Digitalisation of the Built Environment: 3rd 4TU-14UAS Research Day
Keywords:
Built Environment, Artificial Intelligence, Robotics, Augmented/Virtual/Mixed Reality, Digital TwinsSynopsis
Our built environment is facing critical environmental and societal challenges due to climate change, housing crisis, ageing population, and many other factors. Therefore, large-scale sustainable transitions of the built environment are urgently needed. Digitalization has an immense potential to accelerate a sustainable transition towards the adoption of renewable energy, the use of bio-based and circular materials in construction and renovation projects, and the construction/adaptation of climate-resilient buildings and urban infrastructures for the well-being of the citizens.
At the same time, there is still a need for new knowledge covering, for example, topics such as Artificial Intelligence, Robotics, Augmented/Virtual Reality, and Digital Twinning – and how they relate to the transition of the built environment. The annual “Research Day on Digitalization of the Built Environment” is an initiative of the four Dutch universities of technology (4TU) in collaboration with the fourteen Dutch universities of applied sciences (14UAS) to bring together researchers and to foster knowledge exchange in the aforementioned topics and challenges.
This open-access book contains the proceedings of the 3rd Research Day on Digitalization of the Built Environment in the form of selected extended abstracts. The event was jointly organized on 25 April 2024 by Inholland University of Applied Sciences, The Hague University of Applied Sciences, and Delft University of Technology.
Downloads
References
Agugiaro, G., García González, F.G., Cavallo, R. ( 2020). The city of tomorrow from... the data of today. ISPRS International Journal of Geo-Information, 9(9), 554. https://doi.org/10.3390/ijgi9090554
Agugiaro, G., González, F.G.G., Cavallo, R. ( 2020). The City of Tomorrow from... the Data of Today. ISPRS International Journal of Geo-Information, 9, 554. https://doi.org/10.3390/ijgi9090554
Barandier, P., Marques Cardoso, A. J. (2023). A review of fault diagnostics in heat pumps systems. Applied Thermal Engineering, 228, 120454. https://doi.org/10.1016/j.applthermaleng.2023.120454
Barisin, T., Jung, C., Müsebeck, F., Redenbach, C., Schladitz, K. (2022). Methods for segmenting cracks in 3d images of concrete: A comparison based on semi-synthetic images. Pattern Recognition, 129, 108747. https://doi.org/10.1016/j.patcog.2022.108747
Bashabsheh, A. K., Alzoubi, H.H., Ali, M. Z. (2019). The application of virtual reality technology in architectural pedagogy for building constructions. Alexandria Engineering Journal,58(2), 713-723. https://doi.org/10.1016/j.aej.2019.06.002
Berners-Lee, T. (2009). Linked Data. W3. https://www.w3.org/DesignIssues/LinkedData.html
Berners-Lee, T., Hendler, J., Lasilla, O. (2001). The Semantic Web. Scientific American, 284, 34-43. https://doi.org/10.1038/scientificamerican0501-34
Biljecki, F., Ledoux, H., Stoter, J. ( 2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37. https://doi.org/10.1016/j.compenvurbsys.2016.04.005
Bizer, C., Heath, T., Berners-Lee, T. (2009). Linked data - The story so far. International Journal on Semantic Web and Information Systems, 5(3), 1- 22. https://doi.org/10.4018/jswis.2009081901
Borrmann, A., König, M., Koch, C., Beetz, J. (2018). Building Information Modeling: Technology foundations and industry practice (1st ed.). Springer https://doi.org/10.1007/978-3-319-92862-3_1
Bout, B. van den. (2021). Fast Flood App, Fast Flood. https://fastflood.orgBout, B. van den, Jetten, V. G., van Westen, C. J., Lombardo, L. (2023). A breakthrough in fast flood simulation. Environmental Modelling & Software, 168, 105787. https://doi.org/10.1016/j.envsoft.2023.105787
Brown, T., Katz, B. (2009). Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation.
Castilla, M. del M., Álvarez, J. D., Rodríguez Diaz, F., Berenguel, M. (2014). Comfort in Buildings. In Castilla, M. del M., Álvarez, J. D., Rodríguez Diaz, F., Berenguel, M. (Eds.), Comfort Control in Buildings. (pp. 39-78). Springer https://doi.org/10.1007/978-1-4471-6347-3_3
Chamari, L., Petrova, E., Pauwels, P. (2022). A web-based approach to BMS, BIM and IoT integration: a case study. CLIMA 2022 Conference.
Chamari, L., Petrova, E., Pauwels, P. (2023). An End-to-End Implementation of a Service-Oriented Architecture for Data-Driven Smart Buildings. IEEE Access, 11, 117261-117281. https://doi.org/10.1109/ACCESS.2023.3325767
Chen, Y., Guo, M., Chen, Z., Chen, Z., Ji, Y. (2022). Physical energy and data-driven models in building energy prediction: A review. Energy Reports, 8, 2656-2671. https://doi.org/10.1016/j.egyr.2022.01.162
Cimino, C., Negri, E., Fumagalli, L. (2019). Review of digital twin applications in manufacturing. Computers in Industry, 113, 103130. https://doi.org/10.1016/j.compind.2019.103130
Coronado, E., Itadera, S., Ramirez-Alpizar, I. G. (2023). Integrating Virtual, Mixed, and Augmented Reality to Human-Robot Interaction Applications Using Game Engines: A Brief Review of Accessible Software Tools and Frameworks. Applied Sciences, 13(3)I, 1292. https://doi.org/10.3390/app13031292
Dais, D., Bal, İ. E., Smyrou, E., Sarhosis, V. (2021). Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Automation in Construction, 125, 103606. https://doi.org/10.1016/j.autcon.2021.103606
De Sá, B.A., Dezuo, T., Ohf, D. (2022). Shadow Modelling Algorithm for Photovoltaic Systems: Extended Analysis and Simulation. Journal of Control, Automation and Electrical Systems, 33, 1507-1518. https://doi.org/10.1007/s40313-022-00905-2
Deng, J., Singh, A., Zhou, Y., Lu, Y., Lee, V. C.-S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials, 356, 129238 https://doi.org/10.1016/j.conbuildmat.2022.129238
Deng, X., Tan, Z., Tan, M., Chen, W. (2021). A clustering-based climatic zoning method for office buildings in China. Journal of Building Engineering, 42, 102778. https://doi.org/10.1016/j.jobe.2021.102778
Dianatfar, M., Latokartano, J., Lanz, M. (2021). Review on existing VR/AR solutions in human-robot collaboration. Procedia CIRP, 97, 407-411. https://doi.org/10.1016/j.procir.2020.05.259
Digital Society Institute (2023). Digital Twin Geohub. https://www.utwente.nl/en/digital-society/research/digitalisation/digital-twin-geohub/
DynamoDS/Dynamo (2024) GitHub. Available at: https://github.com/DynamoDS/Dynamo (Last accessed: 31 May 2024).
EU Science Hub ( 2022) PVGIS Online Tool [WWW Document]. Photovolt. Geogr. Inf. Syst. URL https://joint-research-centre.ec.europa.eu/pvgis-online-tool_en (Last accessed 31 May 2024)
European Parliament, Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 ('European Climate Law'), (2021) https://eur-lex.europa.eu/eli/reg/2021/1119/oj
Eurostat. (2018). Economy-wide material flow accounts (2018 edition).
Foldager Jenson, S., Hemdrup Kristensen, J., Adamsen, S., Christensen, A., Verjrum Waehrens, B. (2023). Digital product passports for a circular economy: Data needs for product life cycle decision-making. Sustainable Production and Consumption, 37, 242-255. https://doi.org/10.1016/j.spc.2023.02.021
Graser, K., Walzer, A.N., Hunhevicz, J., Jähne, R., Seiler, F., Wüst, R., & Hall, D.M. (2023). Qualitative technology evaluation of digital fabrication with concrete: Conceptual framework and scoreboard. Automation in Construction, 154, 104964. https://doi.org/10.1016/j.autcon.2023.104964
Gröger, G., Plümer,L. (2012). CityGML-Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12-33. https://doi.org/10.1016/j.isprsjprs.2012.04.004
Guo, K., Guan, M., Yu, D. (2021). Urban surface water flood modelling - a comprehensive review of current models and future challenges. Hydrology and Earth System Sciences, 25(5), 2843-2860. https://doi.org/10.5194/hess-25-2843-2021
Hodavand, F., Ramaji, I. J., Sadeghi, N. (2023). Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings, 13(6), 1426. https://doi.org/10.3390/buildings13061426
Holmgren, W.F., Hansen, C.W., Mikofski, M.A. (2018). pvlib python: a python package for modeling solar energy systems. Journal of Open Source Software, 3(29), 884. https://doi.org/10.21105/joss.00884
ISO. International Organization for Standardization. (2015). Building construction - Organization of information about construction works - Part 2: Framework for classification(ISO Standard No. 12006-2:2015(en)) https://www.iso.org/obp/ui/#iso:std:iso:12006:-2:ed-2:v1:en
ISO. International Organization for Standardization. (2020). Building information modelling and other digital processes used in construction - Methodology to describe, author and maintain properties in interconnected data dictionaries(ISO Standard No. 23386-1-2020(en)). https://www.iso.org/standard/75401.html
James, G., Witten, D., Hastie, T., Tibshirani, R. (2021). An Introduction to Statistical Learning: with Applications in R. Springer. https://doi.org/10.1007/978-1-0716-1418-1
Jusuf, S.K., Mousseau, B., Godfroid, G., Soh Jin Hui, V. ( 2017). Integrated modeling of CityGML and IFC for city/neighborhood development for urban microclimates analysis. Energy Procedia, 122, 145-150 https://doi.org/10.1016/j.egypro.2017.07.329
Kaltenegger, J., Frandsen, K.M., Petrova, E. (2024). A data management perspective on building material classification. Journal of Building and Environment, 92, 109172. https://doi.org/10.1016/j.jobe.2024.109172
Kangari, R., Halpin, D.W. (1990). Identification of factors influencing implementation of construction robotics. Construction Management and Economics, 8(1), 89-104. https://doi.org/10.1080/01446199000000008
Koeva, M. N. , Cardenas Leon, I. L. , Morales Ortega, L. R. (2023). Developments, challenges and applications of city digital twins in the context of the SDGs. GIM International, 37(7), 26-29. https://issuu.com/geomarespublishing/docs/gim_7-2023?fr=xKAE9_zU1NUIlQ0BAQG463MgPtAnKH1j0wc8CAwrBOtzB3ATwCsEWBjoGbgptOkpFQ0BAQG463MgPtAnKH1j0wSzpNsEY_wYwMjc1ODkEBP4yBP8DNTc3HP8COTEc_jZaHBxa_jUC_wU4MjQxOAT-NW7-ajs6
Lee, D., Kim, J., Lee, D. (2019). Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation. International Journal of Aeronautical and Space Sciences, 20(1), 287-299. https://doi.org/10.1007/s42405-018-0120-5
Ma, Z., Walzer, A., Schumacher, C., Rust, R., Gramazio, F., Kohler, M.,& Bächer, M. (2020), Designing Robotically-Constructed Metal Frame Structures. Computer Graphics Forum, 39(2), 411-422. https://doi.org/10.1111/cgf.13940
Marougkas, A., Troussas, C., Krouska, A., Sgouropoulou, C. (2023). Virtual Reality in Education: A Review of Learning Theories, Approaches and Methodologies for the Last Decade. Electronics, 12(13), 2832. https://doi.org/10.3390/electronics12132832
Mishra, M. (2020). Convolutional Neural Networks, Explained. Toward Data Science. https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
Mohammadi, S., Weersink, A., van 't Ende, J., Struck, C. (2022). Rotatable Smart TinyLab, a platform for testing integrated façades and indoor climate. IOP Conference Series: Earth and Environmental Science, 1085, 012055. https://doi.org/10.1088/1755-1315/1085/1/012055
Nederlands Normalisatie Instituut (2024). Energy performance of buildings - Determination method (NTA 8800:2024 nl). https://www.nen.nl/en/nta-8800-2024-nl-320123
Norberg, A., Dziuban, C. D., Moskal, P. D. (2011). A time‐based blended learning model. On the Horizon, 19(3), 207-216. https://doi.org/10.1108/10748121111163913
Ohori, K.A., Biljecki, F., Diakité, A., Krijnen, T., Ledoux, H., Stoter, J. (2017). Towards an integration of GIS and BIM data: what are the geometric and topological issues. ISPRS Annals Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W5. https://doi.org/10.5194/isprs-annals-IV-4-W5-1-2017
OpenStreetMap. (2024). OpenStreetMap. https://www.openstreetmap.org/#map=7/52.154/5.295
Oulahen, G. (2021). Flood hazards, environmental rewards, and the social reproduction of risk. Geoforum,119, 43-51. https://doi.org/10.1016/j.geoforum.2020.12.021
Özgenel, Ç. F., Sorguç, A. G. (2018). Performance Comparison of Pretrained Convolutional Neural Networks on Crack Detection in Buildings. ISARC 2018 - 35th International Symposium on Automation and Robotics in Construction and International AEC/FM Hackathon: The Future of Building Things, 693-700. https://doi.org/10.22260/ISARC2018/0094
Palme, M., Privitera, R., Rosa, D.L. (2020). The shading effects of Green Infrastructure in private residential areas: Building Performance Simulation to support urban planning. Energy Build.229, 110531 https://doi.org/10.1016/j.enbuild.2020.110531
Peters, R., Dukai, B., Vitalis, S., van Liempt, J., Stoter, J. (2022). Automated 3D Reconstruction of LoD2 and LoD1 Models for All 10 Million Buildings of the Netherlands. Photogrammetic Engineering & Remote Sensing, 88(3), 165-170. https://doi.org/10.14358/PERS.21-00032R2
Plociennik, C., Pourjafarian, M., Saleh, S., Hagedorn, T., Do Carmo Precci Lopes, A., Vogelgesang, M., Baehr, J., Kellerer, B., Jansen, M., Berg, H., Ruskowski, M., Schebek, L., Ciroth, A. (2022). Requirements for a Digital Product Passport to Boost the Circular Economy. P326 - Informatik2022- Informatik in den Naturwissenschaften, 1485-1494..
Porsani, G. B., de Lersundi, K. D. V., Gutiérrez, A. S. O., Bandera, C. F. (2021). Interoperability between building information modelling (BIM) and building energy model (BEM). Applied Sciences, 11(5),1-20. https://doi.org/10.3390/app11052167
Rill-García, R., Dokladalova, E., Dokládal, P. (2022). Pixel-accurate road crack detection in presence of inaccurate annotations. Neurocomputing, 480, 1-13. https://doi.org/10.1016/j.neucom.2022.01.051
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A. M. (2016). The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016-December, 3234-3243. https://doi.org/10.1109/CVPR.2016.352
Soust-Verdaguer, B., Obrecht, T. P., Alaux, N., Hoxha, E., Saade, M. R. M., Röck, M., Garcia-Martinez, A., Llatas, C., Gómez de Cózar, J. C., Passer, A. (2023). Using systematic building decomposition for implementing LCA: The results of a comparative analysis as part of IEA EBC Annex 72. Journal of Cleaner Production, 384, 135422 https://doi.org/10.1016/j.jclepro.2022.135422
Stenfert, J., Driebergen, J., Baars, J. (2021) Automatische scheurherkenning, HHNK PR4515.10
Stenfert, J., Driebergen, J., Baars, J. (2022) Algoritme verbreding scheurdetectie, HHNK PR4666.10
Taha, N., Walzer, A.N., Ruangjun, J., Buergin, T., Doerfler, K., Lloret-Fritschi, E., Gramazio, F., & Kohler, M. (2019). Robotic AeroCrete - A novel robotic spraying and surface treatment technology for the production of slender reinforced concrete elements. In Sousa, J.P., Xavier, J.P., Castro Henriques, G. (Eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference (pp. 245-254). CumInCAD. https://doi.org/10.52842/conf.ecaade.2019.3.245
Taheri, S., Hosseini, P., Razban, A. (2022). Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review. Journal of Building Engineering, 60, 105067. https://doi.org/10.1016/j.jobe.2022.105067
Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in Construction, 101, 127-139. https://doi.org/10.1016/j.autcon.2019.01.020
Tardioli, G., Kerrigan, R., Oates, M., O'Donnell, J., Finn, D. P. (2018). Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Building and Environment, 140, 90-106. https://doi.org/10.1016/j.buildenv.2018.05.035
THUAS (2024). Occupancy and Climate. https://ui.haagsehogeschool.creamcookies.net
THUAS (n.d.). B4B Brains for Buildings. https://www.thuas.com/research/centre-expertise/b4b-brains-buildings
Tsai, B.S., Huizer, L., Giampaolo, M., Monté, S., Gong, S. (2023). (Co-)development of an open-data-based tool to perform preliminary environmental analyses at district scale in different (European) countries. Delft University of Technology. http://resolver.tudelft.nl/uuid:f837eb15-b62b-4981-865c-b85bac2d0a65
Tuononen, M., O'Connor, E.J., Sinclair, V.A. ( 2019). Evaluating solar radiation forecast uncertainty. Atmospheric Chemistry and Physics, 19(3), 1985-2000. https://doi.org/10.5194/acp-19-1985-2019
UN. Population Division (2018). The World's Cities in 2018. United Nations, New York, USA.
United Nations, Framework Convention On Climate Change (2015) Adoption of the Paris Agreement, 21st Conference on the parties, Paris: United Nations. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
Verbeke, D., Aerts, G., Reynders, Y., Ma, Y., Waide, P. S. (2020). Final report on the technical support to the development of a smart readiness indicator for buildings. European Commission.
W3C. (2014).RDF. https://www.w3.org/RDF
Walzer, A.N., Kahlert, A., Baumann, M., Uhlmann, M., Vasey, L., & Hall, D.M. (2022). Beyond googly eyes: Stakeholder perceptions of robots in construction. Construction Robotics, 6, 221-237. https://doi.org/10.1007/s41693-022-00087-y
Walzer, A.N., Kozlova, M., Yeomans, J. S. (2024b, in press). Printing homes: unit cost estimation for additive manufacturing in construction. In M. Kozlova & J. S. Yeomans (Eds.), Sensitivity Analysis for Business, Technology, and Policymaking Made Easy with Simulation Decomposition. Routledge. https://doi.org/10.4324/9781003453789-8
Walzer, A.N., Tan, T., Graser, K., Hall. D.M. (2024a, under review). Bug or Feature? Misaligned Institutional Logics of Construction Robotics Entrepreneurs and Venture Capitalists. Construction Management and Economics.
Wang, P., Wu, P., Wang, J., Chi, H.-L., Wang, X. (2018). A Critical Review of the Use of Virtual Reality in Construction Engineering Education and Training. International Journal of Environmental Research and Public Health, 15(6), 1204. https://doi.org/10.3390/ijerph15061204
Wickramasinghe, A., Muthukumarana, S., Loewen, D., Schaubroeck, M. (2022). Temperature clusters in commercial buildings using k-means and time series clustering. Energy Informatics, 5(1), 1. https://doi.org/10.1186/s42162-022-00186-8
Xu, J., Yuan, C., Gu, J., Liu, J., An, J., Kong, Q. (2023). Innovative synthetic data augmentation for dam crack detection, segmentation, and quantification. Structural Health Monitoring, 22(4), 2402-2426. https://doi.org/10.1177/14759217221122318
Younes, C., Shdid, C. A., Bitsuamlak, G. (2012). Air infiltration through building envelopes: A review. Journal of Building Physics, 35(3), 267-302. https://doi.org/10.1177/1744259111423085
