Proceedings of the 5th Symposium on the Dynamics and Control of Single-track Vehicles: Bicycle and Motorcycle Dynamics 2023, October 18-20, Delft, The Netherlands

Authors

Jason K. Moore (ed)
Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, The Netherlands
https://orcid.org/0000-0002-8698-6143
Edwin de Vries (ed)
Cruden B.V., The Netherlands
https://orcid.org/0000-0002-2496-6614
Andrew Dressel (ed)
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, United States of America
https://orcid.org/0000-0003-0322-9815
Leila Alizadehsaravi (ed)
Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, The Netherlands
https://orcid.org/0000-0002-9654-7064

Keywords:

bicycle, motorcycle, single-track vehicle, dynamics, control

Synopsis

The Bicycle and Motorcycle Dynamics (BMD) Conference is held every three years. The first conference was held in Delft, The Netherlands in 2010. The aim of this symposium is to bring together leading scientists and researchers in the field of bicycle and motorcycle dynamics and control, in a broad sense. Topics include but are not limited to: single track vehicles (e.g. bicycles, motorcycles, scooters), narrow track and tilting vehicles, unicycles, dicycles (e.g. Segways and hoverboards), modeling, kinematics and dynamics, control, human control, rider properties, handling qualities, tires, experiments, aerodynamics, simulators, nonholonomic dynamics, robot riders, path following. For an open sharing of information, the meeting is organized to provide as much interaction between participants as possible. The format is informal and fluid, with a single track of presentations and extensive time scheduled for interaction, and the forming and sharing of ideas. 

Downloads

Download data is not yet available.

Author Biography

Jason K. Moore (ed), Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, The Netherlands

Jason K. Moore is an Assistant Professor of BioMechanical Engineering at Delft University of Technology. He leads the TU Delft Bicycle Lab (https://mechmotum.github.io http://bicycle.tudelft.nl) that focuses on a broad set of bicycle related engineering topics. His primary research interest is the human operated control of single-track vehicles but his work also spans various topics in sports engineering, computational optimal control, bicycle traffic safety, and engineering education. He teaches topics in dynamics, control, and engineering computation. He is a past Fulbright Scholar and his graduate degrees are from the University of California, Davis where he was also an assistant professor of teaching from 2015-2020.

References

Acosta, E. & Castillo, J., Cabrera, J., Velasco García, J. M., Fernández, J. & Alcazar, M. (2020). Modeling of tire vertical behavior using a test bench. IEEE Access. PP. 1-1. https://doi.org/10.1109/ACCESS.2020.3000533

Acosta, M., Kanarachos, S., and Blundell, M. (2018). Virtual tyre force sensors: An overview of tyre model-based and tyre model-less state estimation techniques. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(14):1883-1930. https://doi.org/10.1177/0954407017728198

ACT Lab (2016), Crank Fatigue Test, https://www.youtube.com/watch?v=7rZ1L6brkNE

ACT Lab (2016), Crank Fatigue Test,https://www.youtube.com/watch?v=7rZ1L6brkNE

ACT Lab (2017), Frame Fatigue with Pedalling Forces Test, https://www.youtube.com/watch?v=8blo6O_KIAs

ACT Lab (2017), Frame Fatigue with PedallingForces Test, https://www.youtube.com/watch?v=8blo6O_KIAs

Akinori Shinagawa etl.al.: Development and application of simple measurement and analysis techniques for motorcycle motion(in Japanese), Yamaha Motor Technical Review (2021-12),pp.131-136Theoretical Approaches (Category 2)

Akira Aoki et.al.: Aerodynamic characteristics of motorcycles (in Japanese), JARI Research Journal, No.63, (1977),pp.1-36

Akira Aoki et.al.: Analysis on Influence of Frame Stiffness on Straight-running Stability of Motorcycles (in Japanese), Transaction of JSME (Category C), Vol.64, No.625 (1998), pp.3555-3562 https://doi.org/10.1299/kikaic.64.3555

Akira Aoki et.al.: Basic characteristics of motorcycles (in Japanese), JARI Research Journal, No.62, (1977),pp.1-36

Akira Aoki et.al.: Investigation of the validity of the basic motion model for motorcycles (in Japanese), Transaction of JSME (Category C), Vol.65, No.636 (1999), pp.3142-3148 https://doi.org/10.1299/kikaic.65.3142

Akira Aoki et.al.: Measurement of motorcycle frame stiffness (in Japanese), Automotive Research, Vol.19, No.9 (1997), pp.362-367

Akira Aoki et.al.: Steer Dynamics of Motorcycle Tires (in Japanese), Automotive Research, Vol.2, No.6 (1980), pp.167-171

Akira Aoki et.al.:Effects of Rider's Vibrational Characteristics on Straight-Running Stability of Motorcycles(in Japanese),Transaction of JSME (Category C), Vol.65, No.634, (1999),pp.134-141 https://doi.org/10.1299/kikaic.65.2294

Akira Aoki et.al.On Directional Stability of Motorcycles (in Japanese), Journal of JSAE, Vol. 40, No.3,(1986), pp.305-310

Akira Aoki: Study on Motorcycle Dynamics (in Japanese), Doctoral Thesis at Nihon University (2000),pp.1-199

Akira Hasegawa: Characteristics of Motion of Motorcycles (in Japanese), Journal of JSAE, Vol. 32, No.4,(1978), pp.300-304

Akira Hasegawa: Prediction Technology and CAE for Motorcycle Stability and Handling(in Japanese), Journal of JSAE, Vol.40, No.3,(1986), pp.324-330

Alberto Doria, Mauro Tognazzo, Gianmaria Cusimano, Vera Bulsink, Adrian Cooke & Bart Koopman (2013) Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics, Vehicle System Dynamics, 51:3, 405-420, https://doi.org/10.1080/00423114.2012.754048

Allen, R., & O'Hanlon, J. (1979). Effects of roadway delineation and visibility conditions on driver steering performance. Transportation research record, 739, 5-8.

Allen, B. L., Shin, B. T., and Cooper, P. J. (1978). Analysis of traffic conflicts and collisions.Transportation Research Record,667(1):67-74.

Allouis, C., Farroni, F., Sakhnevych, A., and Timpone, F. (2016). Tire thermal characterization: test procedure and modelparameters evaluation. InProceedings of the 24th World Congress on engineering, London.

Allouis, C., Farroni, F., Sakhnevych, A., Timpone, F. (2016).Tire thermal characterization: test procedure and model parameters evaluation. Proceedings of the 24th World Congress on engineering, London, 2016.

Altche, F., & De La Fortelle, A. (2017). An LSTM network for highway trajectory prediction. In IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (pp. 353-359). IEEE. https://doi.org/10.1109/ITSC.2017.8317913

Altche,F., & De La Fortelle,A. (2017). An LSTM network for highway trajectory prediction. In IEEE 20th InternationalConferenceon Intelligent Transportation Systems (ITSC)(pp.353-359). IEEE. https://doi.org/10.1109/ITSC.2017.8317913

Amidi, O. and Thorpe, C. (1991). Integrated mobile robot control. InProceedings of SPIE - The International Society for OpticalEngineering, volume 1388, pages 504 - 523.

Ando, T., and Kitani, T. (2020), A Time Alignment Method for Multiple Sensing Systems with GNSS Timing and IMUs with Frame-Sync Input, Proceedings, 2020 IEEE International Conference on Pervasive Computing and Communications Workshops(PerCom Workshops), pp. 1-6, Austin, TX, USA https://doi.org/10.1109/PerComWorkshops48775.2020.9156099

Appell, P. (1900). Sur une forme générale des équations de la dynamique (On a general form of the equations of dynamics).Journalfür die reine und angewandte Mathematik (Journal for Pure and Applied Mathematics), 121:310- 319.https://doi.org/10.1515/crll.1900.121.310

Arioui, H., Nehaoua, L., Hima, S., Seguy, N., &Espie, S. (2010). Mechatronics, design, and modeling of a motorcycle riding simulator. IEEE/ASME Transactions on Mechatronics, 15(5):805-818. https://doi.org/10.1109/TMECH.2009.2035499

Arndt, R. (2021). Stereo-Video-Sensortechnik-Detektion und Verfolgung von Verkehrsobjekten am Testfeld Niedersachsen. [Stereo video sensor technology-detection and tracking of traffic objects at the Test Bed Lower Saxony for automated and connected mobility] guest lecture at the DLR (online) on 26.04.2021. Unpublished manuscript.

Arrieta Castro, A. & Rill, G. (2020). Road Vehicle Dynamics.Boca Raton: CRC Press.

Arun, A., Haque, M. M., Bhaskar, A., Washington, S., and Sayed, T. (2021). A systematic mapping review of surrogate safetyassessment using traffic conflict techniques.Accident Analysis & Prevention, 153:106016. https://doi.org/10.1016/j.aap.2021.106016

Astrom, K. J., Klein, R. E., & Lennartsson, A. (2005). Bicycle Dynamics and Control: Adapted Bicycles for Education and Research. IEEE Control Systems, 25(4), 26-47. https://doi.org/10.1109/MCS.2005.1499389

Åström, K. J., Klein, R. E., & Lennartsson, A. (2005). Bicycle Dynamics and Control. Control Systems Magazine, 25(4), 26-47. https://doi.org/10.1109/MCS.2005.1499389

Åström,K.J., Klein,R.E., & Lennartsson,A. (2005). Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Systems Magazine, 25(4), 26-47. https://doi.org/10.1109/MCS.2005.1499389

Atsurou Ohta et.al.: Reverse control system for motorcycles(in Japanese), HONDA R&D Technical Review Vol.2 (1990),pp.49-58

Atsushi Matsuda et.al.: Introduction of the application of front and rear wheel steering systems to motorcycle (in Japanese), Journalof JSAE, Vol.41, No.3, (1987), pp.411-417

Atsushi Watanabe et.al.: Construction of Riding Simulator for Two-wheeled Vehicle Handling, Proc. of DSC 2012 (2012)

Atsushi Watanabe et.al.: Study on Construction of Riding Simulator with Stereoscopic Vision for Two-Wheeled Vehicle(in Japanese),Transaction of JSME (Category C), Vol.79, No.806, (2013),pp.343-352 https://doi.org/10.1299/kikaic.79.3632

Ayres, T. J., Kelkar, R., Kubose, T., & Shekhawat, V. (2015, September). Bicyclist behavior at stop signs. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 59, No. 1, pp. 1616-1620). Sage CA: Los Angeles, CA: SAGE Publications. https://doi.org/10.1177/1541931215591350

Azhar, M. F. (2014). Structural analysis of an ergonomic motorcycle test rig using finite element analysis (fea).

Barbaro, M., Genovese, A., Timpone, F., and Sakhnevych, A. (2024). Extension of the multiphysical magic formula tire modelfor ride comfort applications.Nonlinear Dynamics. https://doi.org/10.1007/s11071-023-09266-0

Barr, R. (1907). Louis Brennan's Gyro-mono-rail: An invention that is likely to revolutionise the traffic of the world.The idler; anillustrated monthly magazine, 31(60):650-657.

Bartolozzi, M., Berzi, L., Meli, E., and Savino, G. (2022). Similarities in steering control between cars and motorcycles: application to a low-complexity riding simulator. Meccanica, 57(11):2863-2883. https://doi.org/10.1007/s11012-022-01603-8

Bartolozzi, R., Frendo, F., Giuggiano, M., & Sponziello A. (2008). Comparison between experimental and numerical handling tests for a three-wheeled motorcycle. SAE Int. J. Engines1(1):1389-1395, https://doi.org/10.4271/2008-32-0061

Bartolozzi, R., Frendo, F., Giuggiano, M., & Sponziello A. (2008). Comparison between experimental and numerical handling tests for a three-wheeled motorcycle. SAE Int. J. Engines1(1):1389-1395 https://doi.org/10.4271/2008-32-0061

Bastianelli, B.M.,Workman, A. &McGregor, S.(2019, June), Novel Crank with Elastomer Spring Improves Effective Power in Trained Cyclists and Triathletes, Medicine & Science in Sports & Exercise, Chicago, 2019,51(6S):p 942-943, June 2019. https://doi.org/10.1249/01.mss.0000563325.88977.7f

Bastianelli, B.M.,Workman, A.&McGregor, S.(2019, June), Novel Crank with Elastomer Spring Improves Effective Power in Trained Cyclists and Triathletes, Medicine & Science in Sports & Exercise, Chicago, 2019,51(6S):p 942-943, June 2019. https://doi.org/10.1249/01.mss.0000563325.88977.7f

Basu-Mandal, P. (2007).Studies on the dynamics and stability of bicycles. PhD thesis.

Bechtloff, J. (2017).Schätzung des Schwimmwinkels und fahrdynamischer Parameter zur Verbesserung modellbasierter Fahrdy-namikregelungen. Technische Universität Darmstadt https://doi.org/10.51202/9783186809124

Behrensen, A.& Sumer, A.(2020),First European Cargo Bike Industry Survey. Cyclelogistics.eu, Brussels/Berlin. Available online: http://cyclelogistics.eu/wp-content/uploads/2022/09/Survey_market_sitze_results.pdf

Benedetto, S., Lobjois, R., Faure, V., Dang, N.-T., Pedrotti, M., and Caro, S. (2014). A comparison of immersive and interactive motorcycle simulator configurations. Transportation research part F: Traffic psychology and behaviour, 23:88-100. https://doi.org/10.1016/j.trf.2013.12.020

Bertolazzi,E.,Biral,F.,andDaLio,M.(2006).Symbolic-numeric efficient solution of optimal control problems for multi body systems. Journal of computational and applied mathematics,185(2):404-421. https://doi.org/10.1016/j.cam.2005.03.019

Betts, J. T. (2010).Practical methods for optimal control and estimation using nonlinear programming. SIAM. https://doi.org/10.1137/1.9780898718577

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., & Jenssen, R. (2017). Recurrent neural networks for short-term load forecasting: An overview and comparative analysis. SpringerBriefs in computer science. Springer. https://doi.org/10.1007/978-3-319-70338-1

Biegler, L. T. and Zavala, V. M. (2009). Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization.Computers & Chemical Engineering, 33(3):575-582. https://doi.org/10.1016/j.compchemeng.2008.08.006

Biral, F., Bosetti, P., & Lot, R. (2014). Experimental evaluation of a system for assisting motorcyclists to safely ride road bends. European Transport Research Review, 6(4), 411-423. https://doi.org/10.1007/s12544-014-0140-6

Biral, F., Lot, R., Rota, S., Fontana, M., and Huth, V. (2012). Intersection support system for powered two-wheeled vehicles: Threat assessment based on a receding horizon approach. IEEE Transactions on Intelligent Transportation Systems, 13(2):805-816. https://doi.org/10.1109/TITS.2011.2181835

Biral,F., Bosetti,P., & Lot,R. (2014). Experimental evaluation of a system for assisting motorcyclists to safely ride road bends.European Transport Research Review, 6(4), 411-423. https://doi.org/10.1007/s12544-014-0140-6

Blaauw, G. J. (1982). Driving experience and task demands in simulator and instrumented car: a validation study. Human FActors, 24(4), 473-486. https://doi.org/10.1177/001872088202400408

Blaauw, G. J. (1982).Driving experience and task demands in simulator and instrumented car: A validation study.Human Factors, 24(4), 473-486 https://doi.org/10.1177/001872088202400408

Blana, E. (1996). Driving Simulator Validation Studies: A Literature Review. Caird, J. K., & Horrey, W. J. (2011). Twelve practical and useful questions about driving simulation. Handbook of driving simulation for engineering, medicine, and psychology, 5.1-5.16.

Blana, E. (1996).Driving Simulator Validation Studies: A Literature Review. Institute of Transport Studies, University of Leeds, Working Paper 480.http://eprints.whiterose.ac.uk/2111

Blanchette, C., Boisvert, M., Joubert, N., Rancourt, D., and Desrochers, A. (2021). Dynamic input loads evaluation of a recreationalvehicle frame using multibody dynamics hybrid modeling validated with experimental and full analytical modeling data.Advancesin Mechanical Engineering, 13(8) https://doi.org/10.1177/16878140211034608

Blissett, J. (2019). A Wholistic Motor Design Philosophy for Electric Motorcycles in Motorsport.PhD thesis, University of Nottingham, U.K.

Bogdanov, A. (2004). Optimal control of a double inverted pendulum on a cart. Oregon Health and Science University, Tech. Rep. CSE-04-006, OGI School of Science and Engineering, Beaverton, OR.

Bolk, J., Kiesewetter, M., and Corves, B. (2023). Establishment of a numerical test rig environment for bicycles by means ofmulti-body simulation.9th IFToMM D-A-CH conference 2023: 16./17. March 2023, Univerity Basel, 2023.

Born, K.-P. (1989). Entwurf und Aufbau eines Motorradfahrsimulators unter Verwendung eines digitalen Aussensichtsystems und Untersuchung seiner verkehrssicherheitstechnischen Anwendungsmöglichkeiten. PhD thesis, Bergische Universitat Wuppertal.

Bouaouni, M. Y., Yahia, R. A. A., and Boubezoul, A. (2021). Driving-pattern identification and event detection based on an unsupervised learning framework: Case of a motorcycle-riding simulator. IEEE Access, 9:158456-158469.https://doi.org/10.1109/ACCESS.2021.3130400

Bougard, C., VanBeers, P., Sauvet, F., Drogou, C., Guillard, M., Dorey, R., Gomez-Merino, D., Dauguet, J., Takillah, S., Espie, S., et al. (2020). Motorcycling performance and sleepiness during an extended ride on a dynamic simulator: relationship with stress biomarkers. Physiological measurement, 41(10):104004. https://doi.org/10.1088/1361-6579/abb75e

Brancati, R., Strano, S., and Timpone, F. (2011). An analytical model of dissipated viscous and hysteretic energy due tointeraction forces in a pneumatic tire: Theory and experiments.Mechanical Systems and Signal Processing https://doi.org/10.1016/j.ymssp.2011.04.007

Brännström, M., Coelingh, E., & Sjöberg, J. (2014). Decision-making on when to brake and when to steer to avoid a collision. International Journal of Vehicle Safety 1, 7(1), 87-106. https://doi.org/10.1504/IJVS.2014.058243

Brassart, F. P. and Wright, M. E. (1993).A Machine to Study Vertical Tire Stiffness and Damping Coefficient. SAE Technical PaperSeries. https://doi.org/10.4271/932391

Bretting, G. P., Jansen, H. P., Callahan, M., Bogler, J., & Prunckle, J. (2010). Analysis of Bicycle Pitch-Over in a Controlled Environment. SAE International Journal of Passenger Cars -Mechanical Systems, 3(1), 57-71. https://doi.org/10.4271/2010-01-0064

Bretting, G. P., Jansen, H. P., Callahan, M., Bogler, J., & Prunckle, J. (2010). Analysis of Bicycle Pitch-Over in a Controlled Environment. SAE International Journal of Passenger Cars -Mechanical Systems, 3(1), 57-71 https://doi.org/10.4271/2010-01-0064

Briem, V., Radeborg, K., Salo, I., & Bengtsson, H. (2004). Developmental aspects of children's behavior and safety while cycling. Journal of pediatric psychology, 29(5), 369-377 https://doi.org/10.1093/jpepsy/jsh040

Briges, P., Russell, J., (1987). The Effect of Topboxes on Motorcycle Stability.Vehicle System Dynamics, 16(5-6), 345-354. https://doi.org/10.1080/00423118708968891

Brockie, S. G. (2021).Predictive Simulation of Musculoskeletal Models Using Direct Collocation. PhD thesis, University of Cambridge.

Brockmann, M. (2009). Code of Practice for the Design and Evaluation of ADAS. http://www.acea.be/publications/article/code-of-practice-for-the-design-and-evaluation-of-adas, 2009. Access: 17-11-2021.

Brown, L., Morris, A., Thomas, P., Ekambaram, K., Margaritis, D., Davidse, R., Usami, D. S., Robibaro, M., Persia, L., Buttler, I., Ziakopoulos, A., Theofilatos, A., Yannis, G., Martin, A., & Wadji, F. (2021). Investigation of accidents involving powered two wheelers and bicycles - A European in-depth study. Journal of Safety Research, 76, 135-145. https://doi.org/10.1016/j.jsr.2020.12.015

Brown,L., Morris,A., Thomas,P., Ekambaram,K., Margaritis,D., Davidse,R., Usami,D.S., Robibaro,M., Persia,L., Buttler,I.,Ziakopoulos,A., Theofilatos,A., Yannis,G., Martin,A., & Wadji,F. (2021). Investigation of accidents involving powered two wheelers and bicycles - A European in-depth study. Journal of Safety Research, 76,135-145. https://doi.org/10.1016/j.jsr.2020.12.015

Bruni, S., Meijaard, J. P., Rill, G., and Schwab, A. L. (2020). State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches.Multibody system dynamics, 49(1):1-32. https://doi.org/10.1007/s11044-020-09735-z

Bruni, S.; Meijaard, J. P.; Rill, G.; Schwab, A. L.: State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody system dynamics, 49 (2020) https://doi.org/10.1007/s11044-020-09735-z

Bruschetta, M., Picotti, E., De Simoi, A., Chen, Y., Beghi, A., Nishimura, M., Tezuka, Y., and Ambrogi, F. (2021). Real-time nonlinear model predictive control of a virtual motorcycle.IEEE Transactions on Control Systems Technology, 29(5):2214- 2222. https://doi.org/10.1109/TCST.2020.3022462

Bryson, A., Schoonwinkel, A.(1988), Design and test of a computer-stabilized unicycle, Engineering.

Bubb, H., Bengler, K., Grünen, R. E., Vollrath, M. (2015)Automobilergonomie,. 1st ed.; Springer Vieweg: Wiesbaden, Germany. https://doi.org/10.1007/978-3-8348-2297-0

Buld, S., Will, S., Kaussner, A., and Kruger, H.-P. (2014). Entwicklung eines Verfahrens zur Erfassung der Fahrerbeanspruchung beim Motorradfahren.

Bulsink, V., Doria, A, van de Belt, D., Koopman, B. (2015). The effect of tyre and rider properties on the stability of a bicycle. Advancein Mechanical Engineering7(12). https://doi.org/10.1177/1687814015622596

Cain, S. M., Ashton-Miller, J. A., and Perkins, N. C. (2016). On the Skill of Balancing While Riding a Bicycle.PLOS ONE,11(2):e0149340. Publisher: Public Library of Science. https://doi.org/10.1371/journal.pone.0149340

Cain, S. M. and Perkins, N. C. (2010). Comparison of a Bicycle Steady-State Turning Model to Experimental Data. page 21.

Cain, S. M., Ulrich, D. A., and Perkins, N. C. (2012). Using Measured Bicycle Kinematics to Quantify Increased Skill as a Rider Learns to Ride a Bicycle. pages 195-199. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8541

Cain, S. M., Ashton-Miller, J. A., & Perkins, N. C. (2016). On the skill of balancing while riding a bicycle. PLoS one, 11(2), e0149340. https://doi.org/10.1371/journal.pone.0149340

Cao, D., Song, X., & Ahdmadian, M. (2011). Editors' perspectives: Road Vehicle Suspension Design, Dynamics, and Control. Journal of Vehicle System Dynamics. https://doi.org/10.1080/00423114.2010.532223

Cao, X., Bui, D. C., Takács, D., and Orosz, G. (2023). Autonomous unicycle: Modeling, dynamics, and control.submitted. https://doi.org/10.1007/s11044-023-09923-7

Carabias Acosta, E., Castillo Aguilar, J.J., Cabrera Carrillo, J. A., Velasco Garcia, J.M., Fernandez, J.P., & Alcazar Vargas, M.G. (2020, June 18). Modeling of Tire Vertical Behavior Using a Test Bench. IEEE Access, 8, pp. 106531-106541. https://doi.org/10.1109/ACCESS.2020.3000533

Carabias Acosta, E., Castillo Aguilar, J.J., Cabrera Carrillo, J. A., Velasco Garcia, J.M., Fernandez, J.P., & Alcazar Vargas, M.G. (2020). Modeling of Tire Vertical Behavior Using a Test Bench. IEEE Access, 8, pp. 106531-106541. https://doi.org/10.1109/ACCESS.2020.3000533

Carla Cargo (2022). Products - eCarla. Available online: https://www.carlacargo.de/de/produkte/ecarla/ [14.07.2022].

Carron, A., Arcari, E., Wermelinger, M., Hewing, L., Hutter, M., and Zeilinger, M. N. (2019). Data-driven model predictive control for trajectory tracking with a robotic arm. IEEE Robotics and Automation Letters, 4(4):3758-3765. https://doi.org/10.1109/LRA.2019.2929987

Carvallo, E. (1899).Théorie du mouvement du monocycle et de la bicyclette.Gauthier-Villars.

Carvallo, E. (1901).Theorie de mouvement du monocycle et de la bycyclette. J. Ec. Polytech. Paris.

Champoux, Y., Richard, S., and Drouet, J.-M. (2007). Bicycle structural dynamics.Sound and vibration, 41(7):16-25.

Cheli, F.; Pezzola, M.; Taroni, N.; Mazzoleni, P.; Zappa, E. (2011) Driver's movements influence on the lateral dynamic of a sport motorbike, 19th Mediterranean Conference on Control and Automation https://doi.org/10.1109/MED.2011.5983207

Chen, C., Tomizuka, M. (1995), Dynamic Modeling of Tractor-Semitrailer Vehicles in Automated Highway Systems. California PATH Working Paper, UCB-ITS-PWP-95-8.

Chénier, F., Gagnon, D.H., Blouin, M., & Aissaoui, R. (2016). A Simplified Upper-Body Model to Improve the External Validity of Wheelchair Simulators. IEEE/ASME Transactions on Mechatronics, 21, 1641-1649. https://doi.org/10.1109/TMECH.2016.2527240

Chiyoda, S., Yoshimoto, K., Kawasaki, D., Murakami, Y., and Sugimoto, T. (2002). Development of a motorcycle simulator using parallel manipulator and head mounted display. In The Proceedings of the International Conference on Motion and Vibration Control 6.1, pages 599-602. The Japan Society of Mechanical Engineers. https://doi.org/10.1299/jsmeintmovic.6.1.599

Chowdhury, H., Alam, F. (2012), Bicycle aerodynamics: an experimental evaluation methodology. Sports Eng (2012), 15. https://doi.org/10.1007/s12283-012-0090-y

Coffeng, B. G. (1985). Roodlichtdiscipline van (brom) fietsers: een verkennend onderzoek. Opdracht van het Directoraat-Generaal Rijkswaterstaat, Dienst Verkeerkunde DVK, ed. Kenmerk RWD/752/18/Ht (Deventer: Bureau Goudappel Coffeng).

Colburn, N., Meyer, R. D., Wrigley, M., &Bradley, E. L. (1993). Should motorcycles be operated within the legal alcohol limits for automobiles. The Journal of Trauma, 35(2):183-186. https://doi.org/10.1097/00005373-199308000-00002

Connected Motorcycle Consortium. (2023, April 7). Path Prediction for PTWs: CMC Whitepaper. https://www.cmc-info.net/uploads/1/2/1/4/121453783/whitepaper_path_prediction.pdf

Connected Motorcycle Consortium. (n.d.). Applications to improve rider safety. Retrieved February3, 2023, fromhttps://www.cmc-info.net/applications.html

Cooper R. A. (2009). SMARTWheel: From concept to clinical practice. Prosthetics and orthotics international, 33(3), 198-209. https://doi.org/10.1080/03093640903082126

Cooper, G. and Harper, R. (1969). The use of pilot ratings in evaluation of aircraft handling qualities. NASA Ames Technical Report.

Cooper, K., (1983). The effect of handlebar fairings on motorcycle aerodynamics.SAE Technical Paper 830156, 1983 https://doi.org/10.4271/830156

Corke, P. (2017).Robotics, Vision and Control: Fundamental Algorithms In MATLAB®, volume 118 of Springer Tracts in Advanced Robotics. Springer, Cham, 2nd edition.

Corke, P. (2017).Robotics, Vision and Control: Fundamental Algorithms In MATLAB®, volume 118 ofSpringer Tracts in AdvancedRobotics. Springer, Cham, 2nd edition.

Corno, M., D' Avico, L., & M., S. S. (2018, August 21-24). An Anti-Lock Braking System for Bicycles. 2018 IEEE Conference on Control Technology and Applications (CCTA), Copenhagen, Denmark, 834-839.https://doi.org/10.1109/CCTA.2018.8511615

Corno, M., D'Avico, L., & Savaresi, S. M. (2018). An anti-lock braking system for bicycles. In 2018 IEEE Conference on Control Technology and Applications, 834-839.Cossalter, V.(2006).Motorcycle dynamics.LuLu. https://doi.org/10.1109/CCTA.2018.8511615

Cossalter V., (2006). Motorcycle Dynamics. Lulu, Raileigh

Cossalter, V& Lot, R.(2002).A Motorcycle Multi-Body Model for Real Time Simulations Based on the Natural Coordinates Approach, Vehicle System Dynamics, 37:6, 423-447 https://doi.org/10.1076/vesd.37.6.423.3523

Cossalter, V. and Doria, A. (2004). Analysis of motorcycle slalom manoeuvres using the Mozzi axis concept. Vehicle System Dynamics, 42(3):175-194. https://doi.org/10.1080/00423110412331289817

Cossalter, V., & Sadauckas, J. (2006). Elaboration and quantitative assessment of manoeuvrability for motorcycle lane change. Vehicle System Dynamics, 44(12), 903-920. https://doi.org/10.1080/00423110600742072

Cossalter, V., Lot, R., & Maggio, F. (2004). On the Braking Behavior of Motorcycles. SAE Transactions, 113, 1274-1280. http://www.jstor.org/stable/44724955 https://doi.org/10.4271/2004-32-0018

Cossalter, V., Lot, R., & Maggio, F. (2004). On the Braking Behavior of Motorcycles. SAE Transactions, 1274-1280. https://doi.org/10.4271/2004-32-0018

Cossalter, V., Lot, R., Massaro, M., and Sartori, R. (2009). Development and testing of assistant rider systems with the unipd motorcycle riding simulator. In XIX Congresso Aimeta Associazone Italiana di Meccanica Teorica e Applicata, Italy, page 24.

Cossalter, V.; Lot, R.; Massaro, M.; Sartori, R.: Development and validation of an advanced motorcycle riding simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (6), Issues 225, pp. 705-720, 2011 https://doi.org/10.1177/0954407010396006

Cossalter, V. (2006). Motorcycle Dynamics(2nd ed.). Lulu.com.

Cossalter, V. (2006). Motorcycle Dynamics, 2nd ed. Lulu.com.

Cossalter, V. (2006). Motorcycle Dynamics. Second Edition, Lulu, Morrisville, NC, USA.

Cossalter, V. (2006).Motorcycle Dynamics Second Edition.

Cossalter, V. (2006).Motorcycle Dynamics. Lulu.

Cossalter, V. and Doria, A. (2005). The relation between contact patch geometry and the mechanical properties of motorcycletyres.Vehicle System Dynamics https://doi.org/10.1080/00423110500141045

Cossalter, V. and Sadauckas, J. (2006). Elaboration and quantitative assessment of manoeuvrability for motorcycle lane change. Vehicle System Dynamics, 44(12):903-920. Publisher: Taylor & Francis https://doi.org/10.1080/00423110600742072

Cossalter, V., 2002. Motorcycle Dynamics. No. ISBN 09720514-0-6. Race Dynamics, Greendale, WI.

Cossalter, V., Alberto, D., and Lot, R. (2004). Development and validation of a motorcycle riding simulator. FISITA F.

Cossalter, V., Doria, A., Garbin, S., & Lot, R. (2006). Frequency-domain method for evaluating the ride comfort of a motorcycle. Vehicle System Dynamics, 44, 339-355. https://doi.org/10.1080/00423110500420712

Cossalter, V., Lot, R. & Massaro, M. (2014). Motorcycle Dynamics. In Tanelli,, M., Corno, M. & Savaresi, S. M. (Eds.), Modelling, Simulation andControlof Two-wheeled Vehicles. John Wiley & Sons Ltd, Chichester. https://doi.org/10.1002/9781118536391.ch1

Cossalter, V., Lot, R., & Maggio, F. (2004). On the Braking Behavior of Motorcycles. SAE Transactions 113(6),1274-1280. https://doi.org/10.4271/2004-32-0018

Cossalter, V., Lot, R., and Massaro, M. (2007). The influence of frame compliance and rider mobility on the scooter stability. Vehicle System Dynamics, 45:313-326. https://doi.org/10.1080/00423110600976100

Cossalter, V., Lot, R., and Massaro, M. (2011). An advanced multibody code for handling and stability analysis of motorcycles.Meccanica, 46:943-958. https://doi.org/10.1007/s11012-010-9351-7

Cossalter, V., Lot, R., and Tavernini, D. (2013). Optimization of the centre of mass position of a racing motorcycle in dry and wet track by means of the 'optimal maneuver method'. In2013 IEEE International Conference on Mechatronics (ICM), pages412-417. IEEE. https://doi.org/10.1109/ICMECH.2013.6518572

Cossalter, V., Lot, R., Massaro, M., & Sartori, R. (2011). Development and validation of an advanced motorcycle riding simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225, 705-720. https://doi.org/10.1177/0954407010396006

Cossalter, V., Lot, R., Massaro, M., & Sartori, R. (2011). Development and validation of an advanced motorcycle riding simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225, 705-720. https://doi.org/10.1177/0954407010396006

Cossalter, V., Lot, R., Massaro, M., and Sartori, R. (2011). Development and validation of an advanced motorcycle riding simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(6):705-720. https://doi.org/10.1177/0954407010396006

Cossalter, V., Lot, R., Sartori, R., Massaro, R., et al. (2008). A motorcycle riding simulator for the improvement of the rider safety. FISITA F, pages 11-015.

Cossalter, V., Peretto, M., and Bobbo, S. (2010). Investigation of the influences of tyre-road friction and engine power on motorcycle racing performance by means of the optimal manoeuvre method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(4):503-519. https://doi.org/10.1243/09544070JAUTO1312

Crevecoeur, F. and Gevers, M. (2019). Filtering compensation for delays and prediction errors during sensorimotor control. Neural computation, 31(4):738-764. https://doi.org/10.1162/neco_a_01170

Crundall, D., Stedmon, A.W., Crundall, E., & Saikayasit, R. (2014). The role of experience and advanced training on performance in a motorcycle simulator. Accident Analysis & Prevention, 73:81-90. https://doi.org/10.1016/j.aap.2014.08.009

Crundall, E., Crundall, D., &Stedmon, A. W. (2012). Negotiating left-hand and right-hand bends: A motorcycle simulator study to investigate experiential and behaviour differences across rider groups. PLoS One, 7(1):e29978. https://doi.org/10.1371/journal.pone.0029978

Crundall, E., Stedmon, A. W., Saikayasit, R., &Crundall, D. (2013). A simulator study investigating how motorcyclists approach side-road hazards. Accident Analysis & Prevention, 51:42-50. https://doi.org/10.1016/j.aap.2012.10.017

Cuong, D., Zhu, S., Hung, D., & Ngoc, N. (2013). Study on the vertical stiffness and damping coefficient of tractor tire using semi-empirical model. Hue University Journal of Science. 83. 5-15. https://doi.org/10.26459/jard.v83i5.3071

D.L. Mills. Internet time synchronization: the network time protocol.IEEE Transactions on Communications, 39(10):1482-1493, 1991 https://doi.org/10.1109/26.103043

Dahl, C. W. (1971). Motorcycle riding simulator. US Patent 3686776A

Dao, M.Q. and Liu, K.Z (2005), Gain-scheduled stabilization control of a unicycle robot, JSME International Journal Series C, Vol. 4, pp. 649-656. https://doi.org/10.1299/jsmec.48.649

Darwish, W. (2022). FACTORS AFFECTING STOPPING BEHAVIOUR AT SUBURBAN INTERSECTIONS. Acta Logistica, 9(1), 109-114. https://doi.org/10.22306/al.v9i1.280

David L Mills. Network time protocol (NTP). Technical report, 1985 https://doi.org/10.17487/rfc0958

De Lorenzo, D. S., & Hull, M. L. (1999). A Hub Dynamometer for Measurement of Wheel Forces in Off-Road Bicycling. Journal of Biomechanical Engineering, 121(1), 132-137. https://doi.org/10.1115/1.2798034

De Luca, P., & Doria, A. (2007). Setting of scooter suspensions to optimize comfort in the presence of road bumps. Ingegneriade Autoveicolo, 60.

de Vette, V. G., Veeger, D. (H. E. J. ), andvan Dijk, M. P. (2022). Using Wearable Sensors to Estimate Mechanical Power Output in Cyclical Sports Other than Cycling-A Review. Sensors, 23(1), 50. https://doi.org/10.3390/s23010050

Delgado Ojeda, R. J. (2019). Design of a motorcycle mount with integrated roll-and-pitch-torque measurement on a motorcycle simulator. Master's thesis, Universitat Politecnica de Catalunya.

Dell'Orto, G., Ballo, F. M., Mastinu, G. (2022). Experimental methods to measure the lateral characteristics of bicycle tyres -a review. Vehicle System Dynamics, 1-23. https://doi.org/10.1080/00423114.2022.2144388

Dell'Orto, G., Ballo, F. M., Mastinu, G., Gobbi, M. (2022). Bicycle tyres -development of a new test-rig to measure mechanical characteristics. Measurement, 202, 111813. https://doi.org/10.1016/j.measurement.2022.111813

Dell'Orto, G., Ballo, F. M., Mastinu, G., Gobbi, M. (2022). Bicycle tyres -development of a new test-rig to measure mechanical characteristics. Measurement, 202, 111813. https://doi.org/10.1016/j.measurement.2022.111813

Den Boer, W. (2019-1), US Patent 11,142,281, Cycle Crank Assembly, www.huroncycling.com

den Boer, W. (2019-1), US Patent 11,142,281, Cycle Crank Assembly, www.huroncycling.com.

den Boer, W. (2019-2), WhitePaper IMPACT power meter August 2019: www.huroncycling.com

Den Boer, W. (2019-2),White Paper IMPACT power meter August 2019: www.huroncycling.com

Destatis, (2021) Verkehrsunfälle, Statistisches Bundesamt, Germany

Di Miceli, D., Bartolozzi, M., Berzi, L., and Savino, G. (2022). Sensibilization of a motorcycle simulator to the effects of the roll motion: Modelling and experimental validation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, page 09544070221136613. https://doi.org/10.1177/09544070221136613

Dialynas, G., Schwab, A., Happee, R. (2018), Design and implementation of a steer-by-wire bicycle. In International Cycling Safety Conference.

Dias, C., Nishiuchi, H., Hyoudo, S., and Todoroki, T. (2018). Simulating interactions between pedestrians, segway riders and cyclistsin shared spaces using social force model.Transportation Research Procedia, 34:91-98. https://doi.org/10.1016/j.trpro.2018.11.018

DIN Standards Committee (2023).Cycles - Safety requirements for bicycles (ISO 4210-1:2023); German version EN ISO4210:2023.

Dixon, J.C. & Mech, F.I. (2007). The Shock Absorber Handbook.West Sussex: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470516430

Dixon, J.C. & Mech, F.I. (2007). The Shock Absorber Handbook.West Sussex: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470516430

Dodds, C.,& Robson, J. (1973) The description of road surface roughness.J. Sound and Vibration,31, 175-183 https://doi.org/10.1016/S0022-460X(73)80373-6

Doria, A., Marconi, E., and Cialoni, P. (2019). Modal analysis of a utility bicycle from the perspective of riding comfort. In Proceedings of the ASME Design Engineering Technical Conference, volume 3. https://doi.org/10.1115/DETC2019-97277

Doria, A., Marconi, E., and Cialoni, P. (2019). Modal analysis of a utility bicycle from the perspective of riding comfort. In Proceedings of the ASME Design Engineering Technical Conference, volume 3. https://doi.org/10.1115/DETC2019-97277

Doria, A. and Formentini, M. (2011). Identification of the structural modes of high performance bicycles in the perspective of wobble control. In 2011 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/DETC2011-47030

Doria, A., Cossalter, V., Pegoraro, R., & Trombetta, L. (2009). On the non-linear behaviour of motorcycle shock absorbers. Journal of Automobile Engineering, 224j au. https://doi.org/10.1243/09544070JAUTO1273

Doria, A., Marconi, E., and Cialoni, P. (2019). Modal analysis of a utility bicycle from the perspective of riding comfort. In 2019 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2019-97277

Doria, A., Marconi, E., Munoz, L., Polanco, A. & Suarez, D. (2020). An experimental-numericalmethod for the prediction of on-road comfort of city bicycles. Vehicle system dynamics, 59(9), 1376-1396. https://doi.org/10.1080/00423114.2020.1759810

Doria, A., Marconi, E., Munoz, L., Polanco, A., and Suarez, D. (2021). An experimental-numerical method for the prediction of on-road comfort of city bicycles. Vehicle system dynamics, 59(9):1376-1396. https://doi.org/10.1080/00423114.2020.1759810

Doria, A., Marconi, E., Munoz, L., Polanco, A., and Suarez, D. (2021). An experimental-numerical method for the prediction of on-road comfort of city bicycles. Vehicle system dynamics, 59(9):1376-1396. https://doi.org/10.1080/00423114.2020.1759810

Doz Nadal, A. (2014). Evaluation of acceleration sensation induced by proprioception on a motorcycle simulator.

Dozza, M., & Fernandez, A. (2014). Understanding Bicycle Dynamics and Cyclist Behavior From Naturalistic Field Data (November 2012). IEEE Transactions on Intelligent Transportation Systems, 15(1), 376-384 https://doi.org/10.1109/TITS.2013.2279687

Dozza, M., Li, T., Billstein, L., Svernlöv, C., & Rasch, A. (2022). How do different micromobility vehicles affect longitudinal control? Results from a field experiment. Journal of Safety Research. https://doi.org/10.1016/j.jsr.2022.10.005

Dressel, A. E. (2006). The Benchmarked Linearized Equations of Motion for an Idealized Bicycle (Implemented in Software andDistributed via the Internet). Master Thesis, Cornell University.

Dressel, A., & Sadauckas, J. (2020). Characterization and modeling of various sized mountain bike tires and the effects of tire tread knobs and inflation pressure. Applied Sciences, 10(9), 3156. https://doi.org/10.3390/app10093156

Dressel, A., & Sadauckas, J. (2020). Characterization and modeling of various sized mountain bike tires and the effects of tire tread knobs and inflation pressure. Applied Sciences, 10(9), 3156. https://doi.org/10.3390/app10093156

Dressel, A., & Sadauckas, J. (2020). Characterization and Modelling of Various Sized Mountain Bike Tires and the Effects of TireTread Knobs and Inflation Pressure. Applied Sciences, 10(9), 3156. https://doi.org/10.3390/app10093156

Dressel, Andrew Erwin, "Measuring and Modeling the Mechanical Properties of Bicycle Tires" (2013). Theses and Dissertations.386. https://dc.uwm.edu/etd/386

Drouet, J.-M., & Champoux, Y. (2010). A novel dynamometric hubset design to measure wheel loads in road cycling. Procedia Engineering, 2(2), 2925-2930. https://doi.org/10.1016/j.proeng.2010.04.089

Drstvenšek, I., Drstvenšek, S., Valentan, B., Baliĉ, J. (2006, April 20-22), Mathematical Background of Development of Steering Mechanism for Human Powered Vehicle, 5th International DAAAM Baltic Conference "Industrial Engineering-AddingInnovation Capacity of Labour Force and Entrepreneurs", Tallinn, Estonia

Drstvenšek, I., Drstvenšek, S., Valentan, B., Baliĉ, J. (2006, April 20-22), Mathematical Background of Development of Steering Mechanism for Human Powered Vehicle, 5th International DAAAM Baltic Conference "Industrial Engineering-Adding Innovation Capacity of Labour Force and Entrepreneurs", Tallinn, Estonia

Dynamotion (2023). Fastbike. https://www.dynamotion.it/en/software/fastbike-software/.

Eichi Yagi et.al.: Acceleration and Jump Motion Analysis of Motorcycles and Human Systems(in Japanese), Transaction of JSME (Category C), Vol.72, No.715, (2006), pp.816-822 https://doi.org/10.1299/kikaic.72.816

Eichi Yagi: Research on the kinematic characteristics of motorcycles(in Japanese), Doctoral Thesis at Osaka University (2005)

Eichiro Tsujii et.al.:Development of a two-wheel steering system (evaluation of stability of motorcycles at low speeds)(in Japanese), Yamaha Motor Technical Review, No.47 (2011), pp.67-73

Eiich Yagi: Research on the kinematic characteristics of motorcycles(in Japanese),Doctoral Thesis at Osaka University 乙No.9035 (2005)

Ejsmont, J. & Owczarzak, W. (2019). Engineering method of tire rolling resistance evaluation. Measurement. https://doi.org/10.1016/j.measurement.2019.05.071

Enisz, K., Szalay, I., Fodor, D., Nagy, K., & Jakab, R. (2012). Bicycle anti-lock braking system prototype development.Acta Universitatis Sapientiae Electrical Mechanical Engineering,4, 45-57.

Ersoy, M., Gies, S. (2017)Fahrwerkhandbuch - Grundlagen - Fahrdynamik - Fahrverhalten- Komponenten - Elektronische Systeme- Fahrerassistenz - Autonomes Fahren- Perspektiven,. 5th ed.; Springer Vieweg: Wiesbaden, Germany.

Espié, S., Gauriat, P., & Duraz, M. (2005). Driving simulators validation: The issue of transferability of results acquired on simulator. Paper presented at the Driving Simulation Conference North-America (DSC-NA 2005), Orlondo, FL.

Ethier, P. M. (2000). Motorcycle-Rider Servomechanism Steering Theory. 2000-01-3565 Society of Automotive Engineers.13 Pages. Retrieved February 26, 2023 https://www.sae.org/publications/technical-papers/content/2000-01-3565/

Ethier, P. M.Dynamique des Véhicules à Deux Roues et Modifications les Rendant Plus Sécuritaires, Master thesis in Mechanical Engineering, Laval University, Quebec, Canada, 1974, 109 pages. Access to thesis, erratum and Excel spreadsheet: Retrieved February 26, 2023https://corpus.ulaval.ca/entities/publication/38f1aea6-fab0-4252-ae9d-d934dae1eeac

Fairwheel Bikes (2021), https://blog.fairwheelbikes.com/reviews-and-testing/road-bike-crank-testing/

Fairwheel Bikes (2021), https://blog.fairwheelbikes.com/reviews-and-testing/road-bike-crank-testing/

Farroni, F., Mancinelli, N., and Timpone, F. (2020). A real-time thermal model for the analysis of tire/road interaction in motorcycle applications. Applied Sciences https://doi.org/10.3390/app10051604

Farroni, F., Russo, M., Sakhnevych A., Timpone F. (2018), TRT EVO: Advances in real-time thermodynamic tire modeling for vehicle dynamics simulations, Proc IMechE Part D: J Automobile Engineering, 233(1) 121-135. https://doi.org/10.1177/0954407018808992

Farroni, F., Russo, M., Sakhnevych A., Timpone F. (2018), TRT EVO: Advances in real-time thermodynamic tire modeling for vehicle dynamics simulations. Proceedings of the IMechE, Part D, Journal of Automobile Engineering, 233(1),121-135. https://doi.org/10.1177/0954407018808992

Farroni, F. and Sakhnevych, A. (2022). Tire multiphysical modeling for the analysis of thermal and wear sensitivity on vehicle objective dynamics and racing performances. Simulation Modelling Practice and Theory https://doi.org/10.1016/j.simpat.2022.102517

Farroni, F. Sakhnevych, A. (2022) Tire multiphysical modeling for the analysis of thermal and wear sensitivity on vehicle objective dynamics and racing performances. In Simulation Modelling Practice and Theory, vol. 117. https://doi.org/10.1016/j.simpat.2022.102517

Farroni, F., , Rocca, E., and Timpone, F. (2013). A full scale test rig to characterize pneumatic tyre mechanical behaviour. International Review of Mechanical Engineering (IREME)

Farroni, F., Lenzo, B., Mancinelli, N., Mercantini, M., Sakhnevych, A., Timpone, F. (2020), A real-time Thermal Model for the Analysis of Tire/Road Interaction in Motorcycle Applications. Symposium on the Dynamics and Control of Single Track Vehicles. A Proceedings of the 2019 Bicycle and Motorcycle Dynamics Conference: A Symposium on the Dynamics and Control of Single Track Vehicles held in Padova, Italy September 9th through 11th in the year 2019. https://doi.org/10.3390/app10051604

Farroni, F., Lenzo, B., Mancinelli, N., Mercantini, M., Sakhnevych, A., Timpone, F. (2020).A real-time Thermal Model for the Analysis of Tire/Road Interaction in Motorcycle Applications. Proceedings of the 2019 Bicycle and Motorcycle Dynamics Conference: A Symposium on the Dynamics and Control of SingleTrack Vehicles, Padova, 2019. https://doi.org/10.3390/app10051604

Farroni, F., Russo, M., Sakhnevych, A., and Timpone, F. (2018). Trt evo: Advances in real-time thermodynamic tire modeling for vehicle dynamics simulations. Journal of Automobile Engineering https://doi.org/10.1177/0954407018808992

Fauzi, W. M. S. W., Omar, A. R., Jaafar, R., Ma'arof, M. I. N., and Rashid, H. (2015b). A review on enhancing human machine environment interface for Postura MotergoTM. Jurnal Teknologi, 76(11):21-25. https://doi.org/10.11113/jt.v76.5904

Fauzi, W., Omar, A., Jaafar, R., Ma'arof, M., Rashid, H., and Fauzi, W. (2015a). Adjustable tank cover for Postura MotergoTMutilizing rib and spine chassis (risctm). Procedia Manufacturing, 3:2635-2641. https://doi.org/10.1016/j.promfg.2015.07.610

Featherstone, R. (2008).Rigid Body Dynamics Algorithms. Springer. https://doi.org/10.1007/978-1-4899-7560-7

Fei Guan, Long Peng, Luc Perneel, and Martin Timmerman. Open source Free RTOS as a case study in real-time operating system evolution. Journal of Systems and Software, 118:19-35, 2016. https://doi.org/10.1016/j.jss.2016.04.063

Feichtinger, C.S., (2021).Racebike Dynamics, Aerodynamic Motorbike Model for the Dynamic Riding Limit on a Racetrack. Mono-graphic Series TU Graz, Graz

Ferrazzin, D.; Salsedo, F.; Barbagli, F.; Avizzano, C. A.; Di Pietro, G.; Brogni, A. et al. (2009): The MORIS Motorcycle Simulator: An Overview. In: Dustin Williams, Jace Allen und Ramadev Hukkeri (Hg.): Electronic control module network and data link development and validation using hardware in the loop systems. 400 Commonwealth Drive, Warrendale, PA, United States. [Warrendale, PA]: SAE International (SAE technical paper series).

Filtness, A. J., Rudin-Brown, C. M., Mulvihill, C. M., &Lenne, M. G. (2013). Impairment of simulated motorcycle riding performance under low dose alcohol. Accident Analysis & Prevention, 50:608-615. https://doi.org/10.1016/j.aap.2012.06.009

Filtness, A. &Rudin-Brown, C. M. (2012). Drinking and riding: Is subjective workload related to performance? In Proceedings of the Australasian Road Safety Research, Policing and Education Conference 2012, pages 1-10. Australasian College of Road Safety (ACRS).

Fischer, M.; Temme, G.; Gröne, K.; Martinez Garcia, D.; Grolms, G.; Rehm, J. (2022): A VRU-simulator for the evaluation of pedestrian and cyclist-vehicle interaction -Design criteria and implementation. Proceedings of the Driving Simulation Conference 2022Europe, Strasbourg, France, 153-159.

Fischer, M., Temme, G., Gröne, K., Martinez Garcia, D., Grolms, G., & Rehm, J. (2022). A VRU-simulator for the evaluation of pedestrian-and cyclist-vehicle interaction -Design criteria and implementation. Proceedings of the Driving Simulation Conference, 153-160.

Flanagan, L. (2022). High-Powered Electric Motorcycle Integrated Performance Studies.PhD thesis, University of Nottingham, U.K

Foale, T. (2002).Motorcycle Handling and Chassis Design the art and science.

Fraboni, F., Puchades, V. M., De Angelis, M., Pietrantoni, L., & Prati, G. (2018). Red-light running behavior of cyclists in Italy: An observational study. Accident Analysis & Prevention, 120, 219-232. https://doi.org/10.1016/j.aap.2018.08.013

Frank, T. A., Smith, J. W., Hansen, D. C., & Werner, S. M. (2008). Motorcycle Rider Trajectory in Pitch-Over Brake Applications and Impacts. SAE International Journal of Passenger Cars -Mechanical Systems, 1(1), 31-42. https://doi.org/10.4271/2008-01-0164

Fu, H. (1965). Fundamental Characteristics of Single-Track Vehicles in Steady Turning. Transactions of Japan Society of Mechanical Engineers, Vol.31, No.229, 1305-1314. https://doi.org/10.1299/kikai1938.31.1305

Fu, H., Shibahata, H., & Kikuchi, T., (1978). Stability Analysis of Uncontrolled Motion of Single-track Vehicles. Transactions of Society of Automotive Engineers of Japan, No.15, 51-58.

Fuller, S., Greiner, B., Moore, J., Murray, R., van Paassen, R., and Yorke, R. (2021). The python control systems library (python-control). In 60th IEEE Conference on Decision and Control (CDC), pages 4875-4881. IEEE. https://doi.org/10.1109/CDC45484.2021.9683368

Gabriel, D. Baumgärtner, D., Görges, D. (2022, November), Development and Validation of a Remote-Controlled Test Platform. International Cycling Safety Conference 2022.

Gabriel, D., Baumgärtner, D., and Görges, D. (2022). Development and Validation of a Remote-Controlled Test Platform for Bicycle Dynamics. In International Cycling Safety Conference. https://doi.org/10.25368/2022.421

Gabriel, D., Baumgärtner, D., and Görges, D. (2023). Accurate and robust state estimation for bicycles. Vehicle System Dynamics,61(9):2338-2351. https://doi.org/10.1080/00423114.2022.2109491

Gadsby, A., & Watkins, K. (2020). Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance. Transport Reviews, 40(6), 774-795. https://doi.org/10.1080/01441647.2020.1769227

Gadsby, A., & Watkins, K. (2020). Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance. Transport Reviews, 40(6), 774-795. https://doi.org/10.1080/01441647.2020.1769227

Gamberini, L., Spagnolli, A., Furlan, S., Chalambalakis, A., Bertoli, L., Scottini, R., and Turra, P. (2009). Users performance with a riding simulator: The role of the social setting. https://doi.org/10.55612/s-5002-005_6-009

Gardner, D. J., Reynolds, D. R., Woodward, C. S., and Balos, C. J. (2022). Enabling new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software. https://doi.org/10.1145/3539801

Genovese, A. and Pastore, S. R. (2021). Development of a portable instrument for non-destructive characterization of the polymers viscoelastic properties. Mechanical Systems and Signal Processing https://doi.org/10.1016/j.ymssp.2020.107259

Genovese, A., Maiorano, A., and Russo, R. (2022). A novel methodology for non-destructive characterization of polymers ' viscoelastic properties. International Journal of Applied Mechanics https://doi.org/10.1142/S175882512250017X

Gent, A. N. and Walter, J. D. (2006).Pneumatic tire

Genta Inoue et.al.: An Intelligent Two-wheeled Vehicle Driving Support System Based on Operation Knowledge of Skilled Rider (in Japanese), Intelligence and Information, Vol. 21, No.1 (2009), pp.24-31 https://doi.org/10.3156/jsoft.21.24

Genta Inoue: Proposal of an intelligent multi-input, multi-output control scheme for motorcycles, The 28th Fuzzy Workshop (2007),pp.65-68

German Bicycle Industry Association (2023). 2022 market data - bicycles and e-bikes.ZIV Zweirad-Industrie-Verband.

Getz, N. H. (1995).Dynamic inversion of nonlinear maps with applications to nonlinear control and robotics. PhD thesis, University of California, Berkeley.

Ghafarian, M., Watson, M., Mohajer, N., Nahavandi, D., Kebria, P. M., and Mohamed, S. (2023). A review of dynamic vehicular motion simulators: Systems and algorithms. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3265999

Gianfranchi, E., Spoto, A., and Tagliabue, M. (2017). Risk profiles in novice road users: relation between moped riding simulator performance, on-road aberrant behaviors and dangerous driving. Transportation research part F: Traffic psychology and behaviour,49:132-144. https://doi.org/10.1016/j.trf.2017.06.016

Gibbs, J. W. (1928). The Collected Works of J. Willard Gibbs: pt. 1. Elementary principles in statistical mechanics. pt. 2. Dynamics. Vector analysis and multiple algebra. Electromagnetic theory of light, etc.

Gobbi, M. & Mastinu, G. (2001). Analytical Description and Optimization of the Dynamic Behaviour of Passively Suspended Road Vehicles.J. Sound and Vibration,245, 457-481. https://doi.org/10.1006/jsvi.2001.3591

Godley, S. T., Triggs, T. J., & Fildes, B. N. (2002). Driving simulator validation for speed research. Accident Analysis & Prevention, 34(5), 589-600 https://doi.org/10.1016/S0001-4575(01)00056-2

Gomez,M.(2001).Hardware-in-the-Loop Simulation. Embedded Systems Design, 14(13), 38-49.

Gonzalez, B. E. (2023). Implementación de un modelo matemático para estudiar la estabilidad de las motocicletas. Departamentoingeniería Mecánica, Universidad de Concepcion, Informe Proyecto de Ingeniería Mecánica.

Gowda, S., Ma, Y., Cheli, A., Gwó ́zzd ́z, M., Shah, V. B., Edelman, A., and Rackauckas, C. (2022). High-performance symbolic-numerics via multiple dispatch. ACM Communications in Computer Algebra, 55(3):92-96. https://doi.org/10.1145/3511528.3511535

Grottoli, M., Mulder, M., and Happee, R. (2023). Motorcycle simulator subjective and objective validation for low speed maneuvering. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(9):2175-2189. https://doi.org/10.1177/09544070221110930

Grottoli, M., Celiberti, F., van der Heide, A., Lemmens, Y., and Happee, R. (2019). Motorcycle multibody model validation for human-in-the-loop simulation. In Driving simulation & virtual reality conference & exhibition.

Grottoli, M. (2021). Development and evaluation of a motorcycle riding simulator for low speed maneuvering. PhD thesis, Delft University of Technology, Delft, The Netherlands.

Grottoli, M., Mulder, M., & Happee, R. (2022). Motorcycle simulator subjective and objective validation for low speed maneuvering. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1-16. https://doi.org/10.1177/09544070221110930

Guiggiani, M. (2023).The Science of Vehicle Dynamics. Springer Cham https://doi.org/10.1007/978-3-031-06461-6

Guiggiani, M.(2018).The Science of Vehicle Dynamics. Springer https://doi.org/10.1007/978-3-319-73220-6

Guo, H., Wang, W., Guo, W., & Zhao, F. (2013). Modeling lane-keeping behavior of bicyclists using survival analysis approach. Discrete dynamics in nature and society, 2013. https://doi.org/10.1155/2013/197518

Guth, S. (2017)Absicherungsmethode von Anzeigekonzepten zur Darstellung fahrfremder Informationen mittels eines Motorrad-Fahrsimulators, Dissertation,TU Darmstadt

Guth, S., Geiger, M., Parduzi, A., Will, S., Pless, R., and Winner, H. (2016). Method to assess the processing of optical informationby non-primary riding tasks while riding a motorcycle. Proceedings, Bicycle and Motorcycle Dynamics 2016.

Hagemeister, C. and Schmidt, A. (2003). Which criteria own which level of importance for the choice of route for utility cyclists? (InGerman: Wie wichtig sind welche Kriterien für die Routenwahl von Alltagsradfahrern?).Straßenverkehrstechnik, 47(6):313-321.

Hajime Uchiyama et.al.:Riding Simulator for Two-wheeled Vehicle Handling, Proc. of AVEC '98,(1998),pp.349〜354

Hamamoto, Y. (2019), US Patent 10,450,030, Rotational Apparatus and Bicycle provided with same, www.free-power.jp308

Hamamoto, Y.(2019), US Patent 10,450,030, Rotational Apparatus and Bicycle provided with same, www.free-power.jp30

Hammer, T., Pleß, R., Will, S., Neukum, A., & Merkel, N. L. (2021). Anwendungsmöglichkeiten von Motorradsimulatoren (Bundesanstalt für Straßenwesen Ed. Vol. M323). Bremen: Carl Schünemann Verlag,.

Hammer, T., Pless, R., Will, S., Neukum, A., and Merkel, N. L. (2021). Anwendungsmöglichkeiten von Motorradsimulatoren.Berichte der Bundesanstalt fur Strasenwesen. Unterreihe Mensch und Sicherheit, (323).

Hammer, T.; Pleß, R.; Will, S., et al. (Eds.)(2021).Anwendungsmöglichkeiten von Motorradsimulatoren, Berichte der Bundesanstalt für Straßenwesen, Mensch und SicherheitHeft 323, Fachverlag NW in der Carl Schünemann Verlag GmbH, Bremen, Germany

Hammer, T., Pleß, R., Will, S., Neukum, A., & Merkel, N. L. (2021). Anwendungsmöglichkeiten von Motorradsimulatoren (Bundesanstalt für Straßenwesen Ed. Vol. M323). Carl Schünemann Verlag, Bremen

Hao Guo and Peter Crossley. Design of a time synchronization system based on GPS and IEEE 1588 for transmission substations. IEEE Transactions on Power Delivery, 32(4):2091-2100, 2017. https://doi.org/10.1109/TPWRD.2016.2600759

Haraguchi, T., Kageyama, I., & Kaneko, T. (2019). Study of Personal Mobility Vehicle (PMV) with Active Inward Tilting Mechanism on Obstacle Avoidance and Energy Efficiency. Applied Sciences, MDPI,9(4737). https://doi.org/10.3390/app9224737

Haraguchi, T. (2020). 4. Personal Mobility Vehicle(J)(Mobility Service, Mobility Innovation Series, Vol. 1, pp. 92-123). Corona Publishing Co., Ltd., Tokyo, Japan. ISBN 978-4-339-02771-6

Haraguchi, T., & Kaneko, T. (2023). Design Requirements for Personal Mobility Vehicle (PMV) with Inward Tilt Mechanism to Minimize Steering Disturbances Caused by Uneven Road Surface.Inventions, MDPI,8(37). https://doi.org/10.3390/inventions8010037

Harris, D., Gautrey, J., Payne, K., & Bailey, R. (2000). The Cranfield aircraft handling qualities rating scale: A multidimensional approach to the assessment of aircraft handling qualities. Aeronautical Journal, 104(1034), 191-198. https://doi.org/10.1017/S0001924000028098

Harris, D., Gautrey, J., Payne, K., & Bailey, R. (2000). The Cranfield aircraft handling qualities rating scale: A multidimensional approach to the assessment of aircraft handling qualities.Aeronautical Journal, 104(1034), 191-198. https://doi.org/10.1017/S0001924000028098

Harris, D., Gautrey, J., Payne, K., and Bailey, R. (2000). The Cranfield aircraft handling qualities rating scale: a multidimensional approach to the assessment of aircraft handling qualities. The Aeronautical Journal, pages 191-198. https://doi.org/10.1017/S0001924000028098

Hau Wah Lai, Cho Man Tsui, Kam Yuen Chan, and Aaron Yui Kuen Yan. Design of a synchronous counter with two-dimensional 10 x 10 LED array for calibration of timing parameters of video cameras. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pages 1-1, 2019 https://doi.org/10.23919/URSIAP-RASC.2019.8738243

Haufe S, Boeck HT, Häckl S, et al., (2022), Impact of electrically assisted bicycles on physical activity and traffic accident risk: a prospective observational study. BMJ Open Sport & Exercise Medicine 2022. https://doi.org/10.1136/bmjsem-2021-001275

Haufe, S., Boeck, H. T., Häckl, S., Boyen, J., Kück, M., van Rhee, C. C., Graf von der Schulenburg, J.-M., Zeidler, J., Schmidt, T., Johannsen, H., Holzwart, D., Koch, A., & Tegtbur, U. (2022). Impact of electrically assisted bicycles on physical activity and traffic accident risk: a prospective observational study. BMJ Open Sport & Exercise Medicine, 8(4), e001275. https://doi.org/10.1136/bmjsem-2021-001275

Hauser, J., Saccon, A. & Frezza, R. (2004, December 14-17). Achievable Motorcycle Trajectories. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas. https://doi.org/10.1109/CDC.2004.1429361

He, Y. and Ren, J. (2013), A Comparative Study of Car-Trailer Dynamics Models. In SAE Int. J. Passeng. Cars - Mech. Syst.6(1):177-186, https://doi.org/10.4271/2013-01-0695

Heidrich L. et al., (2013), Hardware-in-the-loop test rig for integrated vehicle control systems, IFAC Proceedings Volumes,46, 21, 683-688. https://doi.org/10.3182/20130904-4-JP-2042.00027

Helbing, D. and Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5):4282-4286. https://doi.org/10.1103/PhysRevE.51.4282

Helbing, D. and Molnár, P. (1995). Social force model for pedestrian dynamics.Physical Review E, 51(5):4282-4286. https://doi.org/10.1103/PhysRevE.51.4282

Henning Puttnies, Peter Danielis, Ali Rehan Sharif, and Dirk Timmermann. Estimators for time synchronization-survey, analysis, and outlook.IoT, 1(2):398-435, 2020 https://doi.org/10.3390/iot1020023

Heredia, G., Ollero, A. (2007), Stability of autonomous vehicle path tracking with pure delays in the control loop. Advanced Robotics, 21(1-2), 23-50 https://doi.org/10.1163/156855307779293715

Heredia, G. and Ollero, A. (2007). Stability of autonomous vehicle path tracking with pure delays in the control loop. Advanced Robotics, 21(1-2):23-50. https://doi.org/10.1163/156855307779293715

Hess, R. (2012). Modeling the Manually Controlled Bicycle. 42(3):13. https://doi.org/10.1109/TSMCA.2011.2164244

Hewing, L., Wabersich, K. P., Menner, M., and Zeilinger, M. N. (2020). Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems, 3(1):269-296. https://doi.org/10.1146/annurev-control-090419-075625

Hidekazu Nishimura: Cornering characteristics and stabilization control of two-wheeled vehicles (in Japanese), Journal of JSAE), Vol. 64, No.2, (2010-12), pp.241-246

Hideo Sakai: Cornering characteristics of motorcycle tires (in Japanese), Journal of JSAE, Vol. 21, No.11,(1967), pp.1115-1121

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S. (2005). SUNDIALS:S uite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31(3):363-396. https://doi.org/10.1145/1089014.1089020

Hirasawa, J. (2021). Research on Motion Measurement for a Motorcycle Using Image Processing. Proceedings of JSME Transportation and Logistics,No.21-72, PS2-10. https://doi.org/10.1299/jsmetld.2021.30.PS2-10

Hirasawa, J. (2021). Research on Motion Measurement for a Motorcycle Using Image Processing.Proceedings of JSMETransportation and Logistics, No.21-72, PS2-10. https://doi.org/10.1299/jsmetld.2021.30.PS2-10

Hirasawa, J. (2023). Using Omnidirectional Cameras to Measure Position of a Motorcycle. Transactions of Society of Automotive Engineers of Japan, Vol.54, No.1, 21-28.

Hirasawa, J. (2023). Using Omnidirectional Cameras to Measure Position of a Motorcycle. Transactions of Society of Automotive Engineers of Japan, Vol.54, No.1, 21-28.

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language: Effects of Frame Stiffness and Tire Characteristics on Weave, Transactions of JSAE, Vol. 28, No. 3, (1997), pp.131-136

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language (2ndreport): Analysis of Parameter Effects on Wobble Motion Characteristics by Running Experiments and Simulations(in Japanese), Transactions of JSAE, Vol. 28, No. 3, (1997), pp.131-136

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language (3rd report): Analysis of the Influence of Loaded Weight and Rider on Motorcycle Dynamics and its Vibration Damping Method (in Japanese), Transactions of JSAE, Vol. 30, No. 3, (1999), pp.99-104

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language (4threport): Analysis of Rider's Maneuvering Behavior and Motorcycle Kinematics (in Japanese), Transactions of JSAE, Vol. 30, No. 3, (1999), pp.99-104

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language (6threport): Analysis of Motorcycle-Rider System Kinematics Using Parametric Model (in Japanese), Preprint of JSAE, (2000)

Hirohide Imaizumi et.al.: Study on Motorcycle-Rider System Dynamics using Multi-body Dynamics Language (7threport): Motorcycle Stability and Handling Analysis (in Japanese), Preprint of JSAE, (2001)

Hiroshi Daimoto et.al.:Case studies on Ergonomic Methos based on Human Centered Design for Motorcycles, IATSS Review Vol. 36, No.1 (2011), pp.14-23

Hiroyasu Fu (Nagae) et.al.: Inertia Equivalent Mass of Engine and Driving System of Motorcycle -Estimation Result from Gyro Effect during Steady State Turning-(in Japanese), Transaction of JSAE, No.22, (1981), pp.51-56

Hiroyasu Fu (Nagae): Analysis of two-wheeled vehicles on free control (in Japanese), Transaction of JSAE, No.5, (1978),pp.51-58

Hiroyasu Fu (Nagae): Basic Characteristics of Motorcycles in Steady State Turning (in Japanese), Transaction of JSME (Category1), Vol.31, No. 229 (1965), pp.1305-1314 https://doi.org/10.1299/kikai1938.31.1305

Hiroyasu Fu (Nagae): Research on Motorcycle Dynamics (in Japanese), Doctoral Thesis at Nihon University, (1976),pp.1-306

Hiroyasu Fu (Nagae): Stability and Handling on Two-wheeled Vehicles -Turning Characteristics of Motorcycles -(in Japanese), Journal of JSAE, Vol. 36, No.3, (1982), pp.298-304

Hiroyasu Fu (Nagae): Steer moment of motorcycle in steady state turning (in Japanese), Transaction of JSME, Vol.43, No.367, (1977), pp.46-54

Hiroyasu Fu (Nagae): Study on Motorcycle Dynamics(in Japanese), Doctoral Thesis at Nihon University (1976),pp.1-306

Hiroyasu Nagae: Stability and Handling on Two-wheeled Vehicles (in Japanese), IATSS Review, Vol.8, No.2, (1982), pp.45-52

Hiroyasu Nagae: Turning Behavior of Motorcycles -Actual Riding Based on Calculation-(in Japanese), Motor Ring (JSAE), Vol.9 (1999), pp.4-5

Horiuchi, S. and Yuhara, N. (1998). An Analytical Approach to the Prediction of Handling Qualities of Vehicles With Advanced Steering Control System Using Multi-Input Driver Model. Journal of Dynamic Systems, Measurement, and Control, 122(3):490-497. https://doi.org/10.1115/1.1286334

Hosokawa, S., Nagasaka, K., and Watanabe, H. (2022). Development of evaluation technology for motorcycle advanced rider assistance systems. Technical report, SAE Technical Paper. https://doi.org/10.4271/2022-32-0029

Huaitao, W., Wu, D., & Feng, W. (2017, May 2). A New Method for Determining Horizontal Impact Load Based on Rotational Speed of Aircraft Wheel in Landing Gear Drop Test. MATEC Web of Conferences.

Huang, W., Fellendorf, M., and Schönauer, R. (2012). Social Force based Vehicle Model for 2-dimensional Spaces. In Transportation Research Board 91st Annual Meeting, Washington, D.C., Transportation Research Board.

Huang, W., Schönauer, R., and Fellendorf, M. (2011).Social Force Based Vehicle Model for Two-Dimensional Spaces. [Paper Presentation]. Transportation Research Board 91st Annual Meeting, Washington D.C.

Hui Zhou, Charles Nicholls, Thomas Kunz, and Howard Schwartz. Frequency accuracy & stability dependencies of crystal oscillators. Carleton University, Systems and Computer Engineering, Technical Report SCE-08-12, 2008

Huth, V., Biral, F., Martin, O., &Lot, R. (2012). Comparison of two warning concepts of an intelligent curve warning system for motorcyclists in a simulator study. Accident Analysis & Prevention, 44(1):118-125. https://doi.org/10.1016/j.aap.2011.04.023

Ichiro Kageyama el.al.: Steady-state turning characteristics of motorcycles considering equivalent compliance(in Japanese), Transaction of JSAE, Vol.50, No.5, (2019), pp.1402-1408

Ichiro Kageyama el.al.: Study on Evaluation Method of Motorcycle using Steady-State Characteristics(in Japanese), Transaction of 436 JSAE, Vol.41, No.6, (2010), pp.1225-1230

Ichiro Kageyama el.al.: Study on Motorcycle Dynamics at Extremely Low Speeds(in Japanese), Transaction of JSAE, Vol.51, No.2, (2020), pp.385-391

Ichiro Kageyama el.al.: Study on shimmy Phenomenon on motorcycles(in Japanese), Transaction of JSME (Category C), Vol.61, No.582, (1995),pp.227-232

Ichiro Kageyama el.al.:On a Modeling of Shimmy Phenomenon for Two Wheeled Vehicle, Proceedings of SETC'95, USA(1995),pp.387-392 https://doi.org/10.4271/951807

Ichiro Kageyama et al.: Construction of robot to control two-wheeled vehicles (in Japanese), Journal of JSAE, Vol.58, No.5, (2004)

Ichiro Kageyama et. The human element in the hand system of motorcycles(in Japanese), Transaction of JSME (Category C), No.458 (1984), pp.2037-2045 https://doi.org/10.1299/kikaic.50.2037

Ichiro Kageyama et.al.: A Study on tire modeling for camber thrust and camber torque, JSAE Review Vol.23, No.3, (2002),pp.325-331 https://doi.org/10.1016/S0389-4304(02)00204-7

Ichiro Kageyama et.al.: Human Factors in the Steering System of Two Wheeled vehicle, Bulletin of the JSME ,Vol.28,No.240, (1985) https://doi.org/10.1299/jsme1958.28.1233

Ichiro Kageyama et.al.: HumanFactorsintheSteeringSystemofTwo-wheeled vehicle, BulletinoftheJSME,Vol.28,No.240, (1985)

Ichiro Kageyama et.al.: Influence of Braking Force on Motorcycle Turning Performance (in Japanese), Transaction of JSAE, Vol.40, No.6, (2009), pp.1411-1416

Ichiro Kageyama et.al.: Kinematic characteristics of human-motorcycle systems and various control inputs(in Japanese), Report from CIT, Nihon University, Vol.22, No.2 (1989),pp.7-15

Ichiro Kageyama et.al.: Study on Motorcycle Dynamics at Extremely Low Speeds (2nd Report) -Influence of rider's body-, Transaction of JSAE, Vol.52, No.1, (2021),pp.154-159Control Technology (Category 4)

Ichiro Kageyama et.al.: Study on stability of motorcycles at standstill and at extremely low speeds (in Japanese), Transaction of JSAE, Vol.50, No.3, (2019),pp.789-795

Ichiro Kageyama et.al.: Study on Tire Model for Motorcycle Motion Analysis (in Japanese), Transaction of JSAE, Vol.52, No.1, (2021),pp.43-

Ichiro Kageyama et.al.: The rider's element in the handlebar system of motorcycles (in Japanese), Transaction of JSME (Category C), No.458, (1984), pp.2037-2045

Ichiro Kageyama et.al.:Study on Motorcycle Behavior at Braking using Quasi Steady State Method, Proc. of IAVSD'09 (Stockholm) (2009)

Ichiro Kageyama, et. al.: On Development of Two Wheeled Vehicle Riding Simulator, SETC'97(1997) https://doi.org/10.4271/978501

Ichiro Kageyama: Motorcycle Rider's Behavior from a viewpoint of rider robot design, AVEC-Workshop'09

Ichiro Kageyama: On a Testing Method for Two-Wheeled Vehicle Handling, Technical Papers of SETC '93,Vol.2, No.931554,(1993) pp.679-684

Ichiro Kageyama: The relationship between rider and two-wheeled vehicle, IATSS Research, Vol.19, No.1 (1995)

IEEE. IEEE standard for a precision clock synchronization protocol for networked measurement and control systems - redline.IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) - Redline, pages 1-300, 2008.

Ingenlath, P. (2019).Multibody simulation based bicycle design. PhD thesis, RWTH Aachen Univercity

Insperger, T. & Stepan, G., (2011).Semi-discretization for Time-Delay Systems. Springer, New York. https://doi.org/10.1007/978-1-4614-0335-7

Insperger, T. and John, M. (2021).Delay and Uncertainty in Human Balancing Tasks. Springer Cham. https://doi.org/10.1007/978-3-030-84582-7

International Organization for Standardization. (2011). Road vehicles -Vehicle dynamics and road-holding ability-Vocabulary(ISO Standard No. 8855:2011). https://www.iso.org/standard/51180.html

International Organization for Standardization. (1997). ISO 2631-1 Mechanical vibration and shock -Evaluation of human exposure to whole-body vibration.

International Organization for Standardization. (2001). ISO 5349-1 Mechanical vibration --Measurement and evaluation of human exposure to hand-transmitted vibration.

ISO 8608., (2016).Mechanical Vibration - Road Surface Profiles. Standard, International Organization for Standardization.

ISO 8608., (2016).Mechanical Vibration - Road Surface Profiles. Standard, International Organization for Standardization.

Ito, K. (2017). Design in immersive virtual reality environment for information presentation of motorcycle head-up display. PhD thesis, Keio University.

Ito, K., Nishimura, H., and Ogi, T. (2015). Head-up display for motorcycle navigation. In SIGGRAPH Asia 2015 Head-Up Displays and their Applications, pages 1-3. https://doi.org/10.1145/2818406.2818415

Ito, K., Tateyama, Y., Lee, H., Nishimura, H., &Ogi, T. (2013). Development of head-up display for motorcycle navigation system.In Asia-Pasific Conference on Systems Engineering (APCOSEC), No. TS-05-2

Jacobi, D. (2022). Konzeptentwicklung, Umsetzung und Evaluation der Längsdynamik eines Fahrradsimulators für eine realitätsnahe, interaktive Simulation. Bachelor thesis, DIPLOMA Hochschule.

Jahanian, O., Van Straaten, M. G., Barlow, J. D., Murthy, N. S., & Morrow, M. M. B. (2022). Progression of rotator cuff tendon pathology in manual wheelchair users with spinal cord injury: A 1-year longitudinal study.The journal of spinal cord medicine, 1-11. Advance online publication. https://doi.org/10.1080/10790268.2022.2057720

Jain, A. (2010).Robot and multibody dynamics: analysis and algorithms. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-7267-5

Janssen, V. (2022). Konzeptentwicklung, Umsetzung und Evaluation der Querdynamik eines Fahrradsimulators für eine realitätsnahe, interaktive Simulation. Bachelor thesis, DIPLOMA Hochschule.

Ji, X. A., Molnár, T. G., Avedisov, S. S., and Orosz, G. (2021). Learning the dynamics of time delay systems with trainable delays. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, volume 144, pages 930-942. PMLR.

Johannesson, P. and Speckert, M. (2014).Guide to load analysis for durability in vehicle engineering. Automotive series. Wiley,Chichester, West Sussex, 1 edition. https://doi.org/10.1002/9781118700518

Johannesson, P.; Speckert, M.: Guide to load analysis for durability in vehicle engineering. Chichester, West Sussex, United Kingdom: Wiley(2014) https://doi.org/10.1002/9781118700518

Johnson, B.W., & Aylor, J.H. (1985). Dynamic Modeling of an Electric Wheelchair. IEEE Transactions on Industry Applications,IA-21, 1284-1293. https://doi.org/10.1109/TIA.1985.349556

Johnson, M., Newstead, S., Charlton, J., & Oxley, J. (2011). Riding through red lights: The rate, characteristics and risk factors of non-compliant urban commuter cyclists. Accident Analysis & Prevention, 43(1), 323-328. https://doi.org/10.1016/j.aap.2010.08.030

Joubert, N., Boisvert, M., Blanchette, C., St-Amant, Y., Desrochers, A., and Rancourt, D. (2020). Frame loads accuracy assessment of semianalytical multibody dynamic simulation methods of a recreational vehicle.Multibody system dynamics, 50(2):189-209. https://doi.org/10.1007/s11044-020-09756-8

Joubert, N.; Boisvert, M.; Blanchette, C.; St-Amant, Y.; Desrochers, A.; Rancourt, D.: Frame loads accuracy assessment of semi analytical multibody dynamic simulation methods of a recreational vehicle. Multibody system dynamics, 50 (2020) https://doi.org/10.1007/s11044-020-09756-8

K.Kuriyama et al.: Construction of Rider Robot System for Two-Wheeled Vehicle, Proc. of AVEC'06(2006)

Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M. N. (2019). Learning-based model predictive control for autonomous racing. IEEE Robotics and Automation Letters, 4(4):3363-3370. https://doi.org/10.1109/LRA.2019.2926677

Kageyama, I. and Tagami, N. (2002). Development of a riding simulator for two-wheeled vehicles. JSAE review, 23(3):347-352. https://doi.org/10.1016/S0389-4304(02)00202-3

Kageyama, I., et al. (2017). Study on Influence of Tire Characteristics on Motorcycles Behavior. Proceedings of JSAE Congress (Spring), 20175091.

Kageyama, I., et al. (2017). Study on Influence of Tire Characteristics on Motorcycles Behavior. Proceedings of JSAE Congress(Spring), 20175091.

Kageyama, K. (1977). Current Research on Two-wheel Vehicles in Historical Perspective. Proceedings of JSAE Congress(Spring), 20175091.

Kane, T. R. and Levinson, D. A. (1980). Formulation of equations of motion for complex spacecraft. Journal of Guidance and Control, 3(2):99-112. https://doi.org/10.2514/3.55956

Kane, T. R. and Levinson, D. A. (1985).Dynamics, theory and applications. McGraw Hill.

Kane, T. R., & Levinson, D. A., (1985).Dynamics: Theory and Applications. McGraw-Hill.

Karnopp, D. (2013).Vehicle Dynamics, Stability and Control. Mechanical Engineering. CRC Press, Boca Raton, 2nd edition.

Karnopp, D. (2013).Vehicle Dynamics, Stability and Control. Mechanical Engineering. CRC Press, Boca Raton, 2nd edition.

Karri, S. L., De Silva, L. C., Lai, D. T. C., & Yong, S. Y. (2021). Classification and prediction of driving behaviour at a traffic intersection using SVM and KNN. SN computer science, 2, 1-11. https://doi.org/10.1007/s42979-021-00588-7

Kaths, H. (2017).Development of Tactical and Operational Behaviour Models for Bicyclists Based on Automated Video Data Analysis. [Doctoral dissertation, Technische Universität München]. mediaTUM. https://mediatum.ub.tum.de/?id=1366878.

Kaths, H. (2023). A movement and interaction model for cyclists and other non-lane-based road users.Frontiers in Future Transportation, 4. https://doi.org/10.3389/ffutr.2023.1183270

Kaths, H., Keler, A., and Bogenberger, K. (2021). Calibrating the Wiedemann 99 Car-Following Model for Bicycle Traffic. Sustainability, 13(6):3487. https://doi.org/10.3390/su13063487

Katsumi Kageyama et.al.: A prototype flat tire tester and a couple of experiments (in Japanese), Journal of JSAE, Vol. 20, No.5, (1966), pp.426-430

Katsumi Kageyama et.al.: A prototype towing force gauge for motorcycles and its two or three applications (in Japanese), Journal of JSAE, Vol. 16, No.10, (1962)

Katsumi Kageyama et.al.: Experimental study of the stability of two-wheeled vehicles (in Japanese),Journal of JSME, Vol.64, No. 508, 1961-05, pp.746-753 https://doi.org/10.1299/jsmemag.64.508_746

Katsumi Kageyama et.al.: Experiments on the effects of maneuverability, especially lean-in and lean-out, on steady-state turning of two-wheeled vehicles (in Japanese),Journal of JSAE No. 13, No.10, (1959),pp.41-45

Katsumi Kageyama et.al.: Geometry of the front wheel system of a two-wheeled vehicle (in Japanese), Journal of JSAE, Vol. 18, No.11, (1964)

Katsumi Kageyama et.al.: Motorcycle Dynamics (in Japanese), IATSS Review, Vol. 3, No.1, (1977), pp.15-21

Katsuyuki Owada et.al.: An Analysis of A riding Control Algorithm for Two Wheeled Vehicle Using a Neural Network Modeling, 14th IAVSD Symposium (1995)

Kaul, S. (2020). Planar Dynamics of a Motorcycle: Influence of Vibration Isolation System Nonlinearity. International Journal of Acoustics and Vibration, 25, 597-608. https://doi.org/10.20855/ijav.2020.25.41733

Keigo Yoshida et.al.: Stability and Handling on Motorcycles (in Japanese), Journal of JSAE, Vol. 26, No.7,(1972), pp.866-872

Keigo Yoshida: Motorcycle maneuverability and stability tests (in Japanese), Journal of JSAE, Vol. 31, No.5,(1977), pp.385-390

Ken Watanabe. Transister Technology, chapter 9:Performance test! Output response speed when signal input or interrupt occurs (In Japanese), pages 98-104. CQPublishingCo., March 2016. https://toragi.cqpub.co.jp/Portals/0/backnumber/2016/03/p098.pdf.

Ken-ichi Yoshimoto: Modeling the driving behaviors of an automobile driver, Human Factors Vol.18, No.6 (1982),pp.301-305

Kiencke, U., Nielsen, L. (2005)Automotive Control Systems - For Engine, Driveline, and Vehicle,. 2nd ed.; Springer Berlin: Heidel-berg, Germany. https://doi.org/10.1007/b137654

Kim, W., Zhang, J., Fujiwara, A., Jang, T. Y., & Namgung, M. (2008). Analysis of stopping behavior at urban signalized intersections: Empirical study in South Korea. Transportation research record, 2080(1), 84-91. https://doi.org/10.3141/2080-10

Kishida, T. &Kageyama, I. (2007). A study on riding simulator for motorcycle. In Driving Simulation Conference, North America 2007 (DSC-NA 2007) Ford Motor Company National Highway Traffic Safety Administration University of Iowa, Iowa City Transportation Research Board.

Klinger,F., Klinger,M., Edelmann J, Plöchl,M. (2021, August 17-19). Electric Scooter Dynamics -From a Vehicle Safety Perspective. In A. Orlova & D. Cole(Eds.), Advances in Dynamics of Vehicles on Roads and Tracks II, IAVSD 2021, Lecture Notes in Mechanical Engineering. Springer, Cham, 11.

Klug, S. (2020). Modeling and Control of Bicycle Dynamics with Focus on Brake and Suspension Systems [PhD Thesis]. Technische Universität Kaiserslautern.

Klug, S., Moia, A., & Schnabel, F. (2019). Influence of damper control on traction and wheelie of a full suspension eBike with anti-squat geometry. Bicycle and Motorcycle Dynamics.

Klug, S., Moia, A., & Schnabel, F. (2019). Influence of damper control on traction and wheelie of a full suspension eBike with anti-squat geometry. Bicycle and Motorcycle Dynamics.Padova.

Klug, S., Moia, A., Verhagen, A., Görges, D., & Savaresi, S. (2021). The influence of bicycle fork bending on brake control. Vehicle System Dynamics, 59(3), 375-395. https://doi.org/10.1080/00423114.2019.1687911

Klug, S., Moia, A., Verhagen, A., Görges, D., & Savaresi, S. M. (2017). Effectiveness of actuating on rectilinear bicycle braking dynamics.IFAC-PapersOnLine,50(1), 972-979. https://doi.org/10.1016/j.ifacol.2017.08.173

Klug, S., Moia, A., Verhagen, A., Görges, D., and Savaresi, S. (2021). The influence of bicycle fork bending on brake control. Vehicle System Dynamics, 59(3):375-395. https://doi.org/10.1080/00423114.2019.1687911

Knake-Langhorst, S. (2022), Generische Systemarchitektur für die Erhebung mikroskopischer Verkehrsdaten [Generic system architecture for the collection of microscopic traffic data], PhD thesis, Technische Universität Berlin, Germany, Fakultät V -Verkehrs-und Maschinensysteme, https://elib.dlr.de/186352/1/knake-langhorst_sascha.pdf.

Knuit, J., De Kok, F., Raaphorst, P. & Van der Spek, A. (2014). Bicycle tire stiffness and damping. TU Delft. http://bicycle.tudelft.nl/tiretestingvertical/76

Knuit, J., KoN, F., Raaphorst, P., & SpeN, A. (2015). Bicycle tire stiffness and damping [Bachelor Thesis]. TU Delft.

Köhler, M., Jenne, S., Pötter, K., and Zenner, H. (2012).Zählverfahren und Lastannahme in der Betriebsfestigkeit. Springer, Berlinand Heidelberg. https://doi.org/10.1007/978-3-642-13164-6

Kooijman, J. D. G., Schwab, A. L., & Meijaard, J. P. (2008). Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1-2), 115-132. https://doi.org/10.1007/s11044-007-9050-x

Kooijman, J. D. G. and Schwab, A. L. (2013). A review on bicycle and motorcycle rider control with a perspective on handling qualities. Vehicle System Dynamics, 51(11):1722-1764. https://doi.org/10.1080/00423114.2013.824990

Kooijman, J. D. G., Schwab, A. L., and Meijaard, J. P. (2008). Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 19(1):115-132. https://doi.org/10.1007/s11044-007-9050-x

Kooijman, J.D.G., Schwab, A.L. (2013). A review on bicycle dynamics and rider control.

Kooijman, J.D.G., Schwab, A.L. (2013). A review on bicycle dynamics and rider control. Vehicle System Dynamics,51(11), 1722-1764 https://doi.org/10.1080/00423114.2013.824990

Korayem, A.H., Khajepour, A., Fidan B. (2022), A Review on Vehicle-Trailer State and Parameter Estimation. In IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 5993-6010, July 2022, https://doi.org/10.1109/TITS.2021.3074457

Korayem, A.H.; Khajepour, A.; Fidan B. (2022), "A Review on Vehicle-Trailer State and Parameter Estimation," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 5993-6010, July 2022, https://doi.org/10.1109/TITS.2021.3074457

Korff, T., Romer, L. M., Mayhew, I.; Martin, J. C. (2007), Effect of Pedaling Technique on Mechanical Effectiveness and Efficiency in Cyclists. Medicine & Science in Sports & Exercise 39(6):p 991-995, June 2007. https://doi.org/10.1249/mss.0b013e318043a235

Kovácsová, N., de Winter, J. C. F., Schwab, A. L., Christoph, M., Twisk, D. A. M., & Hagenzieker, M. P. (2016). Riding performance on a conventional bicycle and a pedelec in low speed exercises: Objective andsubjective evaluation of middle-aged and older persons. Transportation Research. Part F: Traffic Psychology and Behaviour, 42(Part 1), 28-43 https://doi.org/10.1016/j.trf.2016.06.018

Kovacsova, N., Grottoli, M., Celiberti, F., Lemmens, Y., Happee, R., Hagenzieker, M. P., and de Winter, J. C. (2020). Emergencybraking at intersections: A motion-base motorcycle simulator study. Applied ergonomics, 82:102970. https://doi.org/10.1016/j.apergo.2019.102970

Kreith, F., Manglik, R. M., and Bohn, M. S. (2010).Principles of Heat Transfer. Brooks/Cole

Kumar, M., Rajan, H. (2018), Finite Element Analysis of Bicycle Wheel, International Research Journal of Engineering and Technology (IRJET), 5(6), 949-956.

Kuroiwa, O., Baba, M., and Nakata, N. (1995). Study of Motorcycle Handling Characteristics and Rider Feeling During Lane Change. page 950200. Conference Name: International Congress & Exposition. https://doi.org/10.4271/950200

Kurtc, V. and Treiber, M. (2020). Simulating bicycle traffic by the intelligent-driver model-Reproducing the traffic-wave characteristics observed in a bicycle-following experiment. Journal of Traffic and Transportation Engineering (English Edition), 7(1):19-29. https://doi.org/10.1016/j.jtte.2019.03.005

Kyburz (2022). Products - DXP. Available online: https://kyburz-switzerland.ch/en [14.07.2022].

Lefèvre, S., Vasquez, D., & Laugier, C. (2014). A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH Journal, 1(1). https://doi.org/10.1186/s40648-014-0001-z

Lepine, J., Champoux, Y., and Drouet, J. (2016). Test protocol for in-situ bicycle wheel dynamic comfort comparison. Procedia Engineering, 147:568-572. https://doi.org/10.1016/j.proeng.2016.06.241

Lepine, J., Champoux, Y., and Drouet, J. (2016). Test protocol for in-situ bicycle wheel dynamic comfort comparison.Procedia Engineering, 147:568-572. https://doi.org/10.1016/j.proeng.2016.06.241

Levinson, D. A. and Kane, T. R. (1990). AUTOLEV-a new approach to multibody dynamics. InMultibody Systems Handbook, pages 81-102. Springer. https://doi.org/10.1007/978-3-642-50995-7_7

Levitt, J.A., & Zorka, N.G. (1991). The Influence of Tire Damping in Quarter Car Active Suspension Models. Journal of Dynamic Systems, Measurement, and Control, 134-137. https://doi.org/10.1115/1.2896339

Liang, X., Xie, M., and Jia, X. (2018). New Microscopic Dynamic Model for Bicyclists' Riding Strategies. Journal of Transportation Engineering, Part A: Systems, 144(8):04018034. https://doi.org/10.1061/JTEPBS.0000148

Lich, T., Block, W. G., Prashanth, S. N., & Heiler, B. (2016). Motorcycle Stability Control - The Next Generation of Motorcycle Safety and Riding Dynamics. SAE International Journal of Engines, 9(1), 491-498 https://doi.org/10.4271/2015-32-0834

Limebeer, D. and Sharp, R. (2006). Bicycles, motorcycles, and models. IEEE Control Systems Magazine, 26(5):34-61 https://doi.org/10.1109/MCS.2006.1700044

Limebeer, D. J. and Massaro, M. (2018).Dynamics and optimal control of road vehicles. Oxford University Press. Lot, R. and Massaro, M. (2017). A symbolic approach to the multibody modeling of road vehicles. International Journal of Applied Mechanics, 9(05):1750068. https://doi.org/10.1142/S1758825117500685

Limebeer, D. J. N. and Sharma, A. (2008). The dynamics of the accelerating bicycle. In 2008, 3rd International Symposium on Communications, Control and Signal Processing, pages 237-242. https://doi.org/10.1109/ISCCSP.2008.4537226

Limebeer, D., Massaro, M., (2018).Dynamics and Optimal Control of Road Vehicles. Oxford University Press https://doi.org/10.1093/oso/9780198825715.001.0001

Lines, J. A. and Murphy, K. (1991). The stiffness of agricultural tractor tyres. Journal of terramechanics, 28(1):49-64. https://doi.org/10.1016/0022-4898(91)90006-R

Liu, C. C., Hosking, S. G., and Lenne, M. G. (2009). Hazard perception abilities of experienced and novice motorcyclists: An interactive simulator experiment. Transportation research part F: Traffic psychology and behaviour, 12(4):325-334. https://doi.org/10.1016/j.trf.2009.04.003

Lobjois, R., Siegler, I. A., and Mars, F. (2016b). Effects of visual roll on steering control and gaze behavior in a motorcycle simulator.Transportation research part F: Traffic psychology and behaviour, 38:55-66. https://doi.org/10.1016/j.trf.2016.01.002

Lobjois, R. and Mars, F. (2020). Effects of motorcycle simulator configurations on steering control and gaze behavior in bends.Journal of experimental psychology: applied, 26(1):108. https://doi.org/10.1037/xap0000241

Lobjois, R., Dagonneau, V., and Isableu, B. (2016a). The contribution of visual and proprioceptive information to the perception of leaning in a dynamic motorcycle simulator. Ergonomics, 59(11):1428-1441. https://doi.org/10.1080/00140139.2016.1149229

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y. P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P.& Wießner, E.(2018,November).Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 2575-2582). IEEE https://doi.org/10.1109/ITSC.2018.8569938

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y. P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P. & Wießner, E. (2018, November). Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 2575-2582). IEEE. https://doi.org/10.1109/ITSC.2018.8569938

Loskorn, J., Mills, A., Brady, J., Duthie, J., Machemehl, R., Beaudet, A., ... & Fialkoff, J. (2010). Effects of bicycle boxes on bicyclist and motorist behavior at intersections. Austin, Texas: University of Texas at Austin.

Lot, R. and Cossalter, V. (2014). A virtual-reality framework for the hardware-in-the-loop motorcycle simulation. Modeling,Simulation and Control of Two-Wheeled Vehicles, pages 183-195. https://doi.org/10.1002/9781118536391.ch7

Lot, R. & Sadauckas, J. (2021). Motorcycle Design: Vehicle Dynamics Concepts and Applications. Lulu.com.

Lot, R. and Sadauckas, J. (2021).Motorcycle Design: Vehicle Dynamics, Concepts and Applications. 1 edition.

Lot, R., & Sadauckas, J. (2021). Motorcycle Design Vehicle Dynamics Concepts and Applications

Lot, R., & Sadauckas, J. (2021). Motorcycle Design: Vehicle Dynamics Concepts and Applications. Lulu.com.

Lot, R., Fleming, J. (2020), Active safety systems for powered two-wheelers: A systematic review. In Traffic Injury Prevention, vol.21 (78-86). https://doi.org/10.1080/15389588.2019.1700408

Lot, R., Massaro, M., Cossalter, V., and Sadauckas, J. (2016). Using simulators for the assessment of handling of motorcycles.

Lot, R., Sadauckas, J., (2021).Motorcycle design: Vehicle Dynamics Concepts and Applications. ISBN: 979-12-200-9852-6

Lot, R., Sadauckas, J., (2021).Motorcycle design: Vehicle Dynamics Concepts and Applications. ISBN: 979-12-200-9852-6

Lot, R., Sadauckas, J., (2021).Motorcycle Design: Vehicle Dynamics Concepts and Applications.

Lovato, S., Bova, M., Massaro, M., Andriollo, M., Lot, R. (2022), Active Steering Assistant for Powered Two-Wheelers: Hardware Prototyping and Results. In Niola, V., Gasparetto, A., Quaglia, G., Carbone, G. (eds) Advances in Italian Mechanism Science. IFToMM Italy 2022. Mechanisms and Machine Science, vol.. 122. Springer. https://doi.org/10.1007/978-3-031-10776-4_42

Lovato, S., Bova, M., Massaro, M., Andriollo, M., Lot, R. (2022), An Active Steering Assistant System for Powered Two-Wheelers. In Lecture Notes in Engineering and Computer Science. World Congress on Engineering 2022, vol. 2244 (95-102)

Lucci, C., Marra, M., Huertas-Leyva, P. Baldanzini, N. & Savino, G. (2021). Investigating the feasibility of Motorcycle Autonomous Emergency Braking (MAEB): design criteria for new experiments to field test automatic braking. MethodsX. Volume 8, DOI: https://doi.org/10.1016/j.mex.2021.101225

Lucci, C., Marra, M., Huertas-Leyva, P. Baldanzini, N.&Savino, G. (2021). Investigating the feasibility of Motorcycle Autonomous Emergency Braking (MAEB): design criteria for new experiments to field test automatic braking. MethodsX. https://doi.org/10.1016/j.mex.2021.101225

Lv Mengtong and Tao Linwei. Synchronization technology and system based on 1 pulse per second signal. In2021 IEEEInternational Conference on Signal Processing, Communications and Computing (ICSPCC), pages 1-5, 2021. https://doi.org/10.1109/ICSPCC52875.2021.9565027

M Taufik, Yuwono, M N Cahyadi, and J R Putra. Analysis level of accuracy GNSS observation processing using u-blox as low-cost GPS and geodetic GPS (case study: M8T).IOP Conference Series: Earth and Environmental Science, 389(1):012041,nov 2019. https://doi.org/10.1088/1755-1315/389/1/012041

M.Kusakariet.al.:Fundamental Study on HMI for Advanced Safety Vehicles: Information Presentation Method for Active Safety of Motorcycles (in Japanese),Transaction of JSAE, Vol.38 No.2, (2007),pp.237-242

MacAdam, C. C. (1988), Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute.

Maceira, D., Luaces, A., Lugrís, U., Naya, M. A., and Sanjurjo, E. (2021). Roll angle estimation of a motorcycle through inertial measurements. Sensors, 21(19). https://doi.org/10.3390/s21196626

Magiera, N, (2020) Identifikation des Fahrfertigkeitsniveaus von Motorradfahrern in Kurvenfahrt im Realverkehr, Dissertation, TU Darmstadt, Germany

Magiera, N, (2020) Identifikation des Fahrfertigkeitsniveaus von Motorradfahrern in Kurvenfahrt im Realverkehr, Dissertation, TU Darmstadt, Germany

Magiera, N. (2020). Identifikation des Fahrfertigkeitsniveaus von Motorradfahrern in Kurvenfahrt im Realverkehr, Technische Universität Darmstadt. 10.25534/tuprints-00014011.

Magnani, G., Ceriani, N. M., and Papadopoulos, J. (2013). On-road measurements of high speed bicycle shimmy, and comparison to structural resonance. In 2013 IEEE International Conference on Mechatronics (ICM), pages 400-405. IEEE. https://doi.org/10.1109/ICMECH.2013.6518570

Maher, D. & Young, P. (2011). An insight into linear quarter car model accuracy. Vehicle System Dynamics, 49(3), pp. 463-480. https://doi.org/10.1080/00423111003631946

Maher, D. & Young, P. (2011, March). An insight into linear quarter car model accuracy. Vehicle System Dynamics, 49(3), pp. 463-480. https://doi.org/10.1080/00423111003631946

MAIDS, A. (2004). In-depth investigation of accidents involving powered two-wheelers. Final report 1.2. Brussels: Association of European Motorcycle Manufacturers (ACEM).

Maier, O. (2018), Modellbasierte Entwicklung eines aktiven Sicherheitssystems für elektrifizierte Fahrräder, PhD Thesis, Otto-von-Guericke-Universität Magdeburg.

Maier, O. (2018).Modellbasierte Entwicklung eines aktiven Sicherheitssystems für elektrifizierte Fahrräder[PhD thesis, Otto-von-Guericke-Universität Magdeburg].

Maier, O., Hillenbrand, S., Wrede, J., Freund, A., & Gauterin, F. (2018). Vertical and longitudinal characteristics of a bicycle tire. Tire Science and Technology, 46(3), 153-173. https://doi.org/10.2346/tire.18.460301

Maier, O., Hillenbrand, S., Wrede, J., Freund, A., and Gauterin, F. (2018). Vertical and longitudinal characteristics of a bicycle tire. Tire Science and Technology, 46(3):153-173. https://doi.org/10.2346/tire.18.460301

Maier, O., Pfeiffer, M., & Wrede, J. (2015). Development of a braking dynamics assistance system for electric bicycles: Design, implementation, and evaluation of road tests. IEEE/ASME Transactions on Mechatronics, 21(3), 1671-1679. https://doi.org/10.1109/TMECH.2015.2505186

Maier, O., Pfeiffer, M., & Wrede, J. (2016b). Development of a Braking Dynamics Assistance System for Electric Bicycles: Design, Implementation, and Evaluation of Road Tests. IEEE/ASME Transactions on Mechatronics, 21(3), 1671-1679. https://doi.org/10.1109/TMECH.2015.2505186

Maier, O., Pfeiffer, M., & Wrede, J. (2016b). Development of a Braking Dynamics Assistance System for Electric Bicycles: Design, Implementation, and Evaluation of Road Tests. IEEE/ASME Transactions on Mechatronics, 21(3), 1671-1679. https://doi.org/10.1109/TMECH.2015.2505186

Maier, O., Pfeiffer, M., Scharpf, S., & Wrede, J. (2016a). Conditions for nose-over and front wheel lockup of electric bicycles (pp. 219-224). 11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS) /17th International Conference on Research and Education in Mechatronics (REM), IEEE. https://doi.org/10.1109/MECATRONICS.2016.7547145

Maier,O., Pfeiffer, M., Scharpf, S., & Wrede, J. (2016a). Conditions for nose-over and front wheel lockup of electric bicycles (pp. 219-224).11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS) /17th International Conference on Research and Education in Mechatronics (REM), IEEE. https://doi.org/10.1109/MECATRONICS.2016.7547145

Majima, S. and Kasai, T (2005), A controller for changing the yaw direction of an underactuated unicycle robot, International Conference on Technology and Automation, pp.77-88

Majima, S. and Kasai, T. and Kadohara, T. (2006), A Design of a Control Method for Changing Yaw Direction of an Underacuatted Unicycle Robot, TENCON 2006. 2006 IEEE Region 10 Conference, pp. 1-4. https://doi.org/10.1109/TENCON.2006.343954

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):561-580. https://doi.org/10.1109/PROC.1975.9792

Malengier, B., Kišon, P., Tocknell, J., Abert, C., Bruckner, F., and Bisotti, M.-A. (2018). ODES: a high level interface to ODE andDAE solvers.The Journal of Open Source Software, 3(22):165. https://doi.org/10.21105/joss.00165

Mangundu, E., & Koorey, G. (2010). Effects on Motor Vehicle Behavior of Color and Width of Bicycle Facilities at Signalized Intersections.

Manolova, A., Crequy, S., Lestriez, P., Debraux, P., & Bertucci, W. (2015). Relationship between the Pedaling Biomechanics and Strain of Bicycle Frame during Submaximal Tests. Sports, 3(2), 87-102. https://doi.org/10.3390/sports3020087

Marcacci, M., et al. (2002). The Morismotorcycle simulator: an overview. SAE Transactions, pages 199-210.

Marco Siccardi, Daniele Rovera, and Stefania Romisch. Delay measurements of PPS signals in timing systems. In 2016 IEEE International Frequency Control Symposium (IFCS), pages 1-6, 2016. https://doi.org/10.1109/FCS.2016.7563588

Marconi, E. and Massaro, M. (2020). The effect of suspensions and racetrack three-dimensionality on the minimum lap time of motorcycles. In Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics, IAVSD 2019, August 12-16, 2019, Gothenburg, Sweden, pages 1368-1377. Springer. https://doi.org/10.1007/978-3-030-38077-9_158

Marconi, E. and Massaro, M. (2022). Optimal recovery manoeuvres of racing motorcycles. Meccanica, 57(2):457-472. https://doi.org/10.1007/s11012-021-01454-9

Maris, E. (2022). A bicycle can be balanced by stochastic optimal feedback control. arXiv preprint arXiv:2202.11480. https://doi.org/10.24404/63F649C20CEA3689DFAED39E

Martinez Garcia, D. (2021). Construction, parameterization and evaluation of a bicycle simulator for a realistic and interactive simulation environment.Master thesis, Technische Universität Braunschweig.

Martinez Garcia, D., Gröne, K., Janssen, V., Jacobi, D., Ackermann, S., Zhao, M., Nicolay, E., Bergen, M., & Fischer, M. (2023). Technical adjustments of a bicycle simulator . Impact on simulator sickness , presence , acceptance and realism. Proceedings of the Driving Simulation Conference 2023 Europe, 2023, 201-203.

Martínez García, D., Gröne, K., Quante, L., Fischer, M., Thal, S., & Henze, R. (2022). Parameter tuning of a bicycle simulator for a realistic riding behaviour and motion perception. Proceedings of the Driving Simulation Conference 2022 Europe, Driving Simulation Association, Strasbourg, France, 1-2.

Martinez Garcia, D.; Gröne, K.; Quante, L.; Fischer, M.; Thal, S.; Henze, R. (2022): Parameter tuning of a bicycle simulator for a realistic riding behaviour and motion perception. In: Product Solutions Book-Driving Simulation & Virtual Reality Conference & Exhibition 2022 Europe, Strasbourg, France, 101-102.

Masaichi Iguchi: Dynamics of Two-Wheeled Vehicles (1) -Analysis of Basic Characteristics by Linear Theory(in Japanese), Mechanical Research, Vol.14, No.7, (1962),pp.890-894

Masaichi Iguchi: Dynamics of Two-Wheeled Vehicles (2) -Analysis of Basic Characteristics by Linear Theory(in Japanese), Mechanical Research, Vol.14, No.8,(1962),pp.1009-1017

Masaichi Kondo et.al.: Dynamics of Two-wheeled vehicles (2ndReport) -On the stability of two-wheeled vehicles under free control and in steady state turning (in Japanese) , the Japan Society of Mechanical Engineer, Conference on Applied Mechanics, 1948.11

Masaichi Kondo et.al.: Experimental study of stability and maneuverability of two-wheeled vehicles (in Japanese), Journal of the JSME, Vol.58, No.442, (1955),pp.5-11

Masaichi Kondo et.al.: Fundamental Equations of Motion for Two-wheeled Vehicle Running Stability and Their Application to Bicycles(in Japanese) , JSME Meeting, 1948.11

Masaichi Kondo et.al.: Theoretical Study on Two-wheeled Vehicle Stability(in Japanese) , Journalof JSAE, Vol.17, No.1,(1963), pp.8-18

Masaichi Kondo: Fundamental relationship that exists between vehicle steering and motion.(in Japanese),Transaction of JSAE, No.5,(1958),pp.40-43

Masaichi Kondo: Mechanics of motorcycles (bicycles, mopeds, scooters, motorcycles)(in Japanese) , Bicycle Production Technology, No.93-94 (1975), pp.1-94

Masakazu Iguchi et.al.: Fundamental Study on the Stability of Two-Wheeled Vehicles with Front and Rear Wheel Steering (in Japanese), Transaction of JSAE, No.32, (1986),pp.106-112

Masanori Motoki: Motorcycle Rider's Eye Range(in Japanese),Automotive Research, Vol.8, No.1 (1986), pp.15-18

Masao Nagai: Control on motorcycle running at low speeds(in Japanese), Transaction of JSAE, No.32, (1986), pp.113-118

Masao Nagaiet.al.:Analysis of Rider and Single-Track-Vehicle System, its Application to Computer-Controlled Bicycle, Automatica, Vol.19, No.6, (1983),pp.737-740 https://doi.org/10.1016/0005-1098(83)90040-7

Masato Kamio, Keiichi Nakamura, Shinsuke Kobayashi, Noboru Koshizuka, and Ken Sakamura. Micro T-Kernel: A low power and small footprint RTOS for networked tiny devices. In 2009 Sixth International Conference on Information Technology: New Generations, pages 587-594, 2009. https://doi.org/10.1109/ITNG.2009.242

Massaro, M. (2011). A nonlinear virtual rider for motorcycles.Vehicle system dynamics, 49(9):1477-1496. https://doi.org/10.1080/00423114.2010.521843

Massaro, M. and Limebeer, D. (2021). Minimum-lap-time optimisation and simulation.Vehicle System Dynamics, 59(7):1069-1113 https://doi.org/10.1080/00423114.2021.1910718

Massaro, M., Cossalter, V., Lot, R., Rota, S., Ferrari, M., Sartori, R., and Formentini, M. (2013). A portable driving simulator forsingle-track vehicles. In 2013 IEEE International Conference on Mechatronics (ICM), pages 364-369. IEEE. https://doi.org/10.1109/ICMECH.2013.6518564

Matsuzawa, S., Iwase, M., Sadahiro, T., and Hatakeyama, S. (2009). Motion analysis by experiment and simulation for riding bicycles with children. In 2009 IEEE International Conference on Systems, Man and Cybernetics, pages 859-864, San Antonio,TX, USA. IEEE. https://doi.org/10.1109/ICSMC.2009.5346897

Mavros, G. (2019). A thermo-frictional tyre model including the effect of flash temperature. Vehicle System Dynamics https://doi.org/10.1080/00423114.2018.1484147

McRuer DT, Jex HR. A review of quasi-linear pilot models. IEEE Trans Hum Factors Electron. 1967;HFE-8(3):231-249. https://doi.org/10.1109/THFE.1967.234304

Meijaard, J. P., Papadopoulos, J. M., Ruina, A. & Schwab, A. L. (2007). Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review. Proc. of Royal Society A, 1955-1982. https://doi.org/10.1098/rspa.2007.1857

Meijaard, J. P., Papadopoulos, J. M., Ruina, A., & Schwab, A. L. (2007). Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, https://doi.org/10.1098/rspa.2007.1857

Meijaard, J. P., Papadopoulos, J. M., Ruina, A., & Schwab, A. L. (2007). Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 1955-1982. https://doi.org/10.1098/rspa.2007.1857

Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L. (2007). Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences,463(2084):1955-1982. https://doi.org/10.1098/rspa.2007.1857

Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L. (2011). History of thoughts about bicycle self-stability. Technicalreport, Cornell.

Meijaard, J. P., Popov, A. A., (2006). Influences of aerodynamic drag, the suspension system and rider's body position on instabilities in a modern motorcycle. Vehicle System Dynamics, 44:sup1, 690-697 https://doi.org/10.1080/00423110600883561

Meijaard, J., Papadopoulos, J. M., Ruina, A., and Schwab, A. (2007). Linearized dynamics equations for the balance and steerof a bicycle: a benchmark and review.Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,463(2084):1955-1982. https://doi.org/10.1098/rspa.2007.1857

Meijaard, J., Papadopoulos, J. M., Ruina, A., and Schwab, A. L. (2007). Linearized dynamics equations for the balance and steerof a bicycle: a benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,463:1955-1982 https://doi.org/10.1098/rspa.2007.1857

Meijaard, J.P; Papadopoulos, Jim M.; Ruina, Andy; Schwab, A.L (2007): Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. In: Proc. R. Soc. A. 463 (2084), 1955-1982. https://doi.org/10.1098/rspa.2007.1857

Merkel, N. L. (2022). Untersuchungen zurAnwendbarkeit Automatischer Notbremssysteme für Motorräder. Dissertation,Technische Universität Darmstadt, Darmstadt, Germany.

Merkel, N. L., Pleß, R., Winner, H., Hammer, T., Schneider, N., Will, S. (2019, June 10-13). Tolerability of Unexpected Autonomous Emergency Braking Maneuvers on Motorcycles -A Methodfor Experimental Investigation, In: Conference on the Enhances Safety of Vehicles (ESV), Eindhoven, Netherlands, 2019.

Merkel, N. L., Pless, R.,Winner, H., Hammer, T., Schneider, N., and Will, S. (2022). Automatische Notbremssysteme für Motorräder.

Merkel, N. L., Pless, R.,Winner, H., Hammer, T., Norbert, S., and Will, S. (2019). Tolerability of unexpected autonomous emergency braking maneuvers on motorcycles-a methodology for experimental investigation. In National Highway Traffic Safety Administration(Ed.), The 26th ESV Conference Proceedings. International Technical Conference on the Enhanced Safety of Vehicles (ESV),Eindhoven, The Netherlands.

Merkel, N. L., Pleß, R.; Winner, H., Hammer, T., Schneider, N., Will, S. (2022). Automatische Notbremssysteme für Motorräder -Abschlussbericht zum Projekt FE 82.0661/2015. Berichte der Bundesanstalt für Straßenwesen, Reihe F: Fahrzeugtechnik (147), Fachverlag NW in der Carl Ed. Schünemann KG, Bremen, 2022.

Merkel, N. L., Winner, H. (2019, September 9-11). Measures for the Evaluation of Riders' Adaption to the Changing Vehicle State during Autonomous Emergency Braking Maneuvers on Motorcycles, In Symposium on Bicycle and Motorcycle Dynamics, Padua, Italy, 2019.

Merkel, N. L., Winner, H. (2020, September 1 -October 6). Characteristic Rider Reactions to Autonomous Emergency Braking Maneuvers on Motorcycles. In Institute for Motorcycle Safety e.V. (Ed.), Proceedings of the 13th International Motorcycle Conference 2020, Cologne/Online, Germany, 2020.

Merkel, N.L.(2022). Untersuchungen zur Anwendbarkeit Automatischer Notbremssysteme für Motorräder. Dissertation, Technische Universität Darmstadt, Darmstadt, Germany.

Merkel, N.L., Pleß, R., Scheid, K., Winner, H. (2018, October 1-2). Einsatzgrenzen automatischer Notbrems-systeme für motorisierte Zweiräder -eine Expertenstudie. In Institute for Motorcycle Safety e.V. (Ed.), Proceedings of the 12th International Motorcycle Conference 2018, Cologne/Online, Germany, 2018.

Meurer, A., Smith, C. P., Paprocki, M., Certík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S.,Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,Terrel, A. R., Roucka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A. (2017). SymPy: Symbolic computing in Python.PeerJ Computer Science, 3:e103. https://doi.org/10.7717/peerj-cs.103

Meurer, A., Smith, C. P., Paprocki, M.,ˇCertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Rouˇcka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A. (2017). SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103. https://doi.org/10.7717/peerj-cs.103

Michel, P., Bouaziz, S., Delgehier, F., and Espie, S. (2022). Rider in the loop dynamic motorcycle simulator: An instrumentation strategy focused on human acceptability. Electronics, 11(17):2690. https://doi.org/10.3390/electronics11172690

Miller, M., Kaufmann, A., Reick, B., & Pfeil, M. (2021), Intelligente Anhängerdeichsel für verschiedene Zugfahrzeuge. HochschuleRavensburg-Weingarten, Weingarten

Miller, M., Kaufmann, A., Reick, B., & Pfeil, M. (2021). Intelligente Anhängerdeichsel für verschiedene Zugfahrzeuge.

Miller, M., Pfeil, M., & Kennel, R. (2023b), Trailer Electrification-A HIL Approach for MPC Powertrain Control to Ensure Driver Safety in Micromobility (No. 2023-24-0180). SAE Technical Paper, https://doi.org/10.4271/2023-24-0180

Miller, M., Pfeil, M., Reick, B., Murri, R., Stetter, R., & Kennel, R. (2023). Measurement and Modeling of a Cargo Bicycle Tire for Vehicle Dynamics Simulation. Applied Sciences, 13(4), 2542. https://doi.org/10.3390/app13042542

Miller, M., Pfeil, M., Reick, B., Murri, R., Stetter, R., & Kennel, R. (2023a), Measurement and Modeling of a Cargo Bicycle Tirefor Vehicle Dynamics Simulation. Applied Sciences, 13(4), 2542. https://doi.org/10.3390/app13042542

Miller, M., Pfeil, M., Reick,B., Murri, R., Stetter, R., Kennel, R. (2023) Measurement and Modeling of a Cargo Bicycle Tire for VehicleDynamics Simulation.Appl. Sci.,13, 2542 https://doi.org/10.3390/app13042542

Minkowycz, W. J., Sparrow, E., and Y., M. J. (2000).Handbook of Numerical Heat Transfer. John Wiley & Sons Inc https://doi.org/10.1002/9780470172599

Miyamaru, Y., Yamasaki, G., and Aoki, K. (2002). Development of a motorcycle riding simulator. JSAE review, 23(1):121-126. https://doi.org/10.1016/S0389-4304(01)00147-3

Molnár, Cs., A., Zelei, A., and Insperger, T. (2021). Rolling balance board of adjustable geometry as a tool to assess balancing skill and to estimate reaction time delay. Journal of the Royal Society Interface. 18: 20200956. https://doi.org/10.1098/rsif.2020.0956

Moore, J. K. (2015).Bicycle Control Design in Python/v3.Plotly, Montreal, https://plotly.com/python/v3/ipython-notebooks/bicycle-control-design/.

Moore, J. K., Hubbard, M., Schwab, A. L., Kooijman, J. D. G., and Peterson, D. L. (2010). Statistics of bicycle rider motion. Procedia Engineering, 2(2):2937-2942. https://doi.org/10.1016/j.proeng.2010.04.091

Moore, J. K. (2012).Human Control of a Bicycle. PhD thesis, University of California, Davis.

Moore, J. K. (2012).Human Control of a Bicycle. PhD thesis, University of California, Davis.

Moore, J. K. and Hubbard, M. (2019). Expanded optimization for discovering optimal lateral handling bicycles. In Proceedings of the 2019 Bicycle and Motorcycle Dynamics Conference.

Moore, J. K. and van den Bogert, A. J. (2018). opty: Software for trajectory optimization and parameter identification using direct collocation. Journal of Open Source Software.

Moore, J. K., Hubbard, M., Kooijman, J. D. G.&Schwab, A. L. (2009, August 30 -September 2). A Method for Estimating Physical Properties of a Combined Bicycle and Rider. Proceedings of the ASME 2009, Vol.4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control(IDETC/CIE 2009), San Diego, California, USA. https://doi.org/10.1115/DETC2009-86947

Moore, J. K., Hubbard, M., Kooijman, J. D. G., & Schwab, A. L. (2009, January). A method for estimating physical properties of a combined bicycle and rider. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Vol. 49019. Vehicle Systems and Tire Dynamics(pp. 2011-2020). ASME. https://doi.org/10.1115/DETC2009-86947

Moore, J., Kooijman, J., Hubbard, M. & Schwab, A. (2009), A Method For Estimating Physical Properties of a Combined Bicycle and Rider, Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information Engineering Conference IDETC/CIE 2009, San Diego, California, USA

Motomu Yokomori et.al.: Steering characteristics with motorcycle rider during low-speed straight running(in Japanese), Transaction of JSME (Category C), Vol.57, No.535, (1991), pp.2621-2626

Mozaffari, S., Al-Jarrah, O. Y., Dianati, M., Jennings, P., & Mouzakitis, A. (2022). Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review. IEEE Transactions on Intelligent Transportation Systems, 23(1), 33-47. https://doi.org/10.1109/TITS.2020.3012034

Muehlbacher, D., Will, S., Merkel, N., Perterer, N., Mlakar, S., Haller, M., and Perterer, M. (2023). Compliance to eco-riding recommendations on an e-scooter: Effects on energy consumption and user acceptance. Transportation Research Interdisciplinary Perspectives, 20:100831. https://doi.org/10.1016/j.trip.2023.100831

N.Tagamiet.al.: Developmentofaridingsimulatorfortwo-wheeledvehicles, Elsevier, JSAE Review Vol.23,No.3,(2002),pp.347-352 https://doi.org/10.1016/S0389-4304(02)00202-3

Nagurka, M.L., & Huang, S. (2006).A mass-spring-damper model of a bouncing ball. International Journal of Engineering Education, Vol. 22, No. 2, 393-401.

Nakamura, Y., Takao, K., Saguchi, T., & Matsuyama, T. (2013, November 11-13), New experimental method for evaluating themaneuverability of rider-bicycle system.Proceedings, Bicycle and Motorcycle Dynamics 2013, Symposium on the Dynamics and Control of Single Track Vehicles, Narashino, Japan, 3.2-3.

Naveh, Y., Bar Yoseph, P., and Halevi, Y. (1999). Nonlinear modeling and control of a unicycle.Dynamics and Control, 9:279-296. https://doi.org/10.1023/A:1026481216262

Nehaoua, L. and Arioui, H. (2008). Parameters identification for motorcycle simulator's platform characterization. In AIP Conference Proceedings, volume 1019, pages 133-138. American Institute of Physics. https://doi.org/10.1063/1.2952964

Nehaoua, L., Arioui, H., &Mammar, S. (2011b). Review on single track vehicle and motorcycle simulators. In 2011 19th Mediterranean Conference on Control & Automation (MED), pages 940-945. IEEE. https://doi.org/10.1109/MED.2011.5983083

Nehaoua, L., Hima, S., Arioui, H., &Seguy, N. (2008). A new motorcycle simulator platform: Mechatronics design, dynamics modeling, and control. IFAC Proceedings Volumes, 41(2):4452-4457. https://doi.org/10.3182/20080706-5-KR-1001.00751

Nehaoua, L., Arioui, H., &Fridman, L. (2011a). Force feedback control based on vgsta for single track riding simulator. In 201150th IEEE Conference on Decision and Control and European Control Conference, pages 8243-8248. IEEE. https://doi.org/10.1109/CDC.2011.6161063

Nehaoua, L., Hima, S., Arioui, H., Seguy, N., &Espie, S. (2007a). Design and modeling of a new motorcycle riding simulator. In 2007 American Control Conference, pages 176-181. IEEE. https://doi.org/10.1109/ACC.2007.4283070

Nehaoua, L., Hima, S., Arioui, H., Seguy, N., &Espie, S. (2007b). Open-loop test and validation of a new two-wheeled vehicle riding simulator. In 2007 European Control Conference (ECC), pages 4911-4916. IEEE. https://doi.org/10.23919/ECC.2007.7068797

Nehaoua, L., Khettat, A., Arioui, H., Imine, H., and Espie, S. (2010). Rider steer torque estimation for motorcycle riding simulator. IFAC Proceedings Volumes, 43(18):505-510.425 https://doi.org/10.3182/20100913-3-US-2015.00112

Neukum, A. (2015). Beherrschbarkeit fehlerhafter Eingriffe in die Fahrzeugquerdynamik. In Kompaß, K. (Ed.): Fahrerassistenz und Aktive Sicherheit, Haus der Technik Fachbuch. expert verlag, Renningen, 2015.

Neukum, A., Lübbeke, T., Krüger, H.-P., Mayser, C.. Steinle, J. (2008). ACC-Stop&Go: Fahrerverhalten an funktionalen Systemgrenzen. In Maurer, M.

Stiller, C. (Eds.): 5. Workshop Fahrerassistenzsysteme -FAS2008. Karlsruhe, Germany, 2008.

Ni, Y., Li, Y., Yuan, Y., and Sun, J. (2023). An operational simulation framework for modelling the multi-interaction of two-wheelers on mixed-traffic road segments. Physica A: Statistical Mechanics and its Applications, 611:128441. https://doi.org/10.1016/j.physa.2022.128441

Nobuyasu Endo etl.al.: Study on Dynamics of motorcycles at running-Equations of motion in finite motion(in Japanese),Yamaguchi University Faculty of Engineering Research Report, Vol.39, No.1 (1988),pp.169-175

Norfleet, D., Wagner, J., Alexander, K., &Pidgeon, P. (2009). Automotive driving simulators: research, education, and entertainment. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2(2009-01-0533):186-193. https://doi.org/10.4271/2009-01-0533

Norgia, M., Boniolo, I., Tanelli, M., Savaresi, S. M., & Svelto, C. (2009). Optical Sensors for Real-Time Measurement of Motorcycle Tilt Angle. IEEE Transactions on Instrumentation and Measurement, 58(5), 1640-1649. https://doi.org/10.1109/TIM.2008.2009421

Norio Tsuta et.al.: Analysis of high-speed running stability of coupled human-motorcycle systems(in Japanese), Transaction of JSME (Category C), Vol.62, No.593, (1996),pp.76-82 https://doi.org/10.1299/kikaic.62.76

Nozomi Katagiri et.al.: Evaluation of Lane-Keeping Assistance System for Motorcycles using Rider Control Model(in Japanese), Transaction of JSAE, Vol.40, No.3, (2009), pp.635-640

Nugent, M., Savino, G., Mulvihill, C., Lenne, M., and Fitzharris, M. (2019). Evaluating rider steering responses to an unexpected collision hazard using a motorcycle riding simulator. Transportation research part F: Traffic psychology and behaviour, 66:292-309. https://doi.org/10.1016/j.trf.2019.09.005

Nüwiel (2022). ProductP. Available online: https://www.nuwiel.com/etrailer/ [14.07.2022].

O'Hern, S., Oxley, J., & Stevenson, M. (2017). Validation of a bicycle simulator for road safety research. Accident Analysis and Prevention, 100, 53-58. https://doi.org/10.1016/j.aap.2017.01.002

Ogi, T. (2015). Design and evaluation of hud for motorcycle using immersive simulator. In SIGGRAPH Asia Head-Up Displays and their Applications, pages 5-1. https://doi.org/10.1145/2818406.2818411

O'Hern, Steve; Oxley, Jennie; Stevenson, Mark (2017): Validation of a bicycle simulator for road safety research. Accident analysis and prevention 100, 53-58. https://doi.org/10.1016/j.aap.2017.01.002

Olsson, H., Astrom, K., Canudas de Wit, C., Gafvert, M., & Lischinsky, P. (1998). Friction Models and Friction Compensation. European Journal of Control, 4(3), 176-195 https://doi.org/10.1016/S0947-3580(98)70113-X

Pacejka, H. (2005).Tire and vehicle dynamics.Elsevier.

Pacejka, H.B., Besselink, I. (2012)Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK.

Pacejka, H.B., Besselink, I. (2012)Tire and Vehicle Dynamics, 3rd ed.; Butterworth-Heinemann: Oxford, UK.

Padova.Levitt, J.A., & Zorka, N.G. (1991). The Influence of Tire Damping in Quarter Car Active Suspension Models. Journal of Dynamic Systems, Measurement, and Control, 134-137. https://doi.org/10.1115/1.2896339

Papadopoulos, J. M. and Ruina, A. (2007). Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal society A: mathematical, physical and engineering sciences, 463(2084):1955-1982. https://doi.org/10.1098/rspa.2007.1857

Park, S., Caldwell, G. E., and Umberger, B. R. (2022). A direct collocation framework for optimal control simulation of pedaling using opensim. Plos one, 17(2):e0264346. https://doi.org/10.1371/journal.pone.0264346

Peterson, L. (2013).Bicycle dynamics: Modelling and experimental validation. PhD thesis, University of California Davis.

Petrone, N., Giubilato, F., Giro, A., & Mutinelli, N. (2012). Development of instrumented downhill bicycle components for field data collection. Procedia Engineering, 34, 514-519. https://doi.org/10.1016/j.proeng.2012.04.088

Pfeiffer, M., Wrede, J., Steeb, S. (2020).Validation of a bicycle dynamics assistance system using hardware-in-the-loop simulation. Proceedings of Bicycle and Motorcycle Dynamics 2019, Symposium on the Dynamics and Control of Single Track Vehicles, Italy.

Pfeiffer, M., Wrede, J., Steeb, S., (2020), Validation of a Dynamics Assistance System Using Hardware-in-the-Loop Simulation. Symposium on the Dynamics and Control of Single Track Vehicles

Picotti, E., Mion, E., Libera, A. D., Pavlovic, J., Censi, A., Frazzoli, E., Beghi, A., and Bruschetta, M. (2023). A learning-based nonlinear model predictive controller for a real go-kart based on black-box dynamics modeling through Gaussian processes. IEEE Transactions on Control System Technology. Accepted. https://doi.org/10.1109/TCST.2023.3291532

Pierson, A. M., Shortreed, A. K., Van Asten, P. D., Dressel, A. E. (2020, August 17-19), A Narrow-Track Tilting Tricycle With Variable Stability That the Rider Can Control Manually, Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 22nd International Conference on Advanced Vehicle Technologies, Virtual, Online https://doi.org/10.1115/DETC2020-22635

Pierson, A. M., Shortreed, A. K., Van Asten, P. D., Dressel, A. E. (2020, August 17-19), A Narrow-Track Tilting Tricycle With Variable Stability That the Rider Can Control Manually, Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 22nd International Conference on Advanced Vehicle Technologies, Virtual, Online https://doi.org/10.1115/DETC2020-22635

Pierson, A. M., Shortreed, A. K., Van Asten, P. D., Dressel, A. E. (2020, August 17-19), A Narrow-Track Tilting Tricycle with Variable Stability that the Rider can Control Manually, Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 4: 22nd International Conference on Advanced Vehicle Technologies, Virtual, Online https://doi.org/10.1115/DETC2020-22635

Pinelli, G., Rajan, P., Berzi, L., Savino, G., et al. (2018). The influence of body lean on the realism of a motorcycle riding simulator adopting counter-steering approach. AIAS-Associazione italiana per l'analisi delle sollecitazioni, 47.

Pleß, R. (2016). Approach to a holistic input determination for a motorcycle riding simulator. Proceedings of the Bicycle & Motorcycle Dynamics Symposium, Milwaukee, 2016

Pleß, R. (2016). Approach to a holistic input determination for a motorcycle riding simulator. Proceedings of the Bicycle & Motorcycle Dynamics Symposium, Milwaukee, 2016

Pleß, R. (2023). Dual Loop Rider Control of a Dynamic Motorcycle Riding Simulator, Dissertation, TU Darmstadt

Pless, R. A. M. (2023). Dual loop rider control of a dynamic motorcycle riding simulator.

Pless, R., Will, S., Guth, S., Hofmann, M., and Winner, H. (2016). Approach to a holistic rider input determination for a dynamic motorcycle riding simulator. In Proceedings of the Bicycle and Motorcycle Dynamics Conference, Milwaukee, WI, USA, pages21-23.

Plöchl, M., Edelmann, J., Angrosch, B., and Ott, C. (2012). On the wobble mode of a bicycle. Vehicle System Dynamics, 50(3):415-429. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00423114.2011.594164

Plöchl, M., Edelmann, J., Angrosch, B., and Ott, C. (2012). On the wobble mode of a bicycle.Vehicle System Dynamics, 50(3):415-429. https://doi.org/10.1080/00423114.2011.594164

Popp, K., Schiehlen, W., (2010).Ground Vehicle Dynamics. Springer. https://doi.org/10.1007/978-3-540-68553-1

Pressley, A. (2010).Elementary Differential Geometry. Springer Undergraduate Mathematics Series (SUMS). Springer, 2 edition. https://doi.org/10.1007/978-1-84882-891-9

Pretagostini, F., Ferranti, L., Berardo, G., Ivanov, V., & Shyrokau, B. (2020). Survey on Wheel Slip Control Design Strategies, Evaluation and Application to Antilock Braking Systems. IEEE Access, 8, 10951-10970. https://doi.org/10.1109/ACCESS.2020.2965644

Previati, G., Mastinu, G., Magnani, G., et al. (2019). Analysis of bicycle shimmy and relevant bicycle compliances. In Proceedings of the 2019 Bicycle and Motorcycle Dynamics Conference.

Prokop, G., Hannawald, L., Köbe, M. (2017, April), Szenarien-basierte Plattform zur Inspektion automatisierter Fahrfunktionen -Eine Bewertungsmethodik zur Inspektion automatisierter Fahrfunktionen. Proceedings, Symposium für Unfallforschung und Sicherheit im Straßenverkehr der ADAC Stiftung, Munich, Germany, 115-127

Prokop, G., Hannawald, L., Köbe, M. (2017, April), Szenarien-basierte Plattform zur Inspektion automatisierter Fahrfunktionen -Eine Bewertungsmethodik zur Inspektion automatisierter Fahrfunktionen. Proceedings, Symposium für Unfallforschung und Sicherheit im Straßenverkehr der ADAC Stiftung, Munich, Germany, 115-127

Pschenitza, M. (2019), Auswertung von Motorradunfällen: Konstellationen, Besonderheiten, Abhilfemaßnahmen. Berichte der ADAC Unfallforschung, Landsberg am Lech, Germany

Rajamani, R. (2012). Vehicle Dynamics and Control.Springer,New York, NY. https://doi.org/10.1007/978-1-4614-1433-9

Ramosaj, N. (2023). BMD2023-ramosaj-fusco-viennet. GitLab repository. https://gitlab.forge.hefr.ch/nicolas.ramosaj/bmd2023-ramosaj-fusco-viennet

Rashid, H., Omar, A. R., Ahmad, I. N., Mohamed, Z., Wan Fauzi, W. M. S., Mahmud, Z., and Haron, R. (2017). Motorcyclists' prolonged riding simulation: The setup and procedures. Journal of Mechanical Engineering (JMechE), (5):197-208.

Redfield, R. (2008). Brake induced vibration in mountain bikes. Proceeding of the Engineering of Sport, 7th International Sports Engineering Association (ISEA) Conference. https://doi.org/10.1007/978-2-287-09411-8_69

Redfield, R. (2014). Bike braking vibration modelling and measurement. Procedia engineering, 72:471-476. https://doi.org/10.1016/j.proeng.2014.06.051

Ricardo, L.A.R. (2013). Nonlinear Stochastic Analysis of Motorcycle Dynamics. PhD Thesis, Rice University, Houston, TX, USA

Rill, G. (2006). A modified implicit euler algorithm for solving vehicle dynamic equations. Multibody System Dynamics, 15:1-24. https://doi.org/10.1007/s11044-006-2359-z

Rill, G.&Arrieta Castro, A. (2020). Road Vehicle Dynamics(2nded).Boca Raton: CRC Press. https://doi.org/10.1201/9780429244476

Rinke, N., Schiermeyer, C., Pascucci, F., Berkhahn, V., and Friedrich, B. (2017). A Multi-layer Social Force Approach to Model Interactions in Shared Spaces Using Collision Prediction. Transportation Research Procedia, 25(1):1249-1267. https://doi.org/10.1016/j.trpro.2017.05.144

Risitano, G., Scappaticci, L., Grimaldi, C., and Mariani, F. (2012). Analysis of the structural behavior of racing motorcycle swingarms. Technical report, SAE Technical Paper https://doi.org/10.4271/2012-01-0207

Rodrigo Marco, V., Kalkkuhl, J., Raisch, J., & Seel, T. (2020). A novel IMU extrinsic calibration method for mass production land vehicles. Sensors, 21(1), 7.SBG Systems SAS. (2020, November). ELLIPSE SERIES High Performance, Miniature Inertial Sensors[Hardware Manual]. https://support.sbg-systems.com/sc/el/files/latest/11240254/17990941/1/1617893855126/Ellipse+3+-+Hardware+Manual.pdf https://doi.org/10.3390/s21010007

Romano, L., Timpone, F., Bruzelius, F., and Jacobson, B. (2022). Rolling, tilting, and spinning spherical wheels: analytical results using the brush theory. Mechanism and Machine Theory, 173 https://doi.org/10.1016/j.mechmachtheory.2022.104836

Ronné, J. Dubuis, L., Robert, T. (2023). Bicycle handling quality perception: mixed effect of stability and manoeuvrability. Abstract submitted to the 2023 Bicycle Dynamics Conference. https://doi.org/10.59490/648c083143b3bec00d30df9f

Ronné, J., Dubuis, L., and Robert, T. (2023). Bicycle handling quality perception: mixed effect of stability and manoeuvrability. https://doi.org/10.24404/63FDF484FF9696EE92567E49

Rosenthal, D. and Sherman, M. (1986). High Performance Multibody Simulations via Symbolic Equation Manipulation and Kane's Method. Journal of the Astronautical Sciences, 34:223-239.

Rossi, F., Lendasse, A., Francois, D., Wertz, V., and Verleysen, M. (2006). Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics and Intelligent Laboratory Systems, 80(2):215-226. https://doi.org/10.1016/j.chemolab.2005.06.010

Rothhämel, M. (2023). Comfort and vibration level of children in cycle carriers (accepted for publication). https://doi.org/10.1371/journal.pone.0282778

Rothhämel, M. (2023). Comfort and vibration level of children in cycle carriers.PloS one, 18(3):e0282778-. https://doi.org/10.1371/journal.pone.0282778

Rothhämel, M. (2023). On rolling resistance of bicycle tyres with ambient temperature in focus. Int. J. of Vehicle Systems Modelling and Testing, 17(1):67-80. https://doi.org/10.1504/IJVSMT.2023.10057627

Rothhämel, M. and Liu, Y. (2023). On comfort in cycle carriers for child transport. In 28th International Symposium on Vehicle System Dynamics, Ottawa, Canada. https://doi.org/10.1007/978-3-031-66968-2_78

Ruijs, P. A. and Pacejka, H. B. (1985). Research in lateral dynamics of motorcycles.Vehicle System Dynamics, 14(1-3):149-152 https://doi.org/10.1080/00423118508968819

Ryan, R. (1990). ADAMS-multibody system analysis software. Multibody Systems Handbook, pages 361-402. https://doi.org/10.1007/978-3-642-50995-7_21

S. Shinghania et al.: Steering control to balance a motorcycle at low speeds based on riders' input, I Mech E Part D: J. of Automobile Engineering, (2021), pp.1-13

S.Suzuki et.al.: Study on construction of Rider Robot for Motorcycles, Proc. of AVEC'08,(2008)

Sadauckas, J., Schoeneck, N., & Nagurka, M. (2023) Radial Stiffness and Damping of Mountain Bike Tires Subject to Impact Determined Using the Coefficient of Restitution.Bicycle and Motorcycle Dynamics 2023 Symposium on the Dynamics and Control of Single Track Vehicles 18-20 October 2023, Delft University of Technology The Netherlands. https://doi.org/10.24404/63FD8435FCA7904ADF915064

Sadauckas, J., Schoeneck, N., & Nagurka, M. (2023) Radial Stiffness and Damping of Mountain Bike Tires Subject to Impact Determined Using the Coefficient of Restitution. Manuscript submitted for publication. https://doi.org/10.24404/63FD8435FCA7904ADF915064

SAE International Vehicle Dynamics Standards Committee, "Vehicle Dynamics Terminology," SAE Standard J670, Rev. June 2022.

Sakhnevych, A. (2022). Multiphysical mf-based tyre modelling and parametrisation for vehicle setup and control strategies optimisation. Vehicle System Dynamics https://doi.org/10.1080/00423114.2021.1977833

Sakhnevych, A. and Genovese, A. (2024). Tyre wear model: A fusion of rubber viscoelasticity, road roughness, and thermo-dynamic state. Wear https://doi.org/10.1016/j.wear.2024.205291

Sauret, C.,Vaslin, P., Dabonneville, M.andCid, M. (2007). Drag force mechanical power during a propulsion cycle on a manual wheelchair. Computer methods in biomechanics and biomedical engineering, 10. https://doi.org/10.1080/10255840701478885

Savino, G, Giovannini, F, Baldanzini, N, Pierini, M. & Rizzi, M. (2013). Assessing the potential benefits of the motorcycle autonomous emergency braking using detailed crash reconstructions. In Traffic injury prevention, 14, 40-49. https://doi.org/10.1080/15389588.2013.803280

Savino, G., Pierini, M., Thompson, J., Fitzharris, M., Lenne, M. G. (2016). Exploratory field trial of motorcycle autonomous emergency braking (MAEB). In Traffic injury prevention (8), 17, 855-862, 2016. https://doi.org/10.1080/15389588.2016.1155210

Savino, G, Giovannini, F, Baldanzini, N, Pierini, M. & Rizzi, M. (2013). Assessing the potential benefits of the motorcycle autonomous emergency braking using detailed crash reconstructions. Traffic injury prevention, 14, 40-49 https://doi.org/10.1080/15389588.2013.803280

Savino, G., Giovannini, F., Baldanzini, N., and Pierini, M. (2013). Real-time estimation of road-tyre adherence for motorcycles. Vehicle System Dynamics, 51(12):1839-1852. https://doi.org/10.1080/00423114.2013.838280

Savino, G., Lot, R., Massaro, M., Rizzi, M., Symeonidis, I., Will, S., & Brown, J. (2020). Active safety systems for powered two-wheelers: A systematic review. Traffic Injury Prevention, 21(1), 78-86. https://doi.org/10.1080/15389588.2019.1700408

Savino, G., Lot, R., Massaro, M., Rizzi, M., Symeonidis, I., Will, S., & Brown, J. (2020). Active safety systems for powered two-wheelers: A systematic review. Traffic Injury Prevention, 21(1), 78-86 https://doi.org/10.1080/15389588.2019.1700408

Savino, G., Pierini, M., and Lenne, M. G. (2016). Development of a low-cost motorcycle riding simulator for emergency scenarios involving swerving. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,230(14):1891-1903. https://doi.org/10.1177/0954407015624998

Savino, G., Pierini, M., Baldanzini, N. (2012). Decision logic of an active braking system for powered two wheeler. In Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (8), 226, 1026-1036, 2012. https://doi.org/10.1177/0954407011434445

SBG Systems SAS. (2020, November). ELLIPSE SERIES High Performance, Miniature Inertial Sensors[Hardware Manual]. https://support.sbg-systems.com/sc/el/files/latest/11240254/17990941/1/1617893855126/Ellipse+3+-+Hardware+Manual.pdf

Scappaticci, L., Bartolini, N., Guglielmino, E., and Risitano, G. (2017). Structural optimization of a motorcycle chassis by pattern search algorithms. Engineering Optimization https://doi.org/10.1080/0305215X.2016.1256393

Scappaticci,L., Bartolini, N., Guglielmino, E., Risitano, G. (2017), Structural optimization of a motorcycle chassis by pattern search Algorithm. In Engineering Optimization, vol. 49 https://doi.org/10.1080/0305215X.2016.1256393

Scherer, F., & Basten, T. (2022). Entwicklung eines Motorradfahrendenmodells zur Trajektorienprädiktion. In Insitut fürZweiradsicherheit (ifz) e.V. (Ed.), ifz-Research Publication Series: Nr. 20, Sicherheit - Umwelt - Zukunft XIV: Tagungsband der 14. Internationalen Motorradkonferenz 2022 (pp. 265-299). Institut für Zweiradsicherheit.

Scherer, F., Pless, R., and Winner, H. (2020). Identification of rider-vehicle coupling on motorcycles and riding simulators. Symposium on the Dynamics and Control of Single Track Vehicles.

Scherer, F., Winner, H., Pleß, R., Will, S., Neukum, A., Stanglmaier, M., Bäumler, M., Siebke, C., & Prokop, G. (Eds.). (2021). Berichte der Bundesanstalt für Straßenwesen F, Fahrzeugtechnik: Heft 142. Schräglagenangst: = Corner fear. Fachverlag NW in Carl Ed. Schünemann KG. https://bast.opus.hbz-nrw.de

Scherer, F., Basten, T. (2022, October 03-04), Development of a motorcyclist model for trajectory prediction. Proceedings, 14th International Motorcycle Conference 2022, Cologne, Germany, 265-299

Scherer, F., Basten, T. (2022, October 03-04), Development of a motorcyclist model for trajectory prediction. Proceedings, 14th International Motorcycle Conference 2022, Cologne, Germany, 265-299

Scherer, F.; Winner, H.; Pleß, R.; Will, S; Neukum, A.; Stanglmaier, M.; Bäumler, M.; Siebke; C.; Prokop, G.; (2021, November), Schräglagenangst. Berichte der Bundesanstalt für Straßenwesen, F142, Bergisch-Gladbach, Germany

Scherer,F., & Basten,T. (2022). Entwicklung eines Motorradfahrendenmodells zur Trajektorienprädiktion. In Insitut fürZweiradsicherheit (ifz) e.V. (Ed.), ifz-Research Publication Series: Nr. 20, Sicherheit -Umwelt -Zukunft XIV:Tagungsband der 14. Internationalen Motorradkonferenz 2022(pp.265-299). Institut für Zweiradsicherheit.

Schoeneck, N., Sadauckas, J., & Nagurka, M. (2023, Oct. 18-20). Identification and modeling of a mountain bike front suspension subsystem equipped with a telescopic fork and tire damping. Paper submitted, BMD2023, Delft University, Netherlands. https://doi.org/10.59490/65037d87d2719ed4543447a7

Schoeneck, N.,Sadauckas, J.,&Nagurka, M.(2023, Oct. 18-20).Identification and modeling of a mountain bike front suspension subsystem equipped with a telescopic fork and tire damping. Abstract submitted, BMD2023, Delft University, Netherlands. https://doi.org/10.59490/65037d87d2719ed4543447a7

Schönauer, R., Stubenschrott, M., Huang, W., Rudloff, C., and Fellendorf, M. (2012). Modeling Concepts for Mixed Traffic: Steps toward a Microscopic Simulation Tool for Shared Space Zones. Transportation Research Record, 2316(1):114-121. https://doi.org/10.3141/2316-13

Schrand, D. (2007). Cross-Talk Compensation Using Matrix Methods.Sensors Transducers J.2007,5, 1157-1163

Schwab, A. L. and Meijaard, J. P. (2013). A review on bicycle dynamics and rider control. Vehicle system dynamics, 51(7):1059-1090. https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L. and Meijaard, J. P. (2013). A review on bicycle dynamics and rider control. Vehicle System Dynamics, 51(7):1059-1090. https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L. and Meijaard, J. P. (2013). A review on bicycle dynamics and rider control .Vehicle System Dynamics, 51(7):1059-1090. https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L. and Meijaard, J. P. (2013). A review on bicycle dynamics and rider control.Vehicle System Dynamics, 51(7):1059-1090. https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L., & Meijaard, J. P. (2013). A review on bicycle dynamics and rider control. Vehicle system dynamics, 51(7), 1059-1090 https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L., & Recuero, A. M. (2013). Design and experimental validation of a haptic steering interface for the control input of a bicycle simulator. Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2013, 103-110.

Schwab, A. L., Meijaard, J. P., and Kooijman, J. D. (2012). Lateral dynamics of a bicycle with a passive rider model: Stability and controllability. Vehicle System Dynamics, 50(8):1209-1224. https://doi.org/10.1080/00423114.2011.610898

Schwab,A.L., Kooijman,J.D.G., & Meijaard,J.P. (Eds.) (2008). Some recent developments in bicycle dynamics and control.

Scott, J. (2004). Aerospaceweb.org - drag coefficient & lifting line theory. Accessed: 2023-07-24

Scott, S. H. (2016). A functional taxonomy of bottom-up sensory feedback processing for motor actions. Trends in neurosciences,39(8):512-526 https://doi.org/10.1016/j.tins.2016.06.001

Seichi Motomiya et.al.: The mechanical properties of the components of motorcycles (3rdreport: Tire characteristics) (in Japanese), Proceedings of JSAE, No.772, (1972), pp.577-580

Sevarin, A.,Will, S., Mikschofsky, N., Menato, L., Hammer, T., Schneider, N., and Mark, C. (2020). Assessment of visual and haptic HMI concepts for hazard warning of powered two-wheeler riders. Proceedings of the 13th International Motorcycle Conference.

Shahar, A., Dagonneau, V., Caro, S., Israel, I., and Lobjois, R. (2014). Towards identifying the roll motion parameters of a motorcyclesimulator. Applied ergonomics, 45(3):734-740. https://doi.org/10.1016/j.apergo.2013.09.013

Sharad Shinghania et.al.: Study on Low-Speed Stability of a Motorcycle, Applied Sciences (2019) https://doi.org/10.3390/app9112278

Sharp, R. S. (2006). Motorcycle Steering Control by Road Preview. Journal of Dynamic Systems, Measurement, and Control,129(4):373-381. https://doi.org/10.1115/1.2745842

Sharp, R., Evangelou, S., and Limebeer, D. J. (2004). Advances in the modelling of motorcycle dynamics. Multibody system dynamics, 12:251-283. https://doi.org/10.1023/B:MUBO.0000049195.60868.a2

Sharp, R. S. (1971). The stability and control of motorcycles. Proceedings of the IMechE, Part C, Journal of Mechanical Engineering Science,13, 316-329 https://doi.org/10.1243/JMES_JOUR_1971_013_051_02

Sharp, R. S. (1976). The Dynamics of Single Track Vehicles. Vehicle System Dynamics, 5(1-2):67-77. https://doi.org/10.1080/00423117508968406

Sharp, R. S. (2008). On the Stability and Control of the Bicycle. Applied Mechanics Reviews, 61(6). https://doi.org/10.1115/1.2983014

Sharp, R. S. (2008). On the Stability and Control of the Bicycle.Applied Mechanics Reviews, 61(6). https://doi.org/10.1115/1.2983014

Sharp, R. S., Valtetsiotis (2001), Optimal Preview Car Steering Control. Vehicle System Dynamics, 35, 101-117 https://doi.org/10.1076/vesd.35.4.291.2042

Sheibe, F., Smith, M., (2009). Analytical solutions for optimal ride comfort and tyre grip for passive vehicle suspensions. Vehicle System Dynamics,47, 1229-1252 https://doi.org/10.1080/00423110802588323

Sheibe, F., Smith, M., (2009). Analytical Solutions for Optimal Ride Comfort and Tyre Grip for Passive Vehicle Suspensions. Vehicle System Dynamics,47, 1229-1252. https://doi.org/10.1080/00423110802588323

Sheng, Z. and Yamafuji, K. (1995). Study on the stability and motion control of a unicycle: Part I: Dynamics of a human riding a unicycle and its modeling by link mechanisms. JSME International Journal, Series C, 38(2):249-259 https://doi.org/10.1299/jsmec1993.38.249

Sherman, M. A., Seth, A., and Delp, S. L. (2011). Simbody: Multibody dynamics for biomedical research. Procedia Iutam,2:241-261. https://doi.org/10.1016/j.piutam.2011.04.023

Shigeru Fujii et.al.: A Model for Motorcycle Rider Operation Based on Genetic Algorithms(in Japanese), Yamaha Motor Technical Review (2008-08)

Shintaro Murakami: Validation of Front-Wheel Steering Assist Control for Motorcycles (Simulation considering nonlinearity of cornering force)(in Japanese), Journal of JSAE), Vol. 64, No.2, (2010-12), pp.241-246

Shintaro Murakami: Design of a rider assist control system for motorcycles during braking (in Japanese), Keio Associated Repository of Academic resources, (2009) Doctoral Thesis

Shoman, M. M., & Imine, H. (2021). Bicycle Simulator Improvement and Validation. IEEE Access, 9, 55063-55076. https://doi.org/10.1109/ACCESS.2021.3071214

Shoman, Murad M.; Imine, Hocine (2021): Bicycle Simulator Improvement and Validation. IEEE Access9, 55063-55076. https://doi.org/10.1109/ACCESS.2021.3071214

Shu Shoho et.al.: Model-based design of front-steering assist control system for motorcycles(in Japanese), Keio Associated Repository of Academic resources, (2009) Doctoral Thesis

Shu Shoho et.al.: Motion Analysis of Motorcycles Using Multibody Dynamics Theory (in Japanese), Transaction of JSME (Category C), Vol.73, No.728, (2007), pp.1067-1074 https://doi.org/10.1299/kikaic.73.1067

Shu, Shoho et.al.: Rider assisted control for optimum steering and obstacle avoidance(in Japanese),JSAE Annual Conference 2009, 2009-05

Shu, Shoho: Analysis of cornering characteristics and stabilized control for two-wheeled vehicles(in Japanese), JSME D&D Conference (2009)

Shu, Shohoet.al.: Modeling of a Rider-Motorcycle System and Optimal Motion Control for Lane Change(in Japanese),The 50th Automatic Control Union Lecture Meeting, (2007),pp.785-790

Shuhei Kawasaki et.al.: Directional control by weight shift of motorcycle rider including vehicle speed control(in Japanese), Transaction of JSAE, Vol.37 No.5, (2006), pp.45-50

Shun-ichi Miyagishiet.al.: Study on construction of a rider robot for two-wheeled vehicle, JSAE Review Vol.24, No.3, (2003),pp.321-326 https://doi.org/10.1016/S0389-4304(03)00045-6

Siebert, F.W., Ringhand, M., Englert, F., et al. (2021). Braking bad -Ergonomic design and implications for the safe use of shared E-scooters. Safety Science 140, 13. https://doi.org/10.1016/j.ssci.2021.105294

Silva, C. M. C. (2015). Bicyclists' Stopping Behaviors: An Observational Study of Bicyclists' Patterns and Practices (Doctoral dissertation).

Simon, D. (2006).Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches. John Wiley & Sons, Inc. https://doi.org/10.1002/0470045345

Sinus-Studie (2021). Fahrrad-Monitor Deutschland 2021 -Ergebnisse einer repräsentativen Online-Befragung. https://www.bmdv.bund.de/SharedDocs/DE/Artikel/StV/Radverkehr/fahrradmonitor-2019.html, Nov. 2021

Skatulla, J., Maier, O., & Schmidt, S. (2023). Fork bending self-oscillation on bicycles influencing braking performance. Presented at the 10 th Annual International Cycling Safety Conference, Technische Universität Dresden. https://doi.org/10.25368/2022.463

Skatulla, J., Maier, O., and Schmidt, S. (2022). Fork bending self-oscillation on bicycles influencing braking performance. In 10th Annual International Cycling Safety Conference (ICSC2022). https://doi.org/10.25368/2022.463

SMPTE. ST 383:2008 - SMPTE standard - for television - material exchange format (MXF) - mapping DV-DIF data to theMXF generic container (standard).ST 383:2008, pages 1-24, 2008.

Snider, J. M. et al. (2009). Automatic steering methods for autonomous automobile path tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08.

Speckert, M., Ruf, N., and Dreßler, K. (2009).Undesired drift of multibody models excited by measured accelerations or forces, volume 162 of Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report). Fraunhofer-Institut fürTechno- und Wirtschaftsmathematik, Fraunhofer (ITWM), Kaiserslautern.

Sponziello, A., Frendo, F., & Giuggiano, M. (2008). Stability analysis of a three-wheeled motorcycle. SAE Int. J. Engines1(1):1396-1401, https://doi.org/10.4271/2008-32-0062

Sponziello, A., Frendo, F., & Giuggiano, M. (2008). Stability analysis of a three-wheeled motorcycle. SAE Int. J. Engines 1(1):1396-1401, https://doi.org/10.4271/2008-32-0062

ST 12-1:2008 - SMPTE Standard - For Television - Time and Control Code, ST 12-1:2008pp. 1-40, 7 Feb. 2008,

Stanisic, M. M. (2014). Mechanisms and Machines: Kinematics, Dynamics, and Synthesis, SI Edition. Cengage Learning.

Stedmon, A. W., Hasseldine, B., Rice, D., Young, M., Markham, S., Hancox, M., Brickell, E., and Noble, J. (2011c). 'motorcyclesim: an evaluation of rider interaction with an innovative motorcycle simulator. The Computer Journal, 54(7):1010-1025. https://doi.org/10.1093/comjnl/bxp071

Stedmon, A., Brickell, E., Hancox, M., Noble, J., &Rice, D. (2012). MotorcycleSim: a user-centred approach in developing a simulator for motorcycle ergonomics and rider human factors research. Advances in Transportation Studies, (27).

Stedmon, A. W., Crundall, D., Crundall, E., Saikayasit, R., van Loon, E., Irune, A., Ward, P., & Greig, N. (2011b). 'STIsimdrive ' meets' motorcycle Sim': Using driving simulation software to develop a unique motorcycle simulator for rider behavior research. In HCI International 2011-Posters' Extended Abstracts: International Conference, HCI International 2011, Orlando,FL, USA, July 9-14, 2011, Proceedings, Part II 14, pages 76-80. Springer. https://doi.org/10.1007/978-3-642-22095-1_16

Stedmon, A., Crundall, D., Crundall, E., Irune, A., Saikayasit, R., Van Loon, E., Ward, P., and Greig, N. (2011a). Investigating motorcycle rider behaviour: developing an integrated experiment approach. Advances in Transportation Studies: Special,(2010),pages 63-78.

Stedmon, A., Young, M., and Hasseldine, B. (2009). Keeping it real or faking it: The trials and tribulations of real road studies and simulators in transport research. In Contemporary Ergonomics 2009: Proceedings of the International Conference on Contemporary Ergonomics 2009, volume 21. CRC Press.

Steyn, W.J.vdM.,Warnich, J. (2014), Comparison of tyre rolling resistance for different mountain bike tyre diameters and surface conditions, South African Journal for Research in Sport, Physical Education and Recreation, 36(2),179-193

Stienstra, T. J. (2023a). BRiM: A Modular Bicycle-Rider Modeling Framework. Master Thesis, Delft University of Technology. https://doi.org/10.59490/6504c5a765e8118fc7b106c3

Stienstra, T. J. (2023b). SymMePlot. https://github.com/tjstienstra/symmeplot.The MathWorks Inc. (2023). Symbolic Toolbox. https://www.mathworks.com.

Stoffregen, Jürgen (2010): Motorradtechnik. Grundlagen und Konzepte von Motor, Antrieb und Fahrwerk. Wiesbaden: Springer Fachmedien.

Stolle, K. L., Wahl, A., & Schmidt, S. (2022a). Importance of motorcycle rider upper body movement for rider intention detection and motorcycle state prediction. In Insitut für Zweiradsicherheit (ifz) e.V. (Ed.), ifz-Research Publication Series: Nr. 20, Sicherheit - Umwelt - Zukunft XIV: Tagungsband der 14. Internationalen Motorradkonferenz 2022 (pp. 32-41). Institut fürZweiradsicherheit.

Stolle, K. L., Wahl, A., & Schmidt, S. (2022b). Motorcycle rider posture measurement for on-road experiments on rider intention detection. In 2022 IEEE 1st International Conference on Cognitive Mobility (CogMob) (pp. 51-56). IEEE. https://doi.org/10.1109/CogMob55547.2022.10118004

Stolle, K. L., Wahl, A., & Schmidt, S. (2023). Trajectory Prediction for Powered Two Wheelers with Deep Learning. The Evolving Scholar - BMD 2023, 5th Edition. https://doi.org/10.59490/64e61a33563addeb42473c8f

Stolle,K.L., Wahl,A., & Schmidt,S. (2022). Importance of motorcycle rider upper body movement for rider intention detectionand motorcycle state prediction. In Insitut für Zweiradsicherheit (ifz) e.V. (Ed.), ifz-Research Publication Series: Nr. 20,Sicherheit -Umwelt -Zukunft XIV: Tagungsband der 14. Internationalen Motorradkonferenz 2022 (pp.32-41). Institut für Zweiradsicherheit.

Strandemar, K. & Thorvald, B. (2005). The Ride Diagram -A Tool for Analysis of Vehicle Suspension Settings. The Dynamics of Vehicles on Roads and on Tracks, Italy. https://doi.org/10.1080/00423110600907618

Sugizaki, M. and Hasegawa, A. (1988). Experimental Analysis of Transient Response in Motorcycle-Rider Systems. page 881783. https://doi.org/10.4271/881783

Sumarsono, D. A., Jati, M. K.&Muiz, M. A. (2020). Modelling of Tilting and Steering Control System for a Tadpole Three-Wheeled Vehicle. J. Phys.: Conf. Ser.1519 012008, https://doi.org/10.1088/1742-6596/1519/1/012008

Sun, R., Zhuang, X., Wu, C., Zhao, G., & Zhang, K. (2015). The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment. Transportation research part F: traffic psychology and behaviour, 30, 97-106. https://doi.org/10.1016/j.trf.2015.02.002

Suzuki, H., Moromugi, S., and Okura, T. (2014). Development of robotic unicycles. Journal of Robotics and Mechatronics,26(5):540-549 https://doi.org/10.20965/jrm.2014.p0540

Symeonidis, I., Kavadarli, G., Schuller, E., Graw, M., Peldschus, S. (2012). Analysis of the stability of PTW riders in autonomous braking scenarios, In Accident Analysis and prevention,49, 212-222, 2012. https://doi.org/10.1016/j.aap.2011.07.007

Symmons, M. and Mulvihill, C. (2011). A simulator comparison of riding performance between new, returned and continuing motorcycle riders. In Driving Assessment Conference, volume 6. University of Iowa. https://doi.org/10.17077/drivingassessment.1443

Szabo, A., Horvath, H. Z., & Takacs, D. (2021, December 12-15). Simplified mechanical model for balancing a motorbike with steering at zero speed. ECCOMAS Thematic Conference on Multibody Dynamics, Budapest, Hungary.

T. Kishida et.al.: Development of riding Simulator for two wheeled vehicles and fundamental study on HMI for advanced safetyvehicle, Proc. of Driving Saturation Conference (2007)

Tadashi Kikuchi: Motorcycle behavior and tire characteristics (in Japanese), Journal of JSAE, Vol. 38, No.3,(1984), pp.332-336

Tadataka Kobayashi: Man-Motorcycle Dynamics (in Japanese), Journal of JSAE, Vol. 28, No.4,(1974), pp.310-314

Tagliabue, M. and Sarlo, M. (2015). Affective components in training to ride safely using a moped simulator. Transportation research part F: Traffic psychology and behaviour, 35:132-138. https://doi.org/10.1016/j.trf.2015.10.018

Tagliabue, M., Da Pos, O., Spoto, A., and Vidotto, G. (2013). The contribution of attention in virtual moped riding training of teenagers. Accident Analysis & Prevention, 57:10-16. https://doi.org/10.1016/j.aap.2013.03.034

Tagliabue, M., Gianfranchi, E., and Sarlo, M. (2017). A first step toward the understanding of implicit learning of hazard anticipationin inexperienced road users through a moped-riding simulator. Frontiers in Psychology, 8:768 https://doi.org/10.3389/fpsyg.2017.00768

Tagliabue, M., Sarlo, M., and Gianfranchi, E. (2019). How can on-road hazard perception and anticipation be improved? Evidence from the body. Frontiers in Psychology, 10:167. https://doi.org/10.3389/fpsyg.2019.00167

Takagi, S., Oka, M., & Mori, H.(2022), Evaluation of Riding Instability of a Bicycle with Children as Passengers Using the Relationship Between Handlebar Angle and Roll Angle, In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information: Applications in Complex Technological Environments. HCII 2022. Lecture Notes in Computer Science, vol 13306.Springer, Cham. https://doi.org/10.1007/978-3-031-06509-5_27

Takagi, S., Oka, M., & Mori, H.(2022). Evaluation of Riding Instability of a Bicycle with Children as Passengers Using the Relationship Between Handlebar Angle and Roll Angle. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information: Applications in Complex Technological Environments. HCII 2022. Lecture Notes in Computer Science, vol 13306.Springer, Cham. https://doi.org/10.1007/978-3-031-06509-5_27

Takagi, S., Oka, M., and Mori, H. (2022). Evaluation of Riding Instability of a Bicycle with Children as Passengers Using the Relationship Between Handlebar Angle and Roll Angle. In Yamamoto, S. and Mori, H., editors, Human Interface and the Management of Information: Applications in Complex Technological Environments, Lecture Notes in Computer Science, pages388-403, Cham. Springer International Publishing. https://doi.org/10.1007/978-3-031-06509-5_27

Takahiko Yoshino et.al.: Compatibility issues between weave and wobble modes for motorcycles(in Japanese), Kurume Institute of Technology Research Report No.41,(2019), pp.59-64

Takahiko Yoshino et.al.: Energy flow method for the study of motorcycle wobble mode(in Japanese), Transaction of JSAE, Vol.50,No.5, (2019),pp.1372-1376

Takao Tomita et.al.: Measurement and simulation of rider/motorcycle system jump behavior (in Japanese), Journal of JSAE, Vol. 38, No.12, (1984), pp.1463-1471

Takao Tomita et.al.:Measurement and simulation of rider/motorcycle system jump behavior (in Japanese), Journal ofJSAE, Vol. 38, No.12, (1984), pp.1463-1471

Takashi Ando and Tomoya Kitani. A time alignment method for multiple sensing systems with GNSS timing and imus with frame-sync input. In 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerComWorkshops), pages 1-6, 2020. https://doi.org/10.1109/PerComWorkshops48775.2020.9156099

Takio Ohya et.al.: Stability control circuit for motorcycle driving(in Japanese), Transaction of JSME (Category C), Vol.69, No.688, (2003),pp.3191-3197 https://doi.org/10.1299/kikaic.69.3191

Takumi Sato et.al.: Modeling and Robust Attitude Control of Self-Sustaining Motorcycles at Standstill (in Japanese), Transaction of JSME (Category C), Vol.72, No.719, (2006),pp.2130-2136 https://doi.org/10.1299/kikaic.72.2130

Takuro Sone, Shin Kato, Ray Atarashi, Jin Nakazato, Manabu Tsukada, and Hiroshi Esaki. An ontology for spatio-temporal media management and an interactive application. Future Internet, 15(7), 2023. https://doi.org/10.3390/fi15070225

Talukder, A., & Matthies, L. (2004, September). Real-time detection of moving objects from moving vehicles using dense stereo and optical flow. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566)(Vol. 4, pp. 3718-3725). IEEE. https://doi.org/10.1109/IROS.2004.1389993

Tanelli, M., Piroddi, L., and Savaresi, S. M. (2009). Real-time identification of tire-road friction conditions. IET control theory &applications, 3(7):891-906 https://doi.org/10.1049/iet-cta.2008.0287

Tebbe, J. C., Chidambaram, V., Kline, J. T., Scime, S., Shah, M. P., Tasci, M., and Zheng, D. (2006). Chassis loads prediction using measurements as input to an unconstrained multi-body dynamics model. Load Simulation & Analysis in Automotive Engineering-SP-2038. https://doi.org/10.4271/2006-01-0992

Tebbe, J. C.; Chidambaram, V.; Kline, J. T.; Scime, S.; Shah, M. P.: Chassis loads prediction using measurements as input to an unconstrained multi-body dynamics model. SAE 2006 World Congress and Exhibition. Detroit: SAE International (2006) https://doi.org/10.4271/2006-01-0992

Tedrake, R. (2021). Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832). Downloaded on 20-08-2021 from http://underactuated.mit.edu/.

Teran, E., & Ueda, J. (2017). Influence of rolling resistance on manual wheelchair dynamics and mechanical efficiency. International Journal of Intelligent Robotics and Applications, 1, 55-7 https://doi.org/10.1007/s41315-016-0007-1

Tetsuya Kubota et.al.:Analysis of Turning Characteristics of Motorcycles Using Multi-body Dynamics Language (in Japanese),Transaction of JSAE, Vol.38, No.2, (2007), pp.31-35

Thede, P. & Parks, L. (2010). Race Tech's Motorcycle Suspension Bible. Motorbooks.

Thede, P., & Parks, L. (2010). Race Tech's Motorcycle Suspension Bible. Motorbooks.139

Thede, P., Parks, L., (2010).Race Tech's Motorcycle Suspension Bible, Motorbooks.

Thede, P., Parks, L., (2010).Race Tech's Motorcycle Suspension Bible, Motorbooks.

Thomas, L., Lot, R., et al. (2017). A new test rig for motorcycle rider impedance measurement. In Proceeding of the 15th European Automotive Congress, Madrid, Spain.

Thorslund, B., & Lindström, A. (2020). Cyclist strategies and behaviour at intersections. Conscious and un-conscious strategies regarding positioning. Transportation research part F: traffic psychology and behaviour, 70, 149-162. https://doi.org/10.1016/j.trf.2020.02.013

Tissot, P.-F., Ballester, O. C., & Honoré, V. (2022). Smart wearable airbags: Benefits for users and remaining challenges after 60 million kilometres and 3000 accidents. In Insitut für Zweiradsicherheit (ifz) e.V. (Ed.), ifz-Research Publication Series: Nr. 20, Sicherheit - Umwelt - Zukunft XIV: Tagungsband der 14. Internationalen Motorradkonferenz 2022 (pp. 202-207). Institut fürZweiradsicherheit.452

Titsias, M. (2009). Variational learning of inducing variables in sparse gaussian processes. In van Dyk, D. and Welling, M., editors, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 567-574, Hilton Clearwater Beach Resort, Clearwater Beach, Florida, USA. PMLR

Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience,7(9), 907-915. https://doi.org/10.1038/nn1309

Todorov, E. (2004). Optimality principles in sensorimotor control.Nature Neuroscience, 7(9):907-915. https://doi.org/10.1038/nn1309

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience,5(11), 1226-1235. https://doi.org/10.1038/nn963

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033. IEEE. https://doi.org/10.1109/IROS.2012.6386109

Tomoo Nisimi et.al.:Cross wind characteristics of Motorcycles(in Japanese), Journal of JSAE, Vol. 48, No.12,(1994), pp.59-65

Tsai, L., & Joshi, S. A. (2002). Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines. Journal of Mechanical Design, 124(2), 245-253. https://doi.org/10.1115/1.1468860

Tsuyoshi Katayama et.al.: Energy flow method for the study of motorcycle wobble mode, Vehicle System Dynamics No.19, (1990), pp.151-175 https://doi.org/10.1080/00423119008968940

Tsuyoshi Katayama et.al.: Influence of Frame Stiffness on Wobble Mode of Motorcycle -Analysis by Eigenvector Method-. Automotive Research, Vol.20, No.9 (1998), pp.404-407

Tsuyoshi Katayama et.al.: Measurement of Rider Vibration Characteristics (in Japanese), Automotive Research, Vol.7, No.1 (1985), pp.422-425

Tsuyoshi Katayama et.al.: Measurement of Rider Vibration Characteristics (in Japanese), Transaction of JSAE, No.35, (1987),pp.147-153

Tsuyoshi Katayama et.al.: Measurement of Rider's Center of Gravity and Moment of Inertia(in Japanese), Automotive Research, Vol.7, No.12 (1985), pp.519-522

Tsuyoshi Katayama et.al.: Simulation model for motorcycle rider maneuvering behavior (in Japanese), Transaction of JSAE, Vol.28, No.3 (1997),pp.137-142

Tsuyoshi Katayama et.al.: Steer characteristics of motorcycle rider during lane change (in Japanese), Transaction of JSAE, No.41, (1989),pp.45-50

Tsuyoshi Katayama et.al.:Analysis of wobble modes of motorcycles using eigenvectors(in Japanese), Automotive Research, Vol.20, No.4 (1998), pp.137-140

Tsuyoshi Katayama: On Equation of Motion for Stability Analysis on Two-wheeled Vehicle(in Japanese), Bicycle Technical Information, No.77 (2000), pp.1-16

Tsuyoshi Katayama: Weave Mode Analysis of Motorcycles (Report 1)(in Japanese),Automotive Research, Vol.23, No.10 (2001), pp.538-541

Twaddle, H., Schendzielorz, T., and Fakler, O. (2014). Bicycles in Urban Areas: Review of Existing Methods for Modeling Behavior. Transportation Research Record, 2434(1):140-146 https://doi.org/10.3141/2434-17

van Dijk, M.P.,Hoozemans, M.J.M., Berger, Monique A.M. and Veeger, DirkJan H.E.J.(under review), From Theory to Practice: Monitoring Mechanical Power Output During Wheelchair Field and Court Sports Using IMUs. pre-print

Van der Waerden, P., Van der Waerden, J., & Gebhard, S. (2024). Intersection based innovations and cyclists' route choice decisions in urban areas. Transport policy, 146, 205-214. https://doi.org/10.1016/j.tranpol.2023.11.021

van Ingen-Schenau, G. J., & Cavanagh, P. R. (1990). Power equations in endurance sports. Journal of Biomechanics, 23(9). 865-81 https://doi.org/10.1016/0021-9290(90)90352-4

van Soest, A. J., Schwab, A. L., Bobbert, M. F., and van Ingen Schenau, G. J. (1992). SPACAR: a software subroutine package for simulation of the behavior of biomechanical systems.Journal of biomechanics, 25(10):1219-1226. https://doi.org/10.1016/0021-9290(92)90078-F

van Willigen, F. (2023) Evaluation of the handling of a variable dynamics tilting tricycle: A novel handling assessment method, Master's thesis, Delft University of Technology

VDI2206.(2004). Design methodology for mechatronic systems. VDI2206:2004-06

Vedder, B. (2023), bldc. https://github.com/vedderb/bldc/ (Accessed on 05.09.2023)

Vehicle System Dynamics,51(11), 1722-1764.

Vempaty, S., He, Y., A Review of Car-Trailer Lateral Stability Control Approaches. SAE Technical Paper 2017-01-1580, 2017, https://doi.org/10.4271/2017-01-1580

Veneri, M., Bova, M., Massaro, M., and Formentini, M. (2019). A tool for the automatic identification of weave and wobble. In Proceedings of the 2019 Bicycle and Motorcycle Dynamics Conference. Poster.

Veroude, B., Gurp, M. v., and Boggelen, O. v. (2022).Geactualiseerde aanbevelingen voor de breedte van fietspaden 2022. Fiets-beraad CROW, https://www.fietsberaad.nl/Kennisbank/Aanbevelingen-breedte-fietspaden-2022.

Vidotto, G., Bastianelli, A., Spoto, A., Torre, E., Sergeys, F., et al. (2008). Using a riding trainer as a tool to improve hazard perception and awareness in teenagers. Adv. Transp. Stud. Int. J. B, 16:51-60.

Vidotto, G., Bastianelli, A., Spoto, A., and Sergeys, F. (2011). Enhancing hazard avoidance in teen-novice riders. Accident Analysis& Prevention, 43(1):247-252. https://doi.org/10.1016/j.aap.2010.08.017

Vieira, R., Steidle, M., Vieira, A., and Santos, R. A. P. (2014). Conceptual architecture of motorcycle simulators for the training of novice riders. In Proceedings of the 10th International Motorcycle Conference, Cologne, Germany.

Vinogradov, O. (2020). Fundamentals of Kinematics and Dynamics of Machines and Mechanisms. CRC Press.

Vos, D.W. and Von Flotow, A.H.(1999), Dynamics and nonlinear adaptive control of an autonomous unicycle: theory and experiment, Decision and Control, 1990., Proceedings of the 29th IEEE, pp. 182-187 https://doi.org/10.1109/CDC.1990.203573

Vu, A. T., Nguyen, M. T., Nguyen, D. V. M., and Khuat, V. H. (2020). Investigating the effect of blood alcohol concentration on motorcyclist's riding performance using an advanced motorcycle simulator. Transportation research part F: Traffic psychology and behaviour, 73:1-14. https://doi.org/10.1016/j.trf.2020.06.010

Wachtel, D., Edler, J., Schröder, S., Queiroz, S., & Huber, W. (2022, October). Convolutional Neural Network Classification of Vulnerable Road Users based on Micro-Doppler Signatures using an Automotive Radar. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)(pp 866-872). IEEE https://doi.org/10.1109/ITSC55140.2022.9921852

Waechter, M., Riess, F., and Zacharias, N. (2002). A multibody model for the simulation of bicycle suspension systems. Vehicle system dynamics, 37(1):3-28. https://doi.org/10.1076/vesd.37.1.3.3539

Waegli, A., Schorderet, A., Prongue, C. and Skaloud, J. (2008). Accurate Trajectory and Orientation of a Motorcycle derived from low-cost Satellite and Inertial Measurement Systems. Proceedings of 7th ISEA conference, P42, 1-6.107 https://doi.org/10.1007/978-2-287-09411-8_27

Waegli, A., Schorderet, A., Prongue, C. and Skaloud, J. (2008).Accurate Trajectory and Orientation of a Motorcycle derived from low-cost Satellite and Inertial Measurement Systems. Proceedings of 7th ISEA conference, P42, 1-6 https://doi.org/10.1007/978-2-287-09411-8_27

Wahl, A., Schmälzle, P., Klews, M., Henzler, M.. (2019, September 9-11). Detection of One-Handed Riding during Activation of Automated Braking, In Symposium on Bicycle and Motorcycle Dynamics, Padua, Italy, 2019

Wan Fauzi, W. M. S., Omar, A. R., and Rashid, H. (2017). Enhancement of Postura MotergoTM: From an ergonomic motorcycle test rig to a full-scale simulator. Journal of Mechanical Engineering (JMechE), (4):43-59.

Watanabe, A., Kageyama, I., and Kuriyagawa, Y. (2012). Construction of riding simulator for two-wheeled vehicle.

Wataru Ishii et.al.: Development of Measuringmethod for Riding Motion of Motorcycles during Actual Riding, Yamaha Motor Technical Review No.53, (2017), pp.102-109

Weir, D. H. and DiMarco, R. J. (1978). Correlation and Evaluation of Driver/Vehicle Directional Handling Data. SAE Technical Paper 780010, SAE International, Warrendale, PA. ISSN: 0148-7191, 2688-3627. https://doi.org/10.4271/780010

Wendel, K. D. (2020). Bicycle-rider control identification. Technische Universiteit Delft.

Werle, A. and Diermeyer, F. (2021). An investigation of smart glasses for motorcyclists as a head-up-display device-performed on a riding simulator. In International Conference on Applied Human Factors and Ergonomics, pages 226-237. Springer. https://doi.org/10.1007/978-3-030-80012-3_28

Werle, A., Diermeyer, F.(2022). An Approach for Steering Advancement in Motorcycle Riding Simulation. Human Interaction & Emerging Technologies (IHIET-AI 2022) https://doi.org/10.54941/ahfe100846

Werling, K., Omens, D., Lee, J., Exarchos, I., and Liu, C. K. (2021). Fast and Feature-Complete Differentiable Physics for Articulated Rigid Bodies with Contact.arXiv, page 15. https://doi.org/10.15607/RSS.2021.XVII.034

Werner, S., Newberry, W., Fijan, R., & Winter, M. (2001). Modeling of Bicycle Rider Collision Kinematics. https://doi.org/10.4271/2001-01-0765

Westerhof, B. E., De Vries, E. J., Happee, R., & Schwab, A. (2020). Evaluation of a motorcycle simulator. Paper presented at the Symposium on the Dynamics and Control of Single Track Vehicles, Padova, Italy.

Westerhof, B. (2018). Evaluation of the Cruden motorcycle simulator.

Westerhof, B. E. (2018). Evaluation of the Cruden Motorcycle Simulator, Master-Thesis, Delft University of Technology285

Westerhof, B., De Vries, E., Happee, R., and Schwab, A. (2020). Evaluation of a motorcycle simulator. Symposium on the Dynamics and Control of Single Track Vehicles.

Whipple, F. J. W. (1899). The Stability of the Motion of a Bicycle.The Quaterly Journal of Pure and Applied Mathematics,30:312-348

Whipple, F. J. (1899). The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312-348

Whipple, F. J. (1899). The stability of the motion of a bicycle. Quarterly Journal of Pure and Applied Mathematics, 30(120):312-348

Whipple, F. J. W. (1899). The Stability of the Motion of a Bicycle. Quart. J. Pure Appl. Math., 312-348

WHO (2017), Powered two- and three-wheeler safety: a road safety manual for decision-makers and practitioners. World Health Organization.

Wibowo, Lambang, L., Pratama, G. & Surojo, E. (2017, October 5-6). Simulation and Analysis of Three Wheeled Reverse Trike Vehicles with PID Controller. In Suwarno, V. S. Djanali, B. Pramujati and V. A. Yartys (Eds.), Proceedings of the 3rd International Conference on Mechanical Engineering (ICOME 2017), Surabaya, Indonesia.

Wibowo, Lambang, L., Pratama, G. & Surojo, E. (2017, October 5-6). Simulation and Analysis of Three Wheeled Reverse Trike Vehicles with PID Controller. In Suwarno, V. S. Djanali, B. Pramujati & V. A. Yartys (Eds.), Proceedings of the 3rd International Conference on Mechanical Engineering (ICOME 2017), Surabaya, Indonesia.

Will, S., Wehner, T., Hammer, T., Merkel, N., Werle, A., Umlauf, I., and Neukum, A. (2022). Assessment of data glasses for motorcycle riders in a simulated lane change test. Transportation research part F: Traffic psychology and behaviour, 89:467-477. https://doi.org/10.1016/j.trf.2022.07.016

Will, S. (2017). Development of a presence model for driving simulators based on speed perception in a motorcycle riding simulator.(PhD thesis), University of Wuerzburg, Wuerzburg. 415

Will, S. (2017). Development of a presence model for driving simulators based on speed perception in a motorcycle riding simulator. PhD thesis, Universitat Wurzburg.

Will, S. (2018). A new approach to investigate powered two wheelers' interactions with passenger car drivers: the motorcycle-car-multi-driver simulation. UR: BAN Human Factors in Traffic: Approaches for Safe, Efficient and Stress-free Urban Traffic, pages393-402. https://doi.org/10.1007/978-3-658-15418-9_22

Will, S. and Schmidt, E. A. (2009). Workload assessment for motorcycle riders. Wuerzburg Institute for Traffic Sciences (WIVW).Veitshoechheim, Germany.

Will, S. and Schmidt, E. A. (2015). Powered two wheelers' workload assessment with various methods using a motorcycle simulator. IET intelligent transport systems, 9(7):702-709. https://doi.org/10.1049/iet-its.2014.0231

Will, S., Pless, R., and Guth, S. (2016). Bringing single track vehicle dynamics to motorcycle riding simulators-results of a pilot study. Proceedings, Bicycle and Motorcycle Dynamics 2016.

Williams, T. A. (2015). Influence of Frame Stiffness and Rider Position on Bicycle Dynamics: An Analytical Study. Theses and Dissertations. 985.The University of Wisconsin Milwaukee. Available online: https://dc.uwm.edu/etd/985 https://doi.org/10.1115/IMECE2015-50137

Wong, G. M. E. (2019). Motorcycle rider perception response times to abrupt and gradual-onset hazards in a simulator.

Wong, J.Y. (1993).Theory of Ground Vehicles. John Wiley & Sons, New York, 2 ed

Wu, C., Yao, L., & Zhang, K. (2012). The red-light running behavior of electric bike riders and cyclists at urban intersections in China: an observational study. Accident Analysis & Prevention, 49, 186-192 https://doi.org/10.1016/j.aap.2011.06.001

Wu, S.-Y., Sung,W.-H., Tsai, Y.-A., Cheng, H., and Chen, J.-J. (2011). The effects of using a modified motorcycle simulator training for the spinal cord injury patients

Y. Watanabe et.al.: Motorcycle handling performance for obstacle avoidance, Second International Congress on Automotive Safety, Paper No. 73033, (1973), pp.101-123

Yao Xinyu. Time synchronization under 1PPS signal in distributed real-time simulation system. International Journal of Intelligent Systems and Applications, 2(2):48, 2010. https://doi.org/10.5815/ijisa.2010.02.07

Yoshitaka Marumo et.al.: Analysis of Influence on Rider Vibration Characteristics on Motorcycle Weave Modes(in Japanese), Transaction of JSME (Category C), Vol.70, No.699, (2004),pp.3001-3008 https://doi.org/10.1299/kikaic.70.3001

Yoshitaka Marumo et.al.: Analysis on Motorcycle Weave Mode by Using Energy Flow Method(in Japanese),Transaction of JSME (Category C), Vol.77, No.781, (2011), pp.287-298

Yoshitaka Marumo et.al.: Examination of Influence of Tandem Riding on Weave Mode in Motorcycles(in Japanese), Transaction of JSAE, Vol.36 No.6, (2005),pp.199-204

Yoshitaka Marumo et.al.: Weave Mode Analysis of Motorcycles (Report 2)(in Japanese),Automotive Research, Vol.24, No.2 (2002), pp.63-66

Yoshitaka Marumo et.al.:Analysis on Influence of Frame Stiffness on Weave Mode of Motorcycles(in Japanese), Transaction of JSME (Category C), Vol.69,No.684, (2003),pp.2142-2149 https://doi.org/10.1299/kikaic.69.2142

Yoshitaka Tezuka et.al.:Application of the Magic Formula Tire Model to Motorcycle Dynamic Performance Analysis(in Japanese), Honda R & D Technical Review, Vol.12, No.1 (2000), pp.145-150

Yuan, Y., Goñi-Ros, B., van Oijen, T. P., Daamen, W., and Hoogendoorn, S. P. (2019). Social Force Model Describing Pedestrian and Cyclist Behaviour in Shared Spaces. In Traffic and Granular Flow '17, pages 477-486, Cham. Springer. https://doi.org/10.1007/978-3-030-11440-4_52

Yutaka Kamata et.al.:System identification and front-wheel steering control of motorcycles (in Japanese), Transaction of JSME (Category C), Vol.69, No.688, (2003),pp.3191-3197 https://doi.org/10.1299/kikaic.69.3191

Yuya Aikawa et.al.:Study on Dynamic Characteristics of Motorcycles Considering Tire Degree of Freedom (inJapanese), Proceedings of the 19th the Transportation and Logistics JSME (2010),pp.117-120

Zegelaar, P. (1998). The dynamic response of tyres to brake torque variations and road unevennesses, Ph.D. thesis, TU Delft.

Zegelaar, P. (1998). The dynamic response of tyres to brake torque variations and road unevennesses, Ph.D. thesis, TU Delft

Zellner, J. W. and Weir, D. H. (1978). Development of Handling Test Procedures for Motorcycles. page 780313 https://doi.org/10.4271/780313

Zhao, J., Knoop, V. L., and Wang, M. (2023). Microscopic traffic modeling inside intersections: Interactions between drivers. Transportation Science, 57(1):135-155 https://doi.org/10.1287/trsc.2022.1163

Zinn, L. (2004). Zinn's Cycling Primer: Maintenance Tips and Skill Building for Cyclists. Velo Press, Boulder, CO

Image of a bicycle with the TU Delft Library in the background

Downloads

Published

October 18, 2024

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about this monograph

ISBN-13 (15)

978-94-6366-958-0

Publication date (01)

2024-10-18

How to Cite

Moore (ed), J. K., de Vries (ed), E., Dressel (ed), A., & Alizadehsaravi (ed), L. (Eds.). (2024). Proceedings of the 5th Symposium on the Dynamics and Control of Single-track Vehicles: Bicycle and Motorcycle Dynamics 2023, October 18-20, Delft, The Netherlands. TU Delft OPEN Books. https://doi.org/10.59490/mg.121