inertial frame X0Y0Z0 must be

constant. Hence, d0
−→r0

dt =−→
V is a constant. Since also d0

−→
R

dt =−→
V 10 is a constant, it follows from Eq. A.3

that d1
−→r 1

dt = −→
V r , being the velocity of the particle relative to the frame X1Y1Z1, is a constant too.

Thus Newton’s first law of motion is valid in any reference frame that moves uniformly with respect
to the frame at rest. Therefore, all non-accelerating and non-rotating frames can be used as inertial
frames of reference.

A.3. NEWTON’S SECOND LAW OF MOTION
The mathematical formulation of the second law is

−→
F = d

dt

(
Mi

−→
V

)
(A.4)

where
−→
F is the vector force acting, and Mi

−→
V is the linear momentum of a particle with mass Mi

and velocity
−→
V . Since the mass of a particle is constant, Eq. A.4 can be expressed as

−→
F = Mi

d
−→
V

dt
= Mi

−→a (A.5)

where d
−→
V

dt = −→a is the acceleration of the particle. It is important to realize that also Eq. A.5 holds
only when applied with respect to an inertial frame of reference. From the preceding discussion
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of Newton’s first law we know that coordinate systems translating uniformly to our frame at rest
somewhere in the universe, also are inertial frames of reference.
To use this statement, the invariance of the second law under the coordinate transformation must
be proved. Therefore, consider the particle in point P in Fig. A.1.

Since the force acting on the particle is invariant
(−→

F =−→
F 0 =−→

F 1

)
, from Eq. A.3, it follows that the

time rates of change of momentum of the particle with respect to the reference frames X0Y0Z0 and
X1Y1Z1 are related by

d0

dt

[
Mi

d0
−→r 0

dt

]
= d1

dt

[
Mi

[
d0

−→
R

dt
+ d1

−→r 1

dt

]]
(A.6)

Using d0
−→
R

dt =−→
V 10 is a constant, we have

d0

dt

[
Mi

d0
−→r 0

dt

]
=−→

V 10
d1Mi

dt
+ d1

dt

[
Mi

d1
−→r 1

dt

]
(A.7)

Since the mass Mi is a constant, the latter relation reduces to

d0

dt

(
Mi

−→
V

)
= d1

dt

(
Mi

−→
V r

)
(A.8)

This equality indicates that Eq. A.5 indeed can be applied to both axis systems.

A.4. EFFECT OF ROTATION
In order to examine the effect of rotation, consider again the reference frames X0Y0Z0 and X1Y1Z1.
Now suppose that X1Y1Z1 is in a rotational motion relative to X0Y0Z0. As shown in Fig. A.2 the
rotational motion is about an axis through the origin and denoted by −→ω 10. In the frame X1Y1Z1 the

triad of unit vectors in the respective coordinate directions at time t are
−→
i ,

−→
j and

−→
k . Fig. A.2 shows

what happens to the unit vector
−→
i , when the frame X1Y1Z1 rotates about the −→ω 10 axis in the time

∆t .
If the line AB is the perpendicular from the tip of

−→
i to the −→ω 10 axis, then the length of AB is equal

to sinφ. Hence, the indicated change in
−→
i in the time ∆t is

|∆−→i | = ∣∣−→ω 10
∣∣sinφ∆t (A.9)

By applying the cross or vector product of two vectors we can write∣∣∣−→ω 10 ×−→
i

∣∣∣= ∣∣−→ω 10
∣∣×|−→i |sinφ= ∣∣−→ω 10

∣∣sinφ (A.10)

Combining Eq. A.9 and Eq. A.10 yields

|∆−→i | =
∣∣∣−→ω 10 ×−→

i
∣∣∣∆t (A.11)

By passing to the limit

lim
∆t→0

∆
−→
i

∆t
= d

−→
i

dt
=−→ω 10 ×−→

i (A.12)
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Figure A.2 Frame X1Y1 Z1 rotating with respect to the frame X0Y0 Z0

Since
−→
i ,

−→
j and

−→
k are similar unit vectors, we have

d0
−→
i

dt =−→ω 10 ×−→
i

d0
−→
j

dt =−→ω 10 ×−→
j

d0
−→
k

dt =−→ω 10 ×
−→
k

(A.13)

From this result we may establish that for a point P fixed in X1Y1Z1 and having a position vector−→r 1, relative to the origin of X1Y1Z1, the velocity due to the rotation is given by (Fig. A.3)

−→
V =−→ω 10 ×−→r 1. (A.14)

With Eq. A.14 we can derive a relation between the time derivative of the vector
−→
V in the rotating

frame X1Y1Z1 to the time derivative of that vector in the non-rotating frame X0Y0Z0. Therefore we

proceed to consider the fact that the vector
−→
V can be expressed as

−→
V =Vx

−→
i +Vy

−→
j +Vz

−→
k (A.15)

where Vx ,Vy and Vz are the components of
−→
V in the frame X1Y1Z1. By differentiating

−→
V with re-

spect to X1Y1Z1 we obtain

d1
−→
V

dt
= dVx

dt

−→
i + dVy

dt

−→
j + dVz

dt

−→
k (A.16)

The subscript “1” is omitted in the derivatives of the three scalar quantities as the derivative of a

scalar quantity is the same in all reference frames. The derivative of the vector
−→
V with respect to

X0Y0Z0 is

d0
−→
V

dt
= dVx

dt

−→
i + dVy

dt

−→
j + dVz

dt

−→
k +Vx

d0
−→
i

dt
+Vy

d0
−→
j

dt
+Vz

d0
−→
k

dt
(A.17)
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Figure A.3 Rotating coordinate system

If Eq. A.16 and Eq. A.13 are substituted into Eq. A.17, it follows that

d0
−→
V

dt
= d1

−→
V

dt
+−→ω 10 ×

(
Vx

−→
i +Vy

−→
j +Vz

−→
k

)
(A.18)

Using Eq. A.15, the latter result can be written as

d0
−→
V

dt
= d1

−→
V

dt
+−→ω 10 ×−→

V (A.19)

It must be emphasized that Eq. A.19 is a general relation which applies to any vector. Thus for a

vector
−→
P :

d0
−→
P

dt
= d1

−→
P

dt
+−→ω 10 ×−→

P (A.20)

It is also important to note that Eq. A.20 holds for any pair of systems rotating relative to each other.

A.5. NON-INERTIAL REFERENCE FRAMES
Now the case is considered that a frame X1Y1Z1 is translating and rotating in a general manner
relative to the inertial frame X0Y0Z0. Using Eq. A.20, we can express Eq. A.2 as follows

d0
−→r0

dt
= d0

−→
R

dr
+ d1

−→r1

dt
+−→ω 10 ×−→r1 (A.21)

Differentiating Eq. A.21 with respect to X0Y0Z0 gives

d2
0
−→r 0

dt 2 = d2
0
−→
R

dt 2 + d0

dt

[
d1

−→r 1

dt

]
+−→ω 10 × d0

−→r 1

dt
+ d0

−→ω 10

dt
×−→r1 (A.22)

The left-hand term of this equation is the acceleration of P with respect to X0Y0Z0 and is called the
absolute acceleration, −→a . Eq. A.20 enables us to develop from Eq. A.22 the following expression for
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the absolute acceleration

−→a = d2
0
−→
R

dt 2 + d0
−→ω 10

dt
×−→r 2

1 +−→ω 10 ×
(−→ω 10 ×−→r1

)+ d2
1
−→r 1

dt 2 +2−→ω 10 × d1
−→r 1

dt
(A.23)

The term
d2

0
−→
R

dt 2 is the acceleration of the origin of the moving frame X1Y1Z1 with respect to X0Y0Z0.

The term d0
−→ω10
d f ×−→r 1 is called the tangential acceleration owing to the rotational acceleration of

X1Y1Z1 relative to X0Y0Z0. The term −→ω 10 ×
(−→ω 10× −→r 1

)
is caused by the rotation of X1Y1Z1 with

respect to X0Y0Z0 and represents the centripetal acceleration. The sum of these three terms is the
acceleration of the point P fixed to X1Y1Z1 as seen by an observer in the frame X0Y0Z0, and is

named the transport acceleration, −→a t . The term
d2

1
−→r 1

dt 2 is the acceleration of P with respect to the

frame X1Y1Z1 and is called the relative acceleration −→a r . The term 2−→ω 10 × d1
−→r 1

dt , finally. is the so-
called Coriolis acceleration, −→a c . The sum of the last two terms of the right-hand side of Eq. A.23 is

the acceleration of the particle relative to X1Y1Z1 for an observer in the frame X0Y0Z0. If
−→
F is the

total force acting on a particle, then according to Eq. A.5 and Eq. A.23 we can write the following
vector equation: −→

F = Mi
−→a = Mi

−→at +Mi
−→ar +Mi

−→ac or (A.24)
−→
F −Mi

−→at −Mi
−→ac = Mi

−→ar (A.25)

Apparently, Newton’s second law of motion can be used to determine the motion of a particle rela-
tive to non-inertial frames by modifying the actual force according to the left-hand side of Eq. A.25.

A.6. SYSTEMS OF PARTICLES
We now consider a mass system, which consists of n particles with masses M1, M2, . . . , Mn and with
position vectors −→r1 ,−→r2 , . . . ,−→rn relative to the origin of an inertial frame X0Y0Z0 (Fig. A.4).

The forces acting on particle pi may be formed by an external force
−→
F i and internal forces due to

the interactions among the particles.
According to Newton’s third law of motion we can write for the internal forces acting along a straight
line between two particles: −→

F i j =−−→F j i (A.26)

where
−→
F i j is the internal force acting on particle pi due to particle p j , and

−→
F j i is the internal force

acting on particle p j due to particle pi . Applying Newton’s second law of motion on particle pi , we
obtain

−→
F i +

n∑
j=1

−→
F i j = d

dt

[
Mi

d−→r i

dt

]
(A.27)

where the quantity Mi
dFi
dt is the linear momentum of particle pi relative to X0Y0Z0. Note that the

subscript “0” is not appended to the vector symbols since only the inertial frame X0Y0Z0 is used in
the present analysis. Summing of all particles of the system gives

n∑
i=1

−→
F i +

n∑
i=1

n∑
j=1

−→
F i j =

n∑
i=1

d

dt

[
Mi

d−→r i

dt

]
(A.28)
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Figure A.4 System of particles in an inertial frame

Since Eq. A.26 indicates that the internal forces occur in equal and opposite pairs, we have that∑n
i=1

∑n
j=1

−→
F i j = 0, and Eq. A.28 reduces to

n∑
i=1

−→
F i =

n∑
i=1

d

dt

[
Mi

d−→r i

dt

]
=

n∑
i=1

Mi
d2−→r i

dt 2 (A.29)

If we consider an invariable mass system (n is a constant), in Eq. A.29 summation and differentia-
tion can be interchanged, yielding

−→
F =

n∑
i=1

−→
F i = d2

dt 2

[
n∑

i=1
Mi

−→r i

]
(A.30)

where
−→
F is the entire external force applied to the system. Now let

∑n
i=1 Mi = M be the total mass

of the system. Further we introduce the position vector of the center of mass of the system, defined
by

−→
R c = 1

M

n∑
i=1

Mi
−→r i (A.31)

Substituting the latter quantities in Eq. A.30 yields

−→
F = M

d2−→R c

dt 2 (A.32)

This equation indicates that the translational motion of the center of mass of the system is the same
as if the total mass is located at the center of mass and subjected to the entire external force.
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Eq. A.32 also has an equivalent form regarding angular motion, which is obtained by vectorial mul-
tiplication of Eq. A.27 with −→r i ,

−→r i ×−→
F i +

n∑
j=1

(−→r i ×−→
F i j

)
=−→r i × d

dt

[
Mi

d−→r i

dt

]
(A.33)

The moment of
−→
F i with respect to the origin of X0Y0Z0 is expressed by the vector product of

−→
F i

and −→r i :
−→
M i =−→r i ×−→

F i . Note that besides the mass also a moment is given the symbol
−→
M , but the

moment is a vector quantity. The angular momentum of a particle pi is given by

−→
B i =−→r i ×Mi

d−→r i

dt
and hence (A.34)

d
−→
B i

dt
= d

dt

[
−→r i ×Mi

d−→r i

dt

]
=−→r i × d

dt

[
Mi

d−→r i

dt

]
(A.35)

Thus, Eq. A.33 can be written as

−→
M i +

n∑
j=1

(−→r i ×−→
F i j

)
= d

−→
B i

dt
(A.36)

For the complete system we obtain

n∑
j=1

−→
M i +

n∑
i=1

n∑
j=1

(−→r i ×−→
F i j

)
=

n∑
i=1

d
−→
B i

dt
(A.37)

It easily may be seen from Eq. A.26 that the second term of the left-hand side of Eq. A.7 is equal to

zero. If we denote
∑n

i=1
−→
M i = −→

M as the entire moment with respect to the origin of the reference
frame X0Y0Z0, then, from Eq. A.37 and Eq. A.35, we find

−→
M =

n∑
i=1

d
−→
B i

dt
=

n∑
i=1

d

dt

[
−→r i ×Mi

d−→r i

dt

]
=

n∑
i=1

[
−→r i ×Mi

d2−→r i

dt 2

]
(A.38)

Putting again summation and differentiation in the other’s place produces the expression:

−→
M = d

dt

[
n∑

i=1

−→r i ×Mi
d−→r i

dt

]
= d

−→
B

dt
(A.39)

Eq. A.39 says that the external moment applied to a system of particles is equal to the time deriva-
tive of its total angular momentum.

A.7. GENERAL BODIES
A body may be considered as being made up of an infinite number of elements of which the mass
is infinitesimally small. Consequently, the summations in the Eq. A.30 and Eq. A.38 must be altered
into integrations. This yields (Fig. A.5)

−→
F =

∫
M

d2−→r
dt 2 dM and (A.40)
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Figure A.5 Position vectors of an element of mass of a body

−→
M =

∫
M

−→r × d2−→r
dt 2 dM (A.41)

If
−→
R c is the position vector of the center of mass of the body and −→r c is the position vector of an

element of mass d M of the body relative to the mass center, then

−→r =−→
R c +−→r c (A.42)

The vector
−→
R c now is defined by

−→
R c = 1

M

∫
M

−→r dM (A.43)

where M = ∫
M dM is the mass of the body. By using Eq. A.42 in Eq. A.23, the absolute acceleration

of the element dM can be written as

d2−→r
dt 2 = d2−→R c

dt 2 + d−→ω
dt

×−→rc +−→ω × (−→ω ×−→rc
)+ δ2−→r c

δt 2 +2−→ω × δ−→r c

δt
(A.44)

where −→ω is the angular velocity relative to the inertial frame X0Y0Z0, and δ−→r c
δt and δ2−→r c

δt 2 are deriva-

tives of the vector −→r c with respect to the center of mass of the body.
Insertion of Eq. A.42 into Eq. A.43 yields ∫

M

−→r c dM = 0 (A.45)

Combining Eq. A.40, Eq. A.44 and Eq. A.45 furnishes

−→
F =

∫
M

d2−→R c

dt 2 dM +
∫

M

δ2−→r c

δt 2 dM +2−→ω ×
∫

M

δ−→r c

δt
dM (A.46)
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This is the general equation for the translational motion of an arbitrary deformable body of mass
M .
Similarly, Eq. A.41 for the rotational motion can be expanded to the same variables by taking the
center of mass of the body as the reference point for the calculations. The moment due to the entire
external force with respect to the center of mass of the body can be expressed as

−→
M c =−→

M −−→
R c ×−→

F (A.47)

where
−→
M is the moment relative to the origin of the frame X0Y0Z0. By substituting Eq. A.40 to

Eq. A.42 into Eq. A.47, we find
−→
M c =

∫
M

−→r c × d2−→r
dt 2 dM (A.48)

Insertion of Eq. A.44 into Eq. A.48 yields the equation for rotational motion of a general deformable
body,

−→
M c =

∫
M

−→r c ×
(

d−→ω
dt

×−→rc

)
dM +

∫
M

−→r c ×
[−→ω × (−→ω ×−→rc

)]
dM+∫

M

−→r c × δ2−→r c

δt 2 dM +
∫

M

−→r c ×
(
2−→ω × δ−→r c

δt

)
dM

(A.49)

In deriving this equation, we used the facts that d2R̃c
dt 2 bears no relation to dM and

∫
M
−→rc dM = 0, so

that ∫
M

−→r c × d2−→R c

dt 2 dM =
∫

M

−→r c dM × d2−→R c

dt 2 = 0 (A.50)

A.8. RIGID BODIES

The rigid body approximation requires that δrt
δt and δrr

δr 2 are equal to zero so that the Eq. A.46 and
Eq. A.49 reduce to

−→
F =

∫
M

d2−→R c

dt 2 dM and (A.51)

−→
Mc =

∫
M

−→r c ×
(

d−→ω
dt

×−→r c

)
dM +

∫
M

−→rc ×
(−→ω × (−→ω ×−→rc

))
dM (A.52)

In order to recast Eq. A.52 in a more familiar form, we introduce, from Eq. A.48, the relationship

−→
B c =

∫
M

−→r c × d−→r
dt

dM (A.53)

Inserting Eq. A.42 into Eq. A.53 furnishes

−→
B c =

∫
M

−→r c × d
−→
R c

dt
dM +

∫
M

−→r c × d−→r c

dt
dM (A.54)

Analogous to Eq. A.50, we find that the first integral of Eq. A.54 vanishes,∫
M

−→r c × d
−→
R c

dt
dM =

∫
M

−→r c dM × d
−→
R c

dt
= 0 (A.55)
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Figure A.6 Force and moment due to the gravity forces

Applying Eq. A.20 for the rate of change of the vector −→r c we obtain

d−→r c

dt
= δ−→r c

δt
+ (−→ω ×−→rc

)=−→ω ×−→r c (A.56)

Thus by substituting Eq. A.56 into Eq. A.54 we find that for a rigid body the total angular momentum
relative to the center of mass is given by

−→
B c =

∫
M

−→rc ×
(−→ω ×−→rc

)
dM (A.57)

By combining Eq. A.52 and Eq. A.57 we, finally, get

−→
M c =

∫
M

−→r c ×
(

d−→ω
dt

×−→r c

)
]dM +−→ω ×−→

B c (A.58)

This equation is often used in solving for the rotational motion of rigid bodies.

A.9. CENTER OF GRAVITY
The center of gravity, being the point through which the gravity force or weight of the body acts, is
identical with the center of mass. To show this, we consider a body as in Fig. A.6a. The moment due
to the forces of gravity about the origin of the frame X0Y0Z0 is given by

−→
M =

∫
M

−→r ×−→g dM (A.59)

where −→g is the acceleration of gravity, the gravity force per unit mass.

With −→r =−→
R 0 +−→r 0, we obtain

−→
M =

∫
M

(−→
R0 +−→r0

)
×−→g dM =−→

R 0 ×
∫

M

−→g dM +
∫

M

−→r 0 ×−→g dM (A.60)

If we assume that −→g is constant over the body, we can rewrite Eq. A.60 as

−→
M =−→

R0 ×M−→g +
∫

M

−→r0 dM ×−→g (A.61)
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When we choose the point O in Fig. A.6a at the center of mass of the body, the last term vanishes
according to Eq. A.45, giving, −→

M =−→
R c ×M−→g (A.62)

where
−→
R c is the position vector of the center of mass of the body (Fig. A.6b). Thus we see that the

entire effect of the gravity forces can be replaced by a single force M−→g acting on the center of mass,
which point, therefore, also may be called the center of gravity.

General references for Appendix A

• N.C. Barford, Mechanics, John Wiley, New York, 1973.

• J.W. Cornelisse, H.F.R. Schöyer and K.F. Wakker, Rocket Propulsion and Spaceflight Dynamics,
Pitman, London, 1979.

• B. Etkin, Dynamics of Atmospheric flight, John Wiley, New York, 1972.



B
SWITCHING BETWEEN AXIS SYSTEMS

B.1. EULER ANGLES AND AXIS SYSTEMS
A geometric description of the Euler angles defining the relative orientations of aircraft axis systems
is given in Section 1.6 of this book. In this respect, it is important to recognize that Euler angles also
may represent the sequence of the three elemental rotation matrices about the principle axes of
an axis system that move a reference axis system to a given referred system. These matrices are a
convenient calculation tool as they relate the basic vectors in the various axis systems. Therefore,
in the following, attention is given to the derivation and usefulness of rotation matrices.
The four right-handed, rectangular Cartesian axis systems defined in Section 1.6 are: (1) the Earth-
fixed axis system, (2) the moving Earth axis system, (3) the body axis system, and (4) the air-path
axis system. Displacements are positive in the positive senses of the axes. Angles are positive in
clockwise direction when looking along the appropriate axis in the positive direction. Velocities,
angular velocities and accelerations also are positive in these directions; see the previous Figs. 1.10
to 1.19.
When studying airplane performance, the external forces acting on the airplane in flight, conve-
niently, are expressed in terms of their components along the axes of the air-path axis system. Oth-
erwise, the body axis system, which is fixed to the airplane, is not very useful in performance, but
in particular is employed for studying flight dynamics and airplane control. To describe the trans-
lational motion of the airplane relative to the Earth, the two Earth axis systems are of importance.

The four external forces acting in flight are the airplane weight
−→
W due to gravitation, the engine

thrust
−→
T from propulsion, and the aerodynamic force

−→
R caused by the interaction between the

airflow and the outer surfaces of the airplane.
The gravitational force is directed along the Ze axis of the moving Earth axis system. Propulsive
force data usually are specified relative to the body axis system. The components of the aero-
dynamic force may be available in terms of the body axis system or in terms of the air-path axis
system.
Anyway, to derive the equations of motion, we need to express all forces in the same axis system.
Consequently, we should be able to determine the relationship between the basis vectors of the
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various axis systems. Definitions of the four axis systems are repeated below for convenience.

Earth-fixed or geodetic axis system Indicated with Xg Yg Zg . The origin is any point on the Earth
surface. The Xg and Yg axes lie in the horizontal plane of the Earth. The Xg axis points into
an arbitrary direction. The Zg axis points vertically and positive downward.

Moving Earth axis system Indicated with Xe Ye Ze . The moving Earth axes are aligned with the
Earth-fixed axes but are attached to the airplane. The origin coincides with the center of
gravity of airplane. The Xe and Ye axis both lie in the horizontal plane parallel to the flat
surface of the Earth. The Ze axis points vertically and is positive downward.

Body axis system Indicated with XbYb Zb . The axes are fixed to the airplane and oriented by ref-
erence to some geometrical datum. The origin coincides with the center of gravity of the
airplane. The Xb axis lies in the plane of symmetry of the airplane and points out of the nose
of the airplane. The Zb axis is perpendicular to the Xb axis, lies also in the plane of symmetry,
and is directed downward for the normal flight attitude. The Yb axis is directed out of the
right wing of the airplane.

Air-path axis system Indicated with XaYa Za . The origin coincides with the center of gravity of

the airplane. The Xa axis lies along the flight velocity vector
−→
V . The Za axis is taken in the

plane of symmetry of the airplane, and is positive downward for a normal airplane attitude.
Accordingly, also the Ya axis is positive to starboard.

B.2. MATRIX REPRESENTATION
An n ×m matrix is a set of scalars (numbers) arranged in a rectangular array containing n rows
(horizontal) and m columns (vertical). Conventionally, a matrix is identified by a bold uppercase
letter. The scalars may be called elements. In case of a matrix A, the elements are referred to as ai j .
The subscript i identifies the rows (1 to n) and the subscript j the columns (1 to m) of the matrix.
Usually, for a matrix A the shorthand notation A = [ai j ] is used.

Of importance is the multiplication of matrices. The product of an n ×m matrix A = [ai j ] and an
m×p matrix B = [b j k ], yields an n×p matrix C = [ci j ], of which the elements are obtained according
to the following general definition of matrix multiplication:

C = ci j =
m∑

k=1
ai k bk j , i = 1, . . . ,n, j = 1, . . . , p

Apparently, to obtain the element ci j in matrix C, sequentially, each element ai k in row i in matrix
A must be multiplied with the corresponding element bk j in column j in matrix B, and summing
the results. Repetition of this action yields the complete matrix C.

Note that matrices A and B can be multiplied because the number of columns in matrix A equals
the number of rows in matrix B. Also note that the case m = n is important in many practical appli-
cations. Such a matrix is called a square matrix of order n. Writing out explicitly the multiplication
for two square matrices of order 3 furnishes a general single matrix C:
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C = AB =
c11 c12 c13

c21 c22 c23

c31 c32 c33

=
a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

=

=
a11b11 +a12b21 +a13b31 a11b12 +a12b22 +a13b32 a11b13 +a12b23 +a13b33

a21b11 +a22b21 +a23b31 a21b12 +a22b22 +a23b32 a21b13 +a22b23 +a23b33

a31b11 +a32b21 +a33b31 a31b12 +a32b22 +a33b32 a31b13 +a32b23 +a33b33


Appropriate may be the use of the transpose of a matrix, which is obtained by reversal of the order
of rotation. For example, the transpose of an n ×m matrix A = [ai j ] is an m ×n matrix, denoted by
AT = [a j i ], having m rows and n columns. In other words, the rows of AT are the columns of A, and
vice versa. Thus, the transpose of the above matrix C = [ci j ] is given by:

CT = (AB)T =
c11 c21 c31

c12 c22 c32

c13 c23 c33

=

=
a11b11 +a12b21 +a13b31 a21b11 +a22b21 +a23b31 a31b11 +a32b21 +a33b31

a11b12 +a12b22 +a13b32 a21b12 +a22b22 +a23b32 a31b12 +a32b22 +a33b32

a11b13 +a12b23 +a13b33 a21b13 +a22b23 +a23b33 a31b13 +a32b23 +a33b33

= BT AT

From the last example it must be noted that the transpose of the product of two matrices is the
product of the transposes of the matrices in reverse order. This is valid in general. Evidently, the

transpose of CT is again C ; that is,
(
CT

)T =C .

B.3. ROTATION MATRICES
We next discuss the transformation of the coordinates of a vector in an initial orientation of an axis
system to the corresponding coordinates after a rotation of the axis system. Rotation matrices are
used to this end, as any orientation can be achieved by performing elemental rotations about the
three principle axes.
To explain how this works, we consider two axis systems, initially coinciding, of which one remains
motionless and the other can be rotated about its axes. Then, elemental rotations about the axes
of the rotating system are executed to reach a target orientation measured relative to the reference
system.
To start, we examine the transfer of vector coordinates, xe , ye , ze , defined in the moving Earth axis
system, to their corresponding coordinates, xb , yb , zb , in the body axis system.
As shown in the previous Fig. 1.15 the transfer is effected by three “positive” (clockwise) rotations:

1. a rotation by the yaw angle ψ about the Ze axis to the intermediate position X ′Y ′Ze ;

2. a rotation by the pitch angle θ about the Y ′ axis to the intermediate position XbY ′Z ′; and

3. a rotation by the roll angle φ about the Xb axis to the final position XbYb Zb .
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𝑋𝑋𝑒𝑒

𝑌𝑌𝑒𝑒

𝑋𝑋𝑋

𝑌𝑌𝑌

𝑦𝑦𝑒𝑒

𝑦𝑦𝑦

𝑥𝑥𝑒𝑒

𝑥𝑥𝑥 𝑥𝑥𝑒𝑒 sin𝜓𝜓

𝑦𝑦𝑒𝑒 cos𝜓𝜓

𝜓𝜓

𝑥𝑥𝑥

𝑦𝑦𝑒𝑒 sin𝜓𝜓
𝑦𝑦𝑒𝑒 cos𝜓𝜓

Figure B.1 Yaw rotation of angle ψ about the Ze axis.

𝑍𝑍𝑒𝑒

𝑋𝑋′

𝑋𝑋𝑏𝑏

𝑍𝑍𝑍

𝑧𝑧𝑒𝑒

𝑧𝑧𝑒𝑒 sin𝜃𝜃

𝑥𝑥𝑏𝑏

𝑧𝑧𝑧

𝑥𝑥′ sin𝜃𝜃

𝑥𝑥𝑥

𝑥𝑥′ cos𝜃𝜃

𝑧𝑧𝑒𝑒 cos𝜃𝜃

𝜃𝜃

Figure B.2 Pitch rotation of angle θ about the Y ′ axis.

From the Figs. 1.15 and B.1, it can be seen that the rotation in the Xe Ye plane by the yaw angle ψ
yields for the corresponding coordinates in the intermediate X ′Y ′Ze axis system:

x ′ = xe cosψ+ ye sinψ

y ′ =−xe sinψ+ ye cosψ

ze = ze

Using the matrix form, the above relations can be expressed as:x ′
y ′
ze

=
 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

xe

ye

ze

= Rz (ψ)

xe

ye

ze

 ,

where Rz (ψ) is the elemental rotation matrix, representing the clockwise rotation about the Ze axis.
Next, we rotate the system X ′Y ′Ze by the pitch angle θ about the Y ′ axis to the intermediate XbY ′Z ′
axis system, in which the coordinates are given by (see Figs. 1.15 and B.2):

xb = x ′ cosθ− ze sinθ

y ′ = y ′

z ′ = x ′ sinθ+ ze cosθ

Expressed in matrix form, we have:xb

y ′
z ′

=
cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

x ′
y ′
ze

= Ry (θ)

x ′
y ′
ze

 ,

where Ry (θ) is the elemental rotation matrix, representing the clockwise rotation about the Y ′ axis.
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At last, we rotate the XbY ′Z ′ axis system by the roll angle φ in the Y ′Z ′ plane. This yields the body
axis system, XbYb Zb , where the corresponding vector coordinates are given by (see again Figs. 1.15
and B.1):

xb = xb

yb = y ′ cosφ+ z ′ sinφ

zb =−y ′ sinφ+ z ′ cosφ

Expressed in matrix form:xb

yb

zb

=
1 0 0

0 cosφ sinφ
0 −sinφ cosφ

xb

y ′
z ′

= Rx (φ)

xb

y ′
z ′

 ,

where Rx (φ) is the elemental rotation matrix, representing the clockwise rotation about the Xb axis.
The product of the above three elemental matrices yields a single matrix that relates the coordinates
of a vector in the moving Earth axis system to its coordinates in the body axis system:xb

yb

zb

= Rx (φ)Ry (θ)Rz (ψ)

xe

ye

ze

= Reb

xe

ye

ze


Note that the expressions for the elemental rotation matrices for the opposite directions of rotation
are obtained by changing the signs of the sine functions in the matrices. For example: cos(−φ) =
cosφ and sin(−φ) =−sinφ.
The product of the above three elemental matrices yields a single matrix that relates the coordinates
of a vector in the moving Earth axis system to its coordinates in the body axis system:xb

yb

zb

= Rx (φ)Ry (θ)Rz (ψ)

xe

ye

ze

= Reb

xe

ye

ze


It should be recognized that the multiplication of the elemental matrices starts with the yaw, then
the pitch, and lastly the roll. Changing the order of the elemental rotations will result in a different
overall rotation matrix.

B.4. MOVING EARTH AND BODY AXIS SYSTEM RELATIONSHIPS

TRANSFER FROM MOVING EARTH AXES TO BODY AXES

With reference to Fig. 1.15, and according to the results obtained in Section B.3, the rotation matrix
Reb = Rx (φ)Ry (θ)Rz (ψ) is given by:

Reb =
1 0 0

0 cosφ sinφ
0 −sinφ cosφ

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1





B

376 B. SWITCHING BETWEEN AXIS SYSTEMS

Performing the multiplication of the three clockwise rotation matrices yields the following single
expression:

Reb =
 cosθcosψ cosθ sinψ −sinθ

sinφsinθcosψ−cosφsinψ sinφsinθ sinψ+cosφcosψ sinφcosθ
cosφsinθcosψ+ sinφsinψ cosφsinθ sinψ− sinφcosψ cosφcosθ

 (B.1)

TRANSFER FROM BODY AXES TO MOVING EARTH AXES
The matrix for rotating in the opposite direction, i.e. from the body axis system to the moving axis
system, is given by the transpose of the above matrix: Rbe = RT

eb = RT
z (ψ)RT

y (θ)RT
x (φ):

Rbe =
cosθcosψ sinφsinθcosψ+cosφsinψ cosφsinθcosψ− sinφsinψ

cosθ sinψ sinφsinθ sinψ−cosφcosψ cosφsinθ sinψ+ sinφcosψ
−sinθ sinφcosθ cosφcosθ

 (B.2)

B.5. MOVING EARTH AND AIR-PATH AXIS SYSTEM RELATIONSHIPS

TRANSFER FROM MOVING EARTH AXES TO AIR-PATH AXES
With reference to the previous Fig. 1.17, the transfer of a vector from the moving Earth axes (Xe Ye Ze )
to the air-path axes (XaYa Za) is effected by three clockwise rotations: 1) a rotation by the azimuth
angle χ about the Ze axis to the intermediate position X ′Y ′Ze , 2) a rotation by the flight-path angle
γ about the Y ′ axis to the intermediate position XaY ′Z ′, and 3) a rotation by the aerodynamic angle
of roll µ about the Xa axis to the final position XaYa Za .
The overall rotation matrix Rea is represented by the product of the three elemental matrices Rx (µ),
Ry (γ), and Rz (χ):

Rea = Rx (µ)Ry (γ)Rz (χ) =
1 0 0

0 cosµ sinµ
0 −sinµ cosµ

cosγ 0 −sinγ
0 1 0

sinγ 0 cosγ

 cosχ sinχ 0
−sinχ cosχ 0

0 0 1


By sequential multiplication of the matrices, we obtain:

Rea =
 cosγcosχ cosγsinχ −sinγ

sinµsinγcosχ−cosµsinχ sinµsinγsinχ+cosµcosχ sinµcosγ
cosµsinγcosχ+ sinµsinχ cosµsinγsinχ− sinµcosχ cosµcosγ

 (B.3)

TRANSFER FROM AIR-PATH AXES TO MOVING EARTH AXES
The matrix for rotating in the opposite direction, i.e. from the air-path axis system to the moving
Earth axis system, is given by the transpose of the above matrix: Rae = RT

ea = RT
z (χ)RT

y (γ)RT
x (µ):

Rae =
cosγcosχ sinµsinγcosχ−cosµsinχ cosµsinγcosχ+ sinµsinχ

cosγsinχ sinµsinγsinχ+cosµcosχ cosµsinγsinχ− sinµcosχ
−sinγ sinµcosγ cosµcosγ

 (B.4)

At this point, it is important to emphasize that, apart from the differences in the Euler angles, the
similarities between Eq. B.1 and Eq. B.3, and between Eq. B.2 and Eq. B.4 are due to the same order
and direction of the elemental rotations.
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B.6. AIR-PATH AND BODY AXIS SYSTEM RELATIONSHIPS

TRANSFER FROM AIR-PATH AXES TO BODY AXES
With reference to the previous Fig. 1.18, as the Xb Zb plane is the plane of symmetry of the airplane
and the Za axis lies in the Xb Zb plane, the orientation of the body axis system with respect to air-
path axis system is fully defined by the angle of attack α and the angle of sideslip β. Usually, the
angle of sideslip is assigned to be positive when the air flow is coming from the right of the nose of
the airplane.
If we start at the air-path axis system, we must rotate counterclockwise through angle β about the
Za axis and clockwise through angle α about the Yb axis, respectively. Consequently, the product
of the following two elemental matrices represents the rotation matrix:

Rab = Ry (α)Rz (−β) =
cosα 0 −sinα

0 1 0
sinα 0 cosα

cosβ −sinβ 0
sinβ cosβ 0

0 0 1


Multiplication furnishes:

Rab =
cosαcosβ −cosαsinβ −sinα

sinβ cosβ 0
sinαcosβ −sinαsinβ cosα

 (B.5)

TRANSFER FROM BODY AXES TO AIR-PATH AXES
If we start at the body axis system, we must rotate counterclockwise through an angle α about the
Yb axis and clockwise through an angle β about the Za axis, respectively. Now, the product of the
following two elemental matrices represents the rotation matrix:

Rba = Rz (β)Ry (−α) =
 cosβ sinβ 0
−sinβ cosβ 0

0 0 1

 cosα 0 sinα
0 1 0

−sinα 0 cosα


Performing this multiplication, or transposing the matrix Eq. B.5 furnishes:

Rba =
 cosβcosα sinβ cosβsinα
−sinβcosα cosβ −sinβsinα

−sinα 0 cosα

 (B.6)

B.7. DERIVING THE EQUATIONS OF MOTION: SYMMETRIC FLIGHT
To demonstrate the use of rotation matrices, we will derive the equations of motion for the case
of an accelerated curved symmetric flight. This means that the plane of symmetry of the airplane
is continuously in the same vertical plane with respect to the Earth. The velocity vector and all
external forces lie in the airplane’s plane of symmetry. In this flight type the external forces acting

on the airplane are: the aerodynamic force
−→
R , thrust

−→
T , and weight

−→
W . The resultant of the external

forces
−→
F is the vector sum of the three forces:

−→
F = −→

R +−→
T +−→

W . As remarked in Section 3.3, for
airplane performance analysis it is convenient to express the equations of motion along the air-

path axes. However, the various components of
−→
F may be found in different axis systems, so that
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axis transformations are needed. In this example, the external forces are assumed to be available
as follows:

• The aerodynamic force
−→
R is specified in terms of its tangential force T ∗ and normal force N

along the Xb and Zb axis of the body axis system, respectively. The components T ∗ and N are
measured positive in the negative directions of the axes. Note that here the tangential force
is referred to as T ∗ to distinguish it from the engine thrust T (see the previous Fig. 1.28).

• Thrust
−→
T acts in forward direction along a working line, which is located in a plane coinciding

with or parallel to the plane of symmetry of the airplane. The working line makes a fixed angle
η with the positive Xb axis (see the previous Figs. 1.29 and 8.1 and Eq. 3.34).

• The weight
−→
W , by definition, points downward along the positive Ze axis.

According to the above conditions, we can express the external forces in terms of the air-path axes

by transformations of the forces
−→
R ,

−→
T , and

−→
W . As in symmetric flight the angle of sideslip β= 0, the

transformations of the components T ∗ and N only require a rotation about the Yb axis. In relating

the components by using rotation matrix Eq. B.6, we can write the components of the vector
−→
R

in both the body axis system and the air-path axis system as matrices having three rows and one
column: D

S
L

= Rba

T ∗
0
N

=
 cosα 0 sinα

0 1 0
−sinα 0 cosα

T ∗
0
N


or

D = T ∗ cosα+N sinα

L =−T ∗ sinα+N cosα

where D , S, and L are the well-known components drag, side force, and lift acting along the Xa , Ya ,
and Za axis, respectively. These forces also are measured positive in the negative directions of the
axes.
Similarly, we find from the transformation between body axes and the air-path axes for the thrust
components, Tx

Ty

Tz

= Rba

T
0
0

=
 cosαT 0 sinαT

0 1 0
−sinαT 0 cosαT

T
0
0

 ,

or
Tx = T cosαT

Tz =−T sinαT

where αT is the sum of the angle of attack α and the fixed inclination η of the thrust vector (αT =
α+η).
The components of the weight force in terms of the air-path axes are obtained by using the rotation
matrix Eq. B.3. For symmetric flight, we find:Wx

Wy

Wz

= Rea

 0
0

W

=
cosγ 0 −sinγ

0 1 0
sinγ 0 cosγ

 0
0

W

 ,
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or
Wx =−W sinγ

Wz =W cosγ

Assuming the airplane as a rigid body of constant mass, we can write the two general equations of
motion for curved symmetric flight in terms of the air-path axis system.
Along the Xa axis:

W

g

dV

dt
= T cosαT −D −W sinγ= T cosαT −T ∗ cosα−N sinα−W sinγ

where V is the velocity vector of the center of gravity of the airplane.
Along the Za axis:

C = W

g
V

dγ

dt
= T sinαT +L−W cosγ= T sinαT −T ∗ sinα+N cosα−W cosγ

where C is the centripetal force necessary to curve the flight path.
Compared to the way we previously have found the same equations of motion for the airplane in
symmetric flight, it is certainly exaggerated to derive them by using rotation matrices. However, for
more complicated flight types, the latter approach definitely may offer much advantage.

B.8. DERIVING THE EQUATIONS OF MOTION: GENERIC FLIGHT IN WIND

FIELD
We now derive the equations of motion for the case of generic flight in three degrees of freedom
(both turning and climbing) in an arbitrary wind field. The velocity of the airplane in the moving

Earth axis system is the vector sum of its airspeed vector
−→
V and the wind velocity vector

−→
V w.

−→
V g =−→

V +−→
V w

The airspeed is conveniently expressed in the air-path axis system, while the wind field is conve-
niently expressed in the moving Earth axis system and is, in principle, a function of time.

−→
V =

V
0
0


a

−→
V w =


Uw

(−→
R (t )

)
Vw

(−→
R (t )

)
Ww

(−→
R (t )

)


e

Here,
−→
R (t ) is the position of the airplane in the moving Earth axis system.

The aircraft acceleration in the moving Earth axis system is given by the time derivative of the ve-
locity vector

de
−→
V g

dt
= de

−→
V

dt
+ de

−→
V w

dt
= da

−→
V

dt
+−→ω ae ×−→

V + de
−→
V w

d
−→
R

de
−→
R

dt
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where−→ω ae is the angular velocity vector of the air-path axis system with respect to the moving Earth

axis system, and de
−→
V w/d

−→
R is the Jacobian of the wind velocity vector.

de
−→
V w

d
−→
R

=



∂Uw

∂xe

∂Uw

∂ye

∂Uw

∂ze
∂Vw

∂xe

∂Vw

∂ye

∂Vw

∂ze
∂Ww

∂xe

∂Ww

∂ye

∂Ww

∂ze


e

Realizing that

de
−→
R

dt
=−→

V g =−→
V +−→

V w

the acceleration can then be expressed as

de
−→
V g

dt
= da

−→
V

dt
+−→ω ae ×−→

V + de
−→
V w

d
−→
R

(−→
V +−→

V W

)
We shall now proceed to express the components of the remaining vectors in the air-path axis sys-
tem.
As already done in Section 1.7 (Eq. 1.22) for the components of the angular velocity of the aircraft
body axis system with respect to the moving Earth axis system, it can be easily shown that the
components of the angular velocity of the air-path axis system with respect to the moving Earth
axis system are expressed in air-path axes as

−→ω ae =
 µ̇− χ̇sinγ
χ̇cosγsinµ+ γ̇cosµ
χ̇cosγcosµ− γ̇sinµ


a

Therefore, the first two terms in the expression of the acceleration vector become

da
−→
V

dt
+−→ω ae ×−→

V =
V̇

0
0


a

+
 µ̇− χ̇sinγ
χ̇cosγsinµ+ γ̇cosµ
χ̇cosγcosµ− γ̇sinµ


a

×
V

0
0


a

=
 V̇

V
(
χ̇cosγcosµ− γ̇sinµ

)
V

(
χ̇cosγsinµ+ γ̇cosµ

)


a

The remaining term due to the wind velocity vector can be expressed in the air-path axis system by
using rotation matrices Rae and Rea (Eqs. B.3 and B.4):

de
−→
V w

d
−→
R

(−→
V +−→

V W

)
= Rea



∂Uw

∂xe

∂Uw

∂ye

∂Uw

∂ze

∂Vw

∂xe

∂Vw

∂ye

∂Vw

∂ze

∂Ww

∂xe

∂Ww

∂ye

∂Ww

∂ze


e

Rae

V
0
0


a

+
Uw

Vw

Ww


e



For the sake of continuing the analytical derivation, let us now look at the particular case in which
the wind is parallel to the ground, varying in intensity only in the Ze direction, and blowing towards
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the Xe direction. It is therefore a uniform unsteady wind field with a vertical gradient. The previous
equation reduces to

de
−→
V w

d
−→
R

(−→
V +−→

V W

)
= Rea


0 0 ∂Uw

∂ze

0 0 0

0 0 0


e

V cosγcosχ+Uw

V cosγsinχ
−V sinγ


e

+
Uw

0
0


e

=

=


−V

∂Uw

∂ze
sinγcosγcosχ

−V
∂Uw

∂ze
sinγ

(
sinµsinγcosχ−cosµsinχ

)
−V

∂Uw

∂ze
sinγ

(
cosµsinγcosχ+ sinµsinχ

)


a

The expression of the external forces acting on the airplane in the air-path axis system is

∑−→
F =−→

T +−→
D +−→

L +−→
W =

T −D
0
−L


a

+Rea

 0
0

W


e

=
 T −D −W sinγ

W cosγsinµ
−L+W cosγcosµ


a

where it has been assumed that the thrust vector is aligned with the airspeed vector.
Finally, the equations of motion in the air-path axis system can be written by substituting the pre-
viously obtained expressions for forces and accelerations into Newton’s second law.

M
de

−→
V g

dt
=∑−→

F

Doing this results in the following three equations

M

(
V̇ −V

∂Uw

∂ze
sinγcosγcosχ

)
= T −D −W sinγ

MV

(
χ̇cosγcosµ− γ̇sinµ− ∂Uw

∂ze
sin2γsinµcosχ+ ∂Uw

∂ze
sinγcosµsinχ

)
=W cosγsinµ

MV

(
−χ̇cosγsinµ− γ̇cosµ− ∂Uw

∂ze
sin2γcosµcosχ− ∂Uw

∂ze
sinγsinµsinχ

)
=−L+W cosγcosµ

which can be greatly simplified by summing the second one multiplied by sinµ and the third mul-
tiplied by cosµ, and then substituting the obtained expression of γ̇ in either of the two. The final
result is

M

(
V̇ −V

∂Uw

∂ze
sinγcosγcosχ

)
= T −D −W sinγ

MV

(
γ̇+ ∂Uw

∂ze
sin2γcosχ

)
= L cosµ−W cosγ

MV

(
χ̇cosγ+ ∂Uw

∂ze
sinγsinχ

)
= L sinµ



B

382 B. SWITCHING BETWEEN AXIS SYSTEMS

where it can be seen that the wind gradient results in an extra acceleration term in all three equa-
tions of motion.
It is now also interesting to look at the particular case of symmetric flight in the opposite direction
of the wind. This is obtained from the previous equations by setting µ= 0 and χ= π, which results
in the following equations of motion.

M

(
V̇ +V

∂Uw

∂ze
sinγcosγ

)
= T −D −W sinγ

MV

(
γ̇− ∂Uw

∂ze
sin2γ

)
= L−W cosγ

The third equation vanishes in light of the fact that the aircraft has now only two degrees of freedom.
Lastly, because the wind vector is horizontal, the rate of climb is given uniquely by the airspeed
vector. When realizing that

V̇ = dV

dH

dH

dt
= dV

dH
V sinγ and

∂Uw

∂ze
=−∂Uw

∂H
=− dUw/ dt

V sinγ

the expressions of Eqs. 14.45 and 14.46 are found again.



C
ONE-DIMENSIONAL STEADY FLOW

EQUATIONS

C.1. CONTINUITY EQUATION
The continuity equation expresses the physical principle that mass can be neither created nor de-
stroyed. Consider a gas flowing through a channel Fig. C.1. When the flow is steady, there will be no
variation with time of the mass of the gas confined inside the channel between the cross-sections
1 and 2. Consequently, the same rate of mass flow will cross each section of the channel. Thus, the
condition for continuity is

m = ρV A = constant, (C.1)

where m is the mass flow per unit time, V is the flow velocity and A is the cross-sectional area.
Eq. C.1 is the continuity equation. In the logarithmic differential form this equation reads

dρ

ρ
+ dV

V
+ dA

A
= 0 (C.2)

Emphasis is made on the fact that Eq. C.1 is derived by using the simplifying conditions of one-
dimensional steady flow. This implies that all gas properties are uniform over any cross-section of
the channel and independent of time.
In steady flow, the gas particles move along streamlines, which represent the local flow direction.
Thus, by definition, particles cannot cross a streamline. All the streamlines that go through the cir-
cumference of a surface directed perpendicular to the flow direction form a stream tube (Fig. C.2).
Since no particle can enter or leave the stream tube through its walls, it follows that when dealing
with steady flow, the continuity equation holds also along a stream tube.

C.2. BERNOULLI’S EQUATION
Bernoulli’s equation expresses the relationship between pressure and velocity along a streamline
for a frictionless steady flow. To derive this equation, we may consider an element of an elemental

383
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Figure C.1 Channel flow Figure C.2 Stream tube

Figure C.3 Elemental stream tube

stream tube with mass ρds dA, where ds is the length and dA is the cross-sectional area of the
element (Fig. C.3).
If the effect of altitude on pressure is neglected, we obtain from Newton’s second law of motion:

−dp dA = ρds dA
dV

dt
(C.3)

where dp is the difference in pressure across the two cross-sections of the element of the stream
tube. The acceleration of the element is given by

dV

dt
= ∂V

∂s

ds

dt
+ ∂V

∂t

Since in steady flow the derivative with respect to time is zero, the acceleration reduces to

dV

dt
=V

dV

ds
(C.4)

Insertion of the latter expression into Eq. C.3 furnishes Euler’s equation:

dp

ρ
=−V dV (C.5)

When the flow is continuous, Eq. C.5 can be integrated between the stations 1 and 2 of the stream
tube in Fig. C.2. This yields ∫ p2

p1

dp

ρ
+ 1

2

(
V 2

2 −V 2
1

)= 0 (C.6)
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Figure C.4 The flow in a control surface

If we use the assumption that ρ is constant, we obtain Bernoulli’s equation:

p1 + 1

2
ρV 2

1 = p2 + 1

2
V 2

2 or (C.7)

pt = p + 1

2
ρV 2 = constant, (C.8)

where pt is the total pressure and 1
2ρV 2 is the dynamic pressure.

A flow can only be assumed to be incompressible if the velocity is low, that is, low when compared
with its speed of sound. For the case of compressible flow, the integral in Eq. C.6 can only be solved
if we have additional information on the variation of density with pressure, which will be discussed
in Section C.7.

C.3. THE MOMENTUM EQUATION
To derive the momentum equation we consider a gas flowing steadily through a fixed control vol-
ume bounded by a control surface S (Fig. C.4).
In order to apply Newton’s second law of motion to the gas, the control volume is divided into
elemental stream tubes of cross-section dA (see Fig. C.3). As the flow is steady, the x-component
of the acceleration of a stream tube element is given by

ax = dVx

dt
=V

dVx

ds
(C.9)

where Vx is the x-component of the velocity V . The mass of the gas enclosed by the element is

dM = ρds dA (C.10)



C

386 C. ONE-DIMENSIONAL STEADY FLOW EQUATIONS

The x-component of the force acting on the element is therefore

dFx = ρds dAV
dVx

ds
(C.11)

To determine the integral of Eq. C.11 extended over the complete control volume, it is appropriate
to first consider the contributions of the individual stream tubes.
The contribution of the stream tube 1-2 to the force Fx becomes∫ 2

1
ρds dAV

dVx

ds
=

∫ 2

1
(ρV dA)dVx (C.12)

where the product ρV dA represents the mass flow rate, which has a constant value along the
stream tube. Hence ∫ 2

1
(ρV dA)dVx = ρV dA

(
Vx2 −Vx1

)
(C.13)

Then for the entire system, we can write

Fx +Wx =
∫

S
ρV

(
Vx2 −Vx1

)
dA (C.14)

The term on the left-hand side of Eq. C.14 is the sum of the x-components of the resultant force F
acting on the gas within the control surface S and the weight W of the gas confined in the control
volume. Evidently, we can write Eq. C.14 as

Fx +Wx =
∫

S
ρV Vx cosαdS (C.15)

where dS represents the area of the surface element that an elemental stream tube cuts out of the
control surface. The angle α is the angle between the direction of the velocity V at the place where
the stream tube pierces through the control surface and the outward normal at the same point. The
product V cosα in Eq. C.15 is the projection of the velocity V on the outward normal of S. Let Vn

denote V cosα. Then, Eq. C.15 becomes

Fx +Wx =
∫

S
ρVnVx dS (C.16)

Note that the normal velocity Vn is positive at points where the gas leaves the control volume and
negative at points where the gas goes into the control volume. Eq. C.16 is the momentum equation,
written in a general form. Since the product ρVn dS is the mass flow rate that passes a surface
element dS, Eq. C.16 says that the sum of the components of the external forces in a given direction
acting on a gas contained in a control volume equals the rate of change of momentum of the gas in
the same direction.
In the application of the momentum equation, it is normally found convenient to employ special
forms. As a typical example, we will consider here the steady one-dimensional flow through a chan-
nel (Fig. C.5).
Let the control surface consist of the interior surface of the channel and the cross-sections 1 and 2.
Neglecting the weight of the gas, the momentum equation then furnishes for the component in the
direction of flow of the force exerted by the walls of the channel on the fluid:
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Figure C.5 Flow through a channel

X = m(V2 −V1)+p2 A2 −p1 A1 (C.17)

In this equation p1 A1 and p2 A2 are the forces that the gas outside the portion of the channel be-
tween stations 1 and 2 exerts on the flow within the control volume.

C.4. THE ENERGY EQUATION
The energy equation is based on the first law of thermodynamics that states that energy is con-
served in a thermodynamic system. Thus, for a system of gas, the energy supplied must equal the
sum of the increase in the internal energy of the system and the energy which leaves the system as
work. The first law of thermodynamics may be written as

dQ = dE + dW (C.18)

where dQ is the amount of energy added to the system, dW is the amount of work done by the
system and dE is the corresponding change in internal energy. It is convenient to employ lower case
letters to denote the values of extensive variables per unit mass of fluid. Then, Eq. C.18 becomes

dq = dq + dw (C.19)

For any system we can break the work dw into two parts:

dw = dwm +p d

(
1

ρ

)
(C.20)

in which p d(1/ρ) is the increment of work done by the gas on the surrounding control surfaces and
dwm includes all other forms of work.
The internal energy is all the energy internal to the system boundaries. Neglecting the potential
energy,

e = u + V 2

2
(C.21)
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Figure C.6 Channel flow with addition and extraction of energy

in which u denotes the internal molecular energy, and V 2/2 is the kinetic energy of the system per
unit mass. For our analysis, we consider a flow through a channel, and we define the system as the
gas in the channel between the cross-sections 1 and 2 (Fig. C.6). After a time dt , the system will
have moved to the position 1’- 2’. Then, from the principle of the conservation of energy, the net
energy transferred to the system is the energy in volume 1’-2’ at time t + dt minus the energy in
volume 1-2 at time t .
For steady flow, the internal energy in region 1’- 2’ remains unchanged so that the net energy trans-
ferred to the system is also given by the energy in region 2-2 at time t + dt minus the energy in
region 1-1’ at time t .
Assuming that the properties of the gas masses in the regions 2-2’ and 1-1’ can be considered to be
the same as the properties of the gases when they pass their respective entry-sections 1 and 2, we
obtain the energy balance for a flowing gas as

[
m

(
q −wm

)− (
p2V2 A2 −p1V1 A1

)]
dt = m

[
(u2 −u1)+

[
V 2

2

2
− V 2

1

2

]]
dt (C.22)

where m is the mass flow rate and pV A represents the work done by the system on the surround-
ings. Eq. C.22 expresses that in time dt , heat is added and energy in the form of work is extracted
at the rates q and wm units of energy per unit mass.
Noting that from Eq. C.1,

m = ρ1V1 A1 = ρ2V2 A2,

we get the following form of the energy equation,

q −wm =
[

p2

ρ1
− p1

ρ1

]
= (u2 −u1)+

[
V 2

2

2
− V 2

1

2

]
(C.23)

or in differential form,

dq − dwm = d

(
p

ρ

)
+ du +V dV (C.24)
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Again, it should be noted that Eq. C.23 and Eq. C.24 refer to a steady one-dimensional flow of unit
mass.

C.5. ISENTROPIC RELATIONS
The first law of thermodynamics for an incremental change of state of a system of gas may be writ-
ten as

dq = du +p d

(
1

ρ

)
(C.25)

When we use the concept of enthalpy, h, defined as

h = u + p

ρ
(C.26)

then, for an infinitesimal process,

dh = du +p d

(
1

ρ

)
+ 1

ρ
dp (C.27)

Combination of Eq. C.25 and Eq. C.27 yields

dq = dh − 1

ρ
dp (C.28)

The specific heat at constant pressure is therefore

cp =
(
∂q

∂T

)
p
= ∂h

∂T
(C.29)

The specific heat at constant volume is

cv =
(
∂q

∂T

)
v
= ∂u

∂T
(C.30)

Assuming that we are dealing with a perfect gas, we have the equation of state

p

ρ
= RT (C.31)

where R is the specific gas constant. For a perfect gas the specific heats are related by

cp = ∂

∂T

(
u + p

ρ

)
= ∂

∂T
(u +RT ) = cv +R (C.32)

Insertion of Eq. C.30 to Eq. C.32 into Eq. C.23 leads to the following form of the energy equation per
unit mass flow rate of a perfect gas:

q −wm = cp (T2 −T1)+ V 2
2

2
− V 2

1

2
(C.33)
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stationary sound wave

Figure C.7 Derivation of a formula for the speed of sound

For adiabatic flow
(
q = wm = 0 ) we have

cp T + V 2

2
= constant (C.34)

or in differential form
cp dT +V dV = 0 (C.35)

For inviscid flow, Eq. C.35 can be combined with Euler’s equation, Eq. C.5. The resulting form is:

cp dT − dp

ρ
= 0 (C.36)

Substituting Eq. C.31 and Eq. C.32 into Eq. C.36, we obtain

dp

ρ
= γ

γ−1

dT

T
(C.37)

where γ is the ratio of the specific heats, γ= cp /cv . For the case of constant specific heats, Eq. C.37
may be integrated, with the result that

p

Tγ(γ−1)
= constant. (C.38)

Using the perfect gas law, Eq. C.31, the latter equation can be transformed to

p

ργ
= constant. (C.39)

Eq. C.38 and Eq. C.39 are called the Poisson relations, and provide information on the variations of
p,T , and ρ along a streamline in an isentropic (adiabatic and reversible) flow.

C.6. THE SPEED OF SOUND
The speed of sound is the rate at which a weak disturbance or sound wave propagates through a
medium. In order to derive an expression for the speed of sound, we consider a sound wave moving
with speed c through a perfect gas at rest in a constant area duct (Fig. C.7).
Suppose that we are traveling with the sound wave. We then see at both sides of the sound wave
a steady flow to the right. Across the sound wave, the velocity, stationary sound wave pressure,
density and temperature of the gas are changed by the amounts dc, dp, dρ and dT , respectively.
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Applying the continuity equation, Eq. C.1, we get

ρc = (ρ+ dρ)(c + dc) (C.40)

When neglecting the product of two small quantities, we obtain from Eq. C.40

c =−ρ dc

dρ
(C.41)

From Euler’s equation, Eq. C.5, we have

dc =− dp

ρc
(C.42)

Substitution of Eq. C.42 into Eq. C.41 yields

c2 = dp

dρ
(C.43)

Assuming that the flow through the sound wave is isentropic, the relationship between pressure
and density is given by Eq. C.39,

p

ργ
= constant = C (C.44)

Hence
dp

dρ
= d

(
Cργ

)
dρ

= γCργ−1 = γp

ρ
(C.45)

Combining Eq. C.43 and Eq. C.45 results in the following expression for the speed of sound,

c =
√
γ

p

ρ
(C.46)

Substituting the perfect gas law, Eq. C.31, into Eq. C.46 yields

c =√
γRT (C.47)

This equation shows that the speed of sound in a perfect gas depends only on the (absolute) tem-
perature of the gas.

C.7. BERNOULLI’S EQUATION FOR COMPRESSIBLE FLOW
According to the energy equation for adiabatic flow, Eq. C.34, we may write

cp T + V 2

2
= constant = cp Tt (C.48)

where Tt is the value of the temperature that would occur if the velocity was slowed down adia-
batically to zero velocity and is called the stagnation or total temperature. Calculations are often
facilitated if the flow velocities are taken into account implicitly by introducing the concept of total
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temperature and by expressing the flow velocities in terms of Mach number. The Mach number M
is defined as

M =V /c (C.49)

where c is the speed of sound. For a perfect gas the speed of sound can be expressed diversely as

c =
√
γ

p

ρ
=√

γRT =
√

(γ−1)cp T (C.50)

Combining Eq. C.48 and Eq. C.50 yields the relationships

Tt

T
= 1+ V 2

2cp T
= 1+ γ−1

2
M 2 (C.51)

From Eq. C.51, and the Eq. C.38 and Eq. C.39 we get for the corresponding pressure and density
ratios for isentropic flow:

pt

p
=

[
Tt

T

] γ
γ−1 =

[
1+ γ−1

2
M 2

] γ
γ−1

(C.52)

ρt

ρ
=

[
pt

p

] 1
γ =

[
1+ γ−1

2
M 2

] 1
γ−1

(C.53)

Eq. C.51 to Eq. C.53 show that the static temperature, pressure and density and the velocity of a
moving gas are equivalent in terms of energy to a total temperature, total pressure, and total density.
This may be useful, for example, in studying the gas flow through a jet engine. With the substitution
of Eq. C.49 and Eq. C.50, Eq. C.52 can be written as

pt

p
=

[
1+ γ−1

2γ

ρ

p
V 2

] γ
γ−1

(C.54)

The latter form is often called Bernoulli’s equation for compressible flow, where pt is the total pres-
sure that would occur if the flow was decelerated isentropically to zero velocity.

C.8. ISENTROPIC FLOW OF A PERFECT GAS THROUGH A CHANNEL OF

VARYING CROSS-SECTION
For steady flow the mass flow rate crossing a section of the flow passage follows from the continuity
equation, Eq. C.1:

m = ρV A (C.55)

For a perfect gas, Eq. C.55 can be transformed to

m = p

RT
M

√
γRT A = pp

T

√
γ

R
M A (C.56)
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By insertion of Eq. C.51 and Eq. C.52 into Eq. C.56 the mass flow rate can be expressed in terms of
stagnation conditions,

m = ptp
Tt

√
γ

R
M

[
1+ γ−1

2
M 2

]− γ+1
2(γ−1)

A (C.57)

Since for steady isentropic flow the quantities m,Tt and pt are constants, we find by differentiating
Eq. C.57 that

dA

A
+ dM

M
−

γ+1
2 M 2

1+ γ−1
2 M 2

dM

M
= 0 (C.58)

Rearranging, we get for the variation of the Mach number with cross-sectional area

dM

M
=−1+ γ−1

2 M 2

1−M 2

dA

A
(C.59)

The related variations of velocity, temperature, pressure and density with area change follow from
Eq. C.59 in combination with Eq. C.51, Eq. C.52 and Eq. C.53. These are repeated below for easy
reference in the following analysis and made visible in Fig. C.8,

Tt

T
= 1+ γ−1

2
M 2 = 1+ V 2

2cp T
(C.51)

pt

p
=

[
1+ γ−1

2
M 2

] γ
γ−1

(C.52)

ρt

ρ
=

[
1+ γ−1

2
M 2

] 1
γ−1

. (C.53)

From Fig. C.8 we see that the effects of area change are opposite for subsonic and supersonic
flow. In the case of a converging-diverging channel, the minimum cross-sectional area is called
the throat (dA = 0). There, according to Eq. C.59, the flow must satisfy the condition that the Mach
number either shows an extreme (dM = 0) or is equal to unity (Fig. C.9).
Under the first-mentioned condition, in the channel subsonic expansion takes place followed by
subsonic diffusion or for supersonic flow a decreasing Mach number in the converging section but
not reaching a Mach number of unity, and in the diverging section an increasing Mach number.
When M = 1 we have the condition where the flow velocity at the throat equals the local speed of
sound.
Under this condition the flow is said to be choked because the mass flow is the maximum which
the throat can cross with the given stagnation temperature and pressure. The mass flow rate in a
choked flow, from Eq. C.57, is given by

m∗ = ptp
Tt

√
γ

R

[
γ+1

2

]− γ+1
2(γ−1)

A∗ (C.60)

where an asterisk is used to mark the properties of the flow at the throat. Equating Eq. C.60 and
Eq. C.57 yields
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Figure C.8 Effects of area change in isentropic flow through a duct

Figure C.9 Isentropic flow through a converging-diverging channel

A

A∗ = 1

M

[
2

γ+1

[
1+ γ−1

2
M 2

]]− γ+1
2(γ−1)

(C.61)

The ratios T /Tt , p/pt , ρ/ρt and A/A∗ are plotted in Fig. C.10 for a perfect gas with γ = 1.4, as
expressed by Eqs. C.51 to C.53 and C.61.
To find the conditions at a particular section of a channel with a given shape, the local Mach num-
ber follows directly from the ratio A/A∗ in Fig. C.10. Then, with known stagnation conditions, the
curves also give the corresponding values of T, p and ρ. The conditions at the throat are found by
setting M = 1 in Eq. C.51 to Eq. C.53:

Tt

T ∗ = γ+1

2
= 1.2 (γ= 1.4) (C.62)

pt

p∗ =
[
γ+1

2

] γ
γ−1 = 1.893 (γ= 1.4) (C.63)
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Figure C.10 Characteristic ratios for isentropic flow (γ= 1.4)

Figure C.11 Adiabatic flow in a constant area duct

ρt

ρ∗ =
[
γ+1

2

] 1
γ−1 = 1.577 (γ= 1.4) (C.64)

Consider a convergent-divergent channel in which we want to establish subsonic expansion in the
convergent part, followed by a Mach number of unity at the throat and supersonic expansion at
the divergent part of the channel. To achieve this, the pressure at the throat must be greater than
the ambient pressure at the outlet p0. Thus, the pressure ratio required for obtaining the condition
M∗ = 1 is

pt

p∗ ≥
[
γ+1

2

] γ
γ−1 = 1.893 (γ= 1.4) (C.65)

Again, in the case of a converging-diverging channel, the presence of a throat does not necessarily
imply M∗ = 1 because for values of pt /p0 lower than given by Eq. C.63 subsonic flow is found
throughout (unchoked flow).

C.9. NORMAL SHOCK WAVES
Consider an adiabatic flow through a constant area duct, where the gas properties change between
the cross-sections 1 and 2 (Fig. C.11).
With the assumption of a perfect gas, the governing equations are:
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1. The equation of state
p = ρRT (C.66)

2. The continuity equation
m = ρ1V1 A = ρ2V2 A. (C.67)

3. The momentum equation (
p1 −p2

)
A = m (V2 −V1) (C.68)

4. The energy equation

cp T1 +
V 2

1

2
= cp T2 +

V 2
2

2
(C.69)

The above four equations contain the four variables, p,ρ,T and V . Therefore, the gas properties
at section 2 can be expressed in terms of the properties at section 1. Substitution of Eq. C.67 into
Eq. C.68 yields

p1 +ρ1V 2
1 = p2 +ρ2V 2

2 (C.70)

Using the perfect gas law, Eq. C.66, and with Rγ/(γ−1) substituted for the specific heat at constant
pressure in Eq. C.69, we obtain

γ

γ−1

p1

ρ1
+ V 2

1

2
= γ

γ−1

p2

ρ2
+ V 2

2

2
(C.71)

Combining Eq. C.67, Eq. C.70 and Eq. C.71 results in the following single equation,

V 2
1

2

[
1+ V2

V1

][
1− V2

V1

]
= γ

γ−1
V1V2

[
1− V2

V1

]
− γ

γ−1

p1

ρ1

[
1− V2

V1

]
(C.72)

In addition to the trivial solution that V2 is equal to V1, a second solution is valid mathematically,
namely,

V 2
1

2

[
1+ V2

V1

]
= γ

γ−1

[
V1V2 − p1

ρ1

]
(C.73)

We can manipulate Eq. C.73 to produce explicitly the velocity ratio,

V2

V1
= γ−1

γ+1

[
1+ 2γ

γ−1

p1

ρ1

1

V 2
1

]
(C.74)

A velocity variation may be experienced in a supersonic flow in the form of a discontinuity which
is called a shock wave (Fig. C.12).
With V = M

√
γp/ρ and the continuity equation, we can express the relationship between the ve-

locities before and after the shock in terms of the initial Mach number M1 :

V2

V1
= ρ1

ρ2
= 2

γ+1

1

M 2
1

+ γ−1

γ+1
(C.75)
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Figure C.12 Shock wave formation in a supersonic flow

The relationship between the pressures p2 and p1 is found from Eq. C.70 and Eq. C.75 as

p2

p1
= 1+ ρ1V 2

1

p1
− ρ2V 2

2

p1
= 1+γM 2

1 −γM 2
1

[
2

γ+1

1

M 2
1

+ γ−1

γ+1

]
or

p2

p1
= 2γ

γ+1
M 2

1 −
γ−1

γ+1
.

(C.76)

Using Eq. C.66, Eq. C.75 and Eq. C.76, the temperature ratio is found to be

T2

T1
= p2

p1

ρ1

ρ2
=

[
2γ

γ+1
M 2

1 −
γ−1

γ+1

][
2

γ+1

1

M 2
1

+ γ−1

γ+1

]
(C.77)

The corresponding equation for the ratio of the Mach numbers is found, from Eq. C.75 and Eq. C.77,
to be [

M2

M1

]2

=
[

V2

V1

]2 T1

T2
=

2
γ+1

1
M 2

1
+ γ−1

γ+1

2γ
γ+1 M 2

1 −
γ−1
γ+1

or M2 =
[

1+ γ−1
2 M 2

1

γM 2
1 −

γ−1
2

]1/2

(C.78)

Apparently, for a given value of γ, the ratios p2/p1,T2/T1,ρ2/ρ1,V2/V1 and the Mach number M2

are unique functions of the initial Mach number M1. For M1 ≥ 1, we have:

p2

p1
≥ 1,

T2

T1
≥ 1,

ρ2

ρ1
≥ 1,

V2

V1
≤ 1, M2 ≤ 1

Thus, at supersonic velocities, all changes are accompanied by shock waves, through which the
pressure, temperature and density are increased, and the flow velocity and Mach number are re-
duced. The relationship between the initial and final Mach number is plotted in Fig. C.13, which
shows that the flow velocity behind a normal shock is always subsonic (M2 < 1). The loss in kinetic
energy is converted into heat so that the occurrence of a shock wave is an irreversible adiabatic
(non-isentropic) process. Though mathematically possible, the case of M1 < 1 with the resulting
M2 being greater than unity, is physically impossible, since this solution to the equations is in de-
fiance of the second law of thermodynamics. The relationship between the total pressures on the
two sides of the normal shock is given by

pt2

pt1
= p2

p1

[
1+ γ−1

2 M 2
2

1+ γ−1
2 M 2

1

] γ
γ−1
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Figure C.13 Final Mach number and total pressure ratio versus initial Mach number for a normal shock (γ= 1.4)

Using Eq. C.76 and Eq. C.78, this ratio can be written

pt2

pt1
=

[
γ+1

2γM 2
1 − (γ−1)

] 1
γ−1

[
(γ+1)M 2

1

2+ (γ−1)M 2
1

] γ
γ−1

(C.79)

Fig. C.13 shows that, for M1 > 1, the total pressure always decreases when the flow passes a shock
wave. Finally, it is worthwhile to derive a similar expression for the ratio of the total pressure behind
the normal shock to the initial static pressure,

pt2

p1
= pt2

pt1

pt1

p1
=

[
γ+1

2
M 2

1

] γ
γ−1

[
2γM 2

1

γ+1
− γ−1

γ+1

] 1
1−γ

(C.80)

This relationship is called the Rayleigh formula, and is of importance to the measurement of air-
speed.

C.10. OBLIQUE SHOCK WAVES
If, in a direction parallel to the shock wave, a uniform velocity Vt is superimposed on the flow field
of the normal shock, the resultant upstream velocity is (Fig. C.14a)

V1 =
√

V 2
n1 +V 2

t (C.81)

where Vn1 is the normal component of the velocity V1. The inclination of the velocity V1 relative to
the shock is given by

β= tan−1 (Vnt /Vt ) (C.82)

Since Vn2 < Vn1, the resultant velocity V2 behind the shock makes a smaller angle with the shock
then the upstream velocity. That is, the flow is deflected over an angle θ toward the shock.
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Figure C.14 Flow through oblique shock

Since in a frictionless steady flow any streamline can be replaced by a boundary, the oblique shock
wave represents the behavior of a supersonic flow when turning suddenly through a deflection
angle θ (Fig. C.14b). The equations relating the gas properties before and after the oblique shock
can be obtained readily, if we recognize that these properties are not affected by the superposition
of a velocity parallel to the shock wave. Thus, all the relations derived in Section C.9 for the normal
shock are applicable if the Mach number M1 in the normal shock equations is replaced by M1 sinβ,
where now M1 =V1/c1 refers to the upstream Mach number before the oblique shock. Then, from
Eq. C.75 to Eq. C.77, we have the following ratios across the shock:

ρ1

ρ2
= Vn2

Vn1
= 2

γ+1

1

M 2
1 sin2β

+ γ−1

γ+1
(C.83)

p2

p1
= 2γ

γ+1
M 2

1 sin2β− γ−1

γ+1
(C.84)

T2

T1
=

[
2γ

γ+1
M 2

1 sin2β− γ−1

γ+1

][
2

γ+1

1

M 2
1 sin2β

+ γ−1

γ+1

]
(C.85)

Similarly, from Eq. C.79, the total pressure ratio becomes

pt2

pt1
=

[
γ+1

2γM 2
1 sin2β− (γ−1)

] 1
γ−1

[
(γ+1)M 2

1 sin2β

2+ (γ−1)M 2
1 sin2β

] γ
γ−1

(C.86)

From Fig. C.14a and Eq. C.83 we obtain

tan(β−θ)

tanβ
= Vn2

Vn1
= 2

γ+1

1

M 2
1 sin2β

+ γ−1

γ+1
(C.87)

Solving Eq. C.87 for the deflection angle θ produces the following expression

θ = tan−1

[
M 2

1 sin2β−2cotβ

2+M 2
1 (γ+cos2β)

]
(C.88)

Finally, the Mach number M2 after the shock may be obtained by writing

M2

M1
= V2c1

c2V1
= sinβ

sin(β−θ)

Vn2

Vn1

c1

c2
(C.89)
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Figure C.15 Oblique shock properties

Noting that c1/c2 =
p

T1/T2 and using Eq. C.83 and Eq. C.85 yields

M 2
2 = 1

sin2(β−θ)

1+ γ−1
2 M 2

1 sin2β

γM 2
1 sin2β− γ−1

2

(C.90)

Combining Eq. C.90 and Eq. C.88 furnishes

M 2
2 = 1+ γ−1

2 M 2
1

γM 2
1 sin2β− γ−1

2

+ M 2
1 cos2β

1+ γ−1
2 M 2

1 sin2β
(C.91)

In Fig. C.15, β is plotted versus M1 for constant values of θ. The points on the curves that corre-
spond to the same value of M2 are joined by dashed lines. The graph shows that for each value of
M1 there exists a maximum value of θ. If the deflection angle is greater than θmax, the gas properties
are no longer described by the preceding equations since a detached shock will occur (Fig. C.16).
Examining the curves in Fig. C.15, we also see that there are two possible inclination angles for each
value of M1 and θ. The shock with the larger β results in a subsonic M2 and is a stronger shock than
that with the smaller inclination angle. Experience indicates, however, that a weak shock with the
smaller β usually is found in actual flow. This means that the Mach number behind an oblique
shock remains supersonic, except for a small range of values of θ near θmax.
Clearly, the occurrence of an attached oblique-shock requires that θ < θmax and an inclination angle
such that

π

2
≥β≥ sin−1

[
1

M1

]
(C.92)
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Figure C.16 Supersonic flow in a corner

The upper limit, β= π/2, leads to the presence of a normal shock, whilst at the lower limit of β we
have the condition for an infinitely weak shock or Mach wave (Mn1 = 1). The associated minimum
shock inclination is called the Mach angle, usually given the symbol µ:

βmin =µ= sin−1
[

1

M1

]
(C.93)

When the condition of Eq. C.93 is applied to the preceding equations, we find that the value of θ is
zero and that there is no change in the gas properties across the Mach wave.
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D
INTERNATIONAL STANDARD

ATMOSPHERE

H , m T, K p, N/m2 ρ, kg/m3 c, m/s µ×105, kg/(m·s)

−1000 294.65 113929 1.3470 344.11 1.8206
−900 294.00 112614 1.3344 343.73 1.8175
−800 293.35 111312 1.3219 343.35 1.8144
−700 292.70 110022 1.3095 342.97 1.8113
−600 292.05 108744 1.2971 342.59 1.8081
−500 291.40 107478 1.2849 342.21 1.8050
−400 290.75 106223 1.2728 341.82 1.8019
−300 290.10 104981 1.2607 341.44 1.7988
−200 289.45 103751 1.2487 341.06 1.7956
−100 288.80 102532 1.2368 340.68 1.7925

0 288.15 101325 1.2250 340.29 1.7894
100 287.50 100129 1.2133 339.91 1.7862
200 286.85 98945 1.2017 339.52 1.7831
300 286.20 97773 i .1901 339.14 1.7800
400 285.55 96611 1.1787 338.75 1.7768
500 284.90 95461 1.1673 338.37 1.7737
600 284.25 94322 1.1560 337.98 1.7705
700 283.60 93193 1.1448 337.59 1.7673
800 282.95 92076 1.1337 337.21 1.7642
900 282.30 90970 1.1226 336.82 1.7610

1000 281.65 89874 1.1117 336.43 1.7578
1100 281.00 88790 1.1008 336.04 1.7547
1200 280.35 87715 1.0900 335.65 1.7515

403
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H , m T, K p, N/m2 ρ, kg/m3 c, m/s µ×105, kg/(m·s)

1300 279.70 86652 1.0793 335.27 1.7483
1400 279.05 85599 1.0686 334.88 1.7451
1500 278.40 84556 1.0581 334.49 1.7419
1600 277.75 83523 1.0476 334.09 1.7388
1700 277.10 82501 1.0372 333.70 1.7356
1800 276.45 81489 1.0269 333.31 1.7324
1900 275.80 80487 1.0167 332.92 1.7292
2000 275.15 79495 1.0065 332.53 1.7260
2100 274.50 78513 0.9964 332.13 1.7228
2200 273.85 77541 0.9864 331.74 1.7195
2300 273.20 76578 0.9765 331.35 1.7163
2400 272.55 75625 0.9666 330.95 1.7131
2500 271.90 74682 0.9569 330.56 1.7099
2600 271.25 73749 0.9472 330.16 1.7067
2700 270.60 72825 0.9375 329.77 1.7034
2800 269.95 71910 0.9280 329.37 1.7002
2900 269.30 71004 0.9185 328.97 1.697
3000 268.65 70108 0.9091 328.58 1.6937
3100 268.00 69221 0.8998 328.18 1.6905
3200 267.35 68343 0.8906 327.78 1.6872
3300 266.70 67475 0.8814 327.38 1.6840
3400 266.05 66615 0.8723 326.98 1.6807
3500 265.40 65764 0.8632 326.58 1.6775
3600 264.75 64922 0.8543 326.18 1.6742
3700 264.10 64088 0.8454 325.78 1.6709
3800 263.45 63264 0.8366 325.38 1.6677
3900 262.80 62447 0.8278 324.98 1.6644
4000 262.15 61640 0.8191 324.58 1.6611
4100 261.50 60841 0.8105 324.17 1.6578
4200 260.85 60050 0.8020 323.77 1.6545
4300 260.20 59268 0.7935 323.37 1.6513
4400 259.55 58494 0.7851 322.96 1.6480
4500 258.90 57728 0.7768 322.56 1.6447
4600 258.25 56970 0.7685 322.15 1.6414
4700 257.60 56221 0.7603 321.75 1.6381
4800 256.95 55479 0.7522 321.34 1.6347
4900 256.30 54745 0.7441 320.93 1.6314
5000 255.65 54020 0.7361 320.53 1.6281
5100 255.00 53302 0.7282 320.12 1.6248
5200 254.35 52591 0.7203 319.71 1.6215
5300 253.70 51889 0.7125 319.30 1.6181
5400 253.05 51194 0.7048 318.89 1.6148
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5500 252.40 50506 0.6971 318.48 1.6115
5600 251.75 49827 0.6895 318.07 1.6081
5700 251.10 49154 0.6820 317.66 1.6048
5800 250.45 48489 0.6745 317.25 1.6014
5900 249.80 47831 0.6671 316.84 1.5981
6000 249.15 47181 0.6597 316.43 1.5947
6100 248.50 46537 0.6524 316.01 1.5914
6200 247.85 45901 0.6452 315.60 1.5880
6300 247.20 45272 0.6380 315.19 1.5846
6400 246.55 44650 0.6309 314.77 1.5813
6500 245.90 44034 0.6238 314.36 1.5779
6600 245.25 43426 0.6169 313.94 1.5745
6700 244.60 42825 0.6099 313.52 1.5711
6800 243.95 42230 0.6031 313.11 1.5677
6900 243.30 41642 0.5963 312.69 1.5644
7000 242.65 41060 0.5895 312.27 1.5610
7100 242.00 40486 0.5828 311.85 1.5576
7200 241.35 39917 0.5762 311.43 1.5542
7300 240.70 39355 0.5696 311.01 1.5507
7400 240.05 38800 0.5631 310.59 1.5473
7500 239.40 38251 0.5566 310.17 1.5439
7600 238.75 37708 0.5502 309.75 1.5405
7700 238.10 37172 0.5439 309.33 1.5371
7800 237.45 36642 0.5376 308.91 1.5336
7900 236.80 36117 0.5313 308.48 1.5302
8000 236.15 35599 0.5252 308.06 1.5268
8100 235.50 35087 0.5190 307.64 1.5233
8200 234.85 34581 0.5130 307.21 1.5199
8300 234.20 34081 0.5070 306.79 1.5164
8400 233.55 33587 0.5010 306.36 1.5130
8500 232.90 33099 0.4951 305.93 1.5095
8600 232.25 32616 0.4892 305.51 1.5061
8700 231.60 32139 0.4834 305.08 1.5026
8800 230.95 31668 0.4777 304.65 1.4991
8900 230.30 31202 0.4720 304.22 1.4956
9000 229.65 30742 0.4663 303.79 1.4922
9100 229.00 30287 0.4608 303.36 1.4887
9200 228.35 29838 0.4552 302.93 1.4852
9300 227.70 29395 0.4497 302.50 1.4817
9400 227.05 28956 0.4443 302.07 1.4782
9500 226.40 28523 0.4389 301.63 1.4747
9600 225.75 28095 0.4336 301.20 1.4712
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9700 225.10 27673 0.4283 300.77 1.4677
9800 224.45 27255 0.4230 300.33 1.4642
9900 223.80 26843 0.4178 299.90 1.4606

10000 223.15 26436 0.4127 299.46 1.4671
10100 222.50 26034 0.4076 299.03 1.4536
10200 221.85 25636 0.4026 298.59 1.4500
10300 221.20 25244 0.3976 298.15 1.4465
10400 220.55 24857 0.3926 297.71 1.4430
10500 219.90 24474 0.3877 297.27 1.4394
10600 219.25 24096 0.3829 296.83 1.4359
10700 218.60 23723 0.3781 296.39 1.4323
10800 217.95 23355 0.3733 295.95 1.4287
10900 217.30 22991 0.3686 295.51 1.4252
11000 216.65 22632 0.3639 295.07 1.4216
11100 216.65 22278 0.3582 295.07 1.4216
11200 216.65 21929 0.3526 295.07 1.4216
11300 216.65 21586 0.3471 295.07 1.4216
11400 216.65 21248 0.3417 295.07 1.4216
11500 216.65 20916 0.3363 295.07 1.4216
11600 216.65 20589 0.3311 295.07 1.4216
11700 216.65 20266 0.3259 295.07 1.4216
11800 216.65 19949 0.3208 295.07 1.4216
11900 216.65 19637 0.3158 295.07 1.4216
12000 216.65 19330 0.3108 295.07 1.4216
12100 216.65 19028 0.3060 295.07 1.4216
12200 216.65 18730 0.3012 295.07 1.4216
12300 216.65 18437 0.2965 295.07 1.4216
12400 216.65 18148 0.2918 295.07 1.4216
12500 216.65 17865 0.2873 295.07 1.4216
12600 216.65 17585 0.2828 295.07 1.4216
12700 216.65 17310 0.2783 295.07 1.4216
12800 216.65 17039 0.2740 295.07 1.4216
12900 216.65 16772 0.2697 295.07 1.4216
13000 216.65 16510 0.2655 295.07 1.4216
13100 216.65 16252 0.2613 295.07 1.4216
13200 216.65 15998 0.2572 295.07 1.4216
13300 216.65 15747 0.2532 295.07 1.4216
13400 216.65 15501 0.2493 295.07 1.4216
13500 216.65 15258 0.2454 295.07 1.4216
13600 216.65 15020 0.2415 295.07 1.4216
13700 216.65 14785 0.2377 295.07 1.4216
13800 216.65 14553 0.2340 295.07 1.4216
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13900 216.65 14326 0.2304 295.07 1.4216
14000 216.65 14101 0.2268 295.07 1.4216
14100 216.65 13881 0.2232 295.07 1.4216
14200 216.65 13664 0.2197 295.07 1.4216
14300 216.65 13450 0.2163 295.07 1.4216
14400 216.65 13240 0.2129 295.07 1.4216
14500 216.65 13032 0.2096 295.07 1.4216
14600 216.65 12828 0.2063 295.07 1.4216
14700 216.65 12628 0.2031 295.07 1.4216
14800 216.65 12430 0.1999 295.07 1.4216
14900 216.65 12236 0.1967 295.07 1.4216
15000 216.65 12044 0.1937 295.07 1.4216
15100 216.65 11856 0.1906 295.07 1.4216
15200 216.65 11670 0.1877 295.07 1.4216
15300 216.65 11488 0.1847 295.07 1.4216
15400 216.65 11308 0.1818 295.07 1.4216
15500 216.65 11131 0.1790 295.07 1.4216
15600 216.65 10957 0.1762 295.07 1.4216
15700 216.65 10786 0.1734 295.07 1.4216
15800 216.65 10617 0.1707 295.07 1.4216
15900 216.65 10451 0.1680 295.07 1.4216
16000 216.65 10287 0.1654 295.07 1.4216
16100 216.65 10126 0.1628 295.07 1.4216
16200 216.65 9968 0.1603 295.07 1.4216
16300 216.65 9812 0.1578 295.07 1.4216
16400 216.65 9658 0.1553 295.07 1.4216
16500 216.65 9507 0.1529 295.07 1.4216
16600 216.65 9359 0.1505 295.07 1.4216
16700 216.65 9212 0.1481 295.07 1.4216
16800 216.65 9068 0.1458 295.07 1.4216
16900 216.65 8926 0.1435 295.07 1.4216
17000 216.65 8786 0.1413 295.07 1.4216
17100 216.65 8649 0.1391 295.07 1.4216
17200 216.65 8514 0.1369 295.07 1.4216
17300 216.65 8380 0.1348 295.07 1.4216
17400 216.65 8249 0.1326 295.07 1.4216
17500 216.65 8120 0.1306 295.07 1.4216
17600 216.65 7993 0.1285 295.07 1.4216
17700 216.65 7868 0.1265 295.07 1.4216
17800 216.65 7745 0.1245 295.07 1.4216
17900 216.65 7624 0.1226 295.07 1.4216
18000 216.65 7505 0.1207 295.07 1.4216
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18100 216.65 7387 0.1188 295.07 1.4216
18200 216.65 7272 0.1169 295.07 1.4216
18300 216.65 7158 0.1151 295.07 1.4216
18400 216.65 7046 0.1133 295.07 1.4216
18500 216.65 6936 0.1115 295.07 1.4216
18600 216.65 6827 0.1098 295.07 1.4216
18700 216.65 6720 0.1081 295.07 1.4216
18800 216.65 6615 0.1064 295.07 1.4216
18900 216.65 6512 0.1047 295.07 1.4216
19000 216.65 6410 0.1031 295.07 1.4216
19100 216.65 6310 0.1015 295.07 1.4216
19200 216.65 6211 0.0999 295.07 1.4216
19300 216.65 6114 0.0983 295.07 1.4216
19400 216.65 6018 0.0968 295.07 1.4216
19500 216.65 5924 0.0953 295.07 1.4216
19600 216.65 5831 0.0938 295.07 1.4216
19700 216.65 5740 0.0923 295.07 1.4216
19800 216.65 5650 0.0909 295.07 1.4216
19900 216.65 5562 0.0894 295.07 1.4216
20000 216.65 5475 0.0880 295.07 1.4216
20100 216.75 5389 0.0866 295.14 1.4222
20200 216.85 5305 0.0852 295.20 1.4227
20300 216.95 5222 0.0839 295.27 1.4233
20400 217.05 5140 0.0825 295.34 1.4238
20500 217.15 5060 0.0812 295.41 1.4244
20600 217.25 4981 0.0799 295.48 1.4249
20700 217.35 4903 0.0786 295.54 1.4255
20800 217.45 4827 0.0773 295.61 1.4260
20900 217.55 4752 0.0761 295.68 1.4266
21000 217.65 4678 0.0749 295.75 1.4271
21100 217.75 4605 0.0737 295.82 1.4277
21200 217.85 4533 0.0725 295.88 1.4282
21300 217.95 4463 0.0713 295.95 1.4287
21400 218.05 4393 0.0702 296.02 1.4293
21500 218.15 4325 0.0691 296.09 1.4298
21600 218.25 4258 0.0680 296.16 1.4304
21700 218.35 4192 0.0669 296.22 1.4309
21800 218.45 4127 0.0658 296.29 1.4315
21900 218.55 4063 0.0648 296.36 1.4320
22000 218.65 4000 0.0637 296.43 1.4326
22100 218.75 3938 0.0627 296.49 1.4331
22200 218.85 3877 0.0617 296.56 1.4337
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22300 218.95 3817 0.0607 296.63 1.4342
22400 219.05 3758 0.0598 296.70 1.4348
22500 219.15 3699 0.0588 296.77 1.4353
22600 219.25 3642 0.0579 296.83 1.4359
22700 219.35 3586 0.0570 296.90 1.4364
22800 219.45 3530 0.0560 296.97 1.4370
22900 219.55 3476 0.0552 297.04 1.4375
23000 219.65 3422 0.0543 297.10 1.4381
23100 219.75 3370 0.0534 297.17 1.4386
23200 219.85 3318 0.0526 297.24 1.4391
23300 219.95 3266 0.0517 297.31 1.4397
23400 220.05 3216 0.0509 297.37 1.4402
23500 220.15 3167 0.0501 297.44 1.4408
23600 220.25 3118 0.0493 297.51 1.4413
23700 220.35 3070 0.0485 297.58 1.4419
23800 220.45 3023 0.0478 297.64 1.4424
23900 220.55 2976 0.0470 297.71 1.4430
24000 220.65 2930 0.0463 297.78 1.4435
24100 220.75 2885 0.0455 297.85 1.4441
24200 220.85 2841 0.0448 297.91 1.4446
24300 220.95 2797 0.0441 297.98 1.4451
24400 221.05 2755 0.0434 298.05 1.4457
24500 221.15 2712 0.0427 298.12 1.4462
24600 221.25 2671 0.0421 298.18 1.4468
24700 221.35 2630 0.0414 298.25 1.4473
24800 221.45 2590 0.0407 298.32 1.4479
24900 221.55 2550 0.0401 298.39 1.4484
25000 221.65 2511 0.0395 298.45 1.4490
25100 221.75 2473 0.0388 298.52 1.4495
25200 221.85 2435 0.0382 298.59 1.4500
25300 221.95 2398 0.0376 298.66 1.4506
25400 222.05 2361 0.0370 298.72 1.4511
25500 222.15 2325 0.0365 298.79 1.4517
25600 222.25 2289 0.0359 298.86 1.4522
25700 222.35 2254 0.0353 298.92 1.4528
25800 222.45 2220 0.0348 298.99 1.4533
25900 222.55 2186 0.0342 299.06 1.4539
26000 222.65 2153 0.0337 299.13 1.4544
26100 222.75 2120 0.0332 299.19 1.4549
26200 222.85 2088 0.0326 299.26 1.4555
26300 222.95 2056 0.0321 299.33 1.4560
26400 223.05 2025 0.0316 299.39 1.4566
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26500 223.15 1994 0.0311 299.46 1.4571
26600 223.25 1964 0.0306 299.53 1.4577
26700 223.35 1934 0.0302 299.60 1.4582
26800 223.45 1905 0.0297 299.66 1.4587
26900 223.55 1876 0.0292 299.73 1.4593
27000 223.65 1847 0.0288 299.80 1.4598
27100 223.75 1819 0.0283 299.86 1.4604
27200 223.85 1792 0.0279 299.93 1.4609
27300 223.95 1765 0.0275 300.00 1.4614
27400 224.05 1738 0.0270 300.06 1.4620
27500 224.15 1712 0.0266 300.13 1.4625
27600 224.25 1686 0.0262 300.20 1.4631
27700 224.35 1660 0.0258 300.27 1.4636
27800 224.45 1635 0.0254 300.33 1.4642
27900 224.55 1611 0.0250 300.40 1.4647
28000 224.65 1586 0.0246 300.47 1.4652
28100 224.75 1562 0.0242 300.53 1.4658
28200 224.85 1539 0.0238 300.60 1.4663
28300 224.95 1516 0.0235 300.67 1.4669
28400 225.05 1493 0.0231 300.73 1.4674
28500 225.15 1470 0.0227 300.80 1.4679
28600 225.25 1448 0.0224 300.87 1.4685
28700 225.35 1426 0.0220 300.93 1.4690
28800 225.45 1405 0.0217 301.00 1.4696
28900 225.55 1384 0.0214 301.07 1.4701
29000 225.65 1363 0.0210 301.13 1.4706
29100 225.75 1342 0.0207 301.20 1.4712
29200 225.85 1322 0.0204 301.27 1.4717
29300 225.95 1302 0.0201 301.33 1.4723
29400 226.05 1283 0.0198 301.40 1.4728
29500 226.15 1264 0.0195 301.47 1.4733
29600 226.25 1245 0.0192 301.53 1.4739
29700 226.35 1226 0.0189 301.60 1.4744
29800 226.45 1208 0.0186 301.67 1.4750
29900 226.55 1190 0.0183 301.73 1.4755
30000 226.65 1172 0.0180 301.80 1.4760
30100 226.75 1154 0.0177 301.87 1.4766
30200 226.85 1137 0.0175 301.93 1.4771
30300 226.95 1120 0.0172 302.00 1.4777
30400 227.05 1103 0.0169 302.07 1.4782
30500 227.15 1087 0.0167 302.13 1.4787
30600 227.25 1071 0.0164 302.20 1.4793
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30700 227.35 1055 0.0162 302.27 1.4798
30800 227.45 1039 0.0159 302.33 1.4803
30900 227.55 1023 0.0157 302.40 1.4809
31000 227.65 1008 0.0154 302.47 1.4814
31100 227.75 993 0.0152 302.53 1.4820
31200 227.85 978 0.0150 302.60 1.4825
31300 227.95 964 0.0147 302.67 1.4830
31400 228.05 949 0.0145 302.73 1.4836
31500 228.15 935 0.0143 302.80 1.4841
31600 228.25 921 0.0141 302.86 1.4846
31700 228.35 908 0.0138 302.93 1.4852
31800 228.45 894 0.0136 303.00 1.4857
31900 228.55 881 0.0134 303.06 1.4863
32000 228.65 868 0.0132 303.13 1.4868





E
CONVERSION FACTORS

Table E.1 Conversion factors

Quantity Unit SI-equivalent

Length 1 foot (ft) = 0.3048m
1 statute mile (mi) = 1.60934km
1 nautical mile (nmi) = 1.85200km
1 inch (in) = 0.0254m

Area 1 square foot (ft2) = 0.092903m2

Volume 1 Imperial gallon (gal) = 4.54609dm3

1 U.S. gallon (US gal) = 3.78541dm3

1 pint (pt) = 0.568261dm3

1 quart (qt) = 1.13652dm3

Velocity 1 ft/min = 0.00508m/s
1 ft/s = 0.3048m/s
1 mi/hr (mph) = 1.60934km/hr
1 nmi/hr (knot, kts) = 1.852km/hr

Acceleration 1 ft/s2 = 0.3048m/s2

Mass 1 pound (lb) = 0.453592kg
1 slug (slug) = 14.5939kg

Mass rate of flow 1 lb/s = 0.453592kg/s

Volume rate of flow 1 gal/hr = 4.54609dm3/hr
1 ft3/s = 0.0283168m3/s

Density 1 lb/ft3 = 16.0185kg/m3
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Table E.1 Conversion factors (continued)

Quantity Unit SI-equivalent

1 slug/ft3 = 515.379kg/m3

Force 1 kilogram-force (kgf) = 9.80665N
1 pound-force (lbf) = 4.44822N

Moment of force 1 pound-foot (lbf·ft) = 1.35582N·m
Moment of inertia 1 lb·ft2 = 0.0421401kg·m2

Pressure and stress 1 lbf/in2 (psi) = 6.89476kPa
1 lbf/ft2 = 47.8803Pa
1 inch mercury (in Hg) = 3.38639kPa
1 atmosphere (atm) = 101325Pa

Dynamic viscosity 1 lb/(ft·s) = 1.48816kg/(m·s)

Kinematic viscosity 1 ft2/s = 0.092903m2/s

Energy and work 1 ft·lbf = 1.35582J
1 kgf·m = 9.80665J
1 British thermal unit (Btu) = 1.05506kJ

Power 1 ft·lbf/s = 1.35582W
1 kgf·m/s = 9.80665W
1 Imperial horsepower (hp) (= 550ft·lbf/s) = 745.700W
1 metric horsepower (cv) (75kgf·m/s) = 735.499W

Heat flow rate 1 Btu/hr = 0.293071W

Temperature degree Celsius or centigrade (◦C) = (T ◦C+273.15)K
degree Fahrenheit (°F) = 5/9 · (T °F+459.67)K
degree Rankine (°R) = 5/9 · (T °R)K
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