Introduction to Colloid Science: Applications to sediment characterization
Synopsis
This book is meant as an introduction to the field of colloid science, i.e. the study of the behaviour of micrometric particles in a fluid (or a gas). The book was written with a special emphasis on sediment particles. Sediment particles are complex colloidal particles due to their composition, shape and interaction with their environment.
Characterization of the colloidal fraction of sediment is done by recording, among others, the particles’ size, shape and electric surface charge and evaluating their density or their interactions. These properties are important for civil engineering applications. Large-scale sediment transport models for example require as input the settling velocity of particles. In concentrated areas, this velocity becomes a function of the particles’ concentration and particle-particle interactions lead to the creation of larger particles, called flocs. These flocs can settle and, when reaching the bed, consolidate in time. All these aspects, and related models, are treated in the present book.
Downloads
References
Dokuchaiev, V.V. (1883) Russian chernozem, Monograph, Sankt-Peterburg.
Greenland, Dennis James, and Michael Hilary Bermingham Hayes. The chemistry of soil constituents. Wiley and sons (1997).
Leussen, W. van, Estuarine macroflocs and their role in fine-grained sediment transport, PhD thesis, RIKZ (1994).
http://www.gutenberg.org/files/34192/34192-h/34192-h.htm#Page_33
http://www.werelderfgoed.nl/werelderfgoed/waddenzee
Skempton, A. W. "The colloidal activity of clays." Selected papers on soil mechanics (1953): 106-118.
Bjerrum, Laurits. "Geotechnical properties of Norwegian marine clays." Geotechnique 4.2(1954): 49-69. https://doi.org/10.1680/geot.1954.4.2.49
the tomb -chapel of Nebamun : Nebamun hunting in the marshes, adapted from a wall painting currently to be seen at the British Museum; ca. 1350 BC (public domain) https://commons.wikimedia.org/wiki/File:TombofNebamun-2.jpg
John Tyndall (public domain) https://en.wikipedia.org/wiki/John_Tyndall
Mudflat (creative commons license) https://en.wikipedia.org/wiki/Mudflat
lizardite photograph (creative commons license) https://upload.wikimedia.org/wikipedia/commons/7/71/Lizardite%2C_Chrysotile-288581.jpg
margarite photograph (creative commons license) https://en.wikipedia.org/wiki/Margarite
Albert Atterberg (public domain) http://geotecnia-sor.blogspot.nl/2010/11/consistencia-del-suelo-limites-de_17.html
Casagrande cup (creative commons license) http://labmodules.soilweb.ca/soil-compaction-atterberg-limits/
Odén, Sven. "Eine neue methode zur bestimmung der körnerverteilung in Suspensionen." Colloid & Polymer Science18.2 (1916): 33-48. https://doi.org/10.1007/BF01432659
https://www.lorentz.leidenuniv.nl/history/cold/cold.html
https://en.wikipedia.org/wiki/Louis_Bachelier
van der Beek, David, and Henk NW Lekkerkerker. "Liquid crystal phases of charged colloidal platelets." Langmuir 20.20 (2004): 8582-8586. https://doi.org/10.1021/la049455i
van Roij, R. (2003). Journal of Physics: Condensed Matter, 15(48), S3569. https://doi.org/10.1088/0953-8984/15/48/016
Robert Brown (public domain) https://en.wikipedia.org/wiki/Robert_Brown_(botanist,_born_1773)
Faraday gold https://www.rigb.org/
Tonicity (creative commons license) https://en.wikipedia.org/wiki/Tonicity https://commons.wikimedia.org/wiki/File:Turgor_pressure_on_plant_cells_diagram.svg
Shih et al., Aggregation of Colloidal Particles with a Finite Interparticle Attraction Energy; Journal of Statistical Physics, VoL 62, Nos. 5/6, 1991 https://doi.org/10.1007/BF01128171
Novich, B. E., & Ring, T. A. (1984). Colloid stability of clays using photon correlation spectroscopy. Clays Clay Miner., 32(5), 400. https://doi.org/10.1346/CCMN.1984.0320508
Chassagne, C., and D. Bedeaux. "The dielectric response of a colloidal spheroid." Journal of colloid and interface science 326.1 (2008): 240-253. See also Chassagne, C. "Dielectric response of a charged prolate spheroid in an electrolyte solution." International Journal of Thermophysics 34.7 (2013): 1239-1254. https://doi.org/10.1007/s10765-013-1465-4
H. Schulze, J. Prakt. Chem., 1882, 25, 431; 1883, 27, 320; 1885, 32, 390. https://doi.org/10.1002/prac.18820250142
Weiser, H. B. (1925). Adsorption and Schulze's Law. The Journal of Physical Chemistry, 29(8), 955-965. https://doi.org/10.1021/j150254a006
E. J. W. Verwey and J. Th. G. Overbeek, The Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948) and I. M. Metcalfe and T. W. Healy, Charge-regulation Modelling of the Schulze-Hardy Rule and related Coagulation Effects, Faraday Discuss. Chem. SOC., 1990,90, 335-344. https://doi.org/10.1039/DC9909000335
Loeb, A. L., Overbeek, J. T. G., Wiersema, P. H., & King, C. V. (1961). The electrical double layer around a spherical colloid particle. Journal of The Electrochemical Society, 108(12), 269C-269C. https://doi.org/10.1149/1.2427992
Ohshima, H. (2006). Theory of colloid and interfacial electric phenomena (Vol. 12). Academic Press, and: Ohshima, H. (2011). Biophysical chemistry of biointerfaces. John Wiley & Sons. https://doi.org/10.1016/S1573-4285(06)80022-0
Chassagne, C., & Ibanez, M. (2012). Electrophoretic mobility of latex nanospheres in electrolytes: Experimental challenges. Pure and Applied Chemistry, 85(1), 41-51. https://doi.org/10.1351/PAC-CON-12-02-12
M. R. Gittings, D. A. Saville , Electrophoretic Mobility and Dielectric Response Measurements on Electrokinetically Ideal Polystyrene Latex Particles, Langmuir, 1995, 11 (3), 798-800 https://doi.org/10.1021/la00003a022
van der Waals https://en.wikipedia.org/wiki/Johannes_Diderik_van_der_Waals
Derjaguin https://link.springer.com/article/10.1023%2FA%3A1020686631909
Landau https://en.wikipedia.org/wiki/Lev_Landau
Verwey https://chg.kncv.nl/geschiedenis/biografieen/v/verweij,-e.j.w.
Overbeek http://www.ecis-web.eu/overbeek.htm
Dobrynin, Andrey V., and Michael Rubinstein. "Theory of polyelectrolytes in solutions and at surfaces." Progress in Polymer Science 30.11 (2005): 1049-1118 https://doi.org/10.1016/j.progpolymsci.2005.07.006
Lucas, A.; Harris, J.R. (1998). Ancient Egyptian Materials and Industries. New York: Dover Publications. p. 49.
Ray, Suprakas Sinha, and Mosto Bousmina. "Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world." Progress in materials science 50.8 (2005): 962-1079. https://doi.org/10.1016/j.pmatsci.2005.05.002
Bergaya, Faïza, and Gerhard Lagaly. Handbook of clay science. Vol. 5. Newnes, 2013. https://doi.org/10.1016/B978-0-08-098258-8.00028-6
Lambourne, R., & Strivens, T. A. (Eds.). (1999). Paint and surface coatings: theory and practice. Elsevier. https://doi.org/10.1533/9781855737006
Stuart, MA Cohen, et al. "Adsorption of ions, polyelectrolytes and proteins." Advances in colloid and interface science 34 (1991): 477-535. https://doi.org/10.1016/0001-8686(91)80056-P
A. Chaudhuri et al. / Chemistry and Physics of Lipids 165 (2012) 497- 504 https://doi.org/10.1016/j.chemphyslip.2011.09.007
Mulligan, C. N., R. N. Yong, and B. F. Gibbs. "Surfactant-enhanced remediation of contaminated soil: a review." Engineering geology 60.1-4 (2001): 371-380. https://doi.org/10.1016/S0013-7952(00)00117-4
Bochdansky, Alexander B., Melissa A. Clouse, and Gerhard J. Herndl. "Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum." Scientific reports 6 (2016): 22633 https://doi.org/10.1038/srep22633
Biofilm (public domain) https://en.wikipedia.org/wiki/Biofilm#/media/File:Staphylococcus_aureus_biofilm_01.jpg
Lascaux (public domain) https://fr.wikipedia.org/wiki/Grotte_de_Lascaux#/media/Fichier:Lascaux2.jpg
Phospholipides (public domain) https://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg
Micelles (public domain) https://en.wikipedia.org/wiki/Micelle
Plankton (public domain) https://en.wikipedia.org/wiki/Plankton
Diatoms (public domain) https://en.wikipedia.org/wiki/Diatom https://en.wikipedia.org/wiki/Diatom#/media/File:Diatomeas_w.jpg
Cyanobacteria (creative commons) https://en.wikipedia.org/wiki/Cyanobacteria
Dinoflagellates (creative commons) https://en.wikipedia.org/wiki/Dinoflagellate
Paramecium_bursaria (creative commons) https://en.wikipedia.org/wiki/Paramecium_bursaria
Faïza, and Gerhard Lagaly. Handbook of clay science. Vol. 5. Newnes, 2013.
O'Brien, Neal R. "Fabric of kaolinite and illite floccules." Clays and Clay Minerals 19.6 (1971): 353-359. https://doi.org/10.1346/CCMN.1971.0190603
Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday society, 18, 120-134 https://doi.org/10.1039/df9541800120
Madsen, Fritz T., and Max Müller-Vonmoos. "The swelling behaviour of clays." Applied Clay Science 4.2 (1989): 143-156. https://doi.org/10.1016/0169-1317(89)90005-7
Mietta, F., C. Chassagne, and J. C. Winterwerp. "Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration." Journal of colloid and interface science 336.1 (2009): 134-141. https://doi.org/10.1016/j.jcis.2009.03.044
Mandelbrot, B. B. (1967). How long is the coast of Britain. Science, 156(3775), 636-638. https://doi.org/10.1126/science.156.3775.636
Manning, A.J. and Dyer, K.R. (2002). The use of optics for the in-situ determination of flocculated mud characteristics. J. Optics A: Pure and Applied Optics, Institute of Physics Publishing, 4, S71-S81 https://doi.org/10.1088/1464-4258/4/4/366
Marian Smoluchowski, « Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen », Physik. Zeit., vol. 17, 1916, p. 557-571, 585-599
Runkana, V., Somasundaran, P., & Kapur, P. C. (2005). Reaction‐limited aggregation in presence of short‐range structural forces. AIChE journal, 51(4), 1233-1245. https://doi.org/10.1002/aic.10375
Reerink, H., & Overbeek, J. T. G. (1954). The rate of coagulation as a measure of the stability of silver iodide sols. Discussions of the Faraday Society, 18, 74-84. https://doi.org/10.1039/df9541800074
Montes Ruiz-Cabello, F. Javier, et al. "Interaction forces and aggregation rates of colloidal latex particles in the presence of monovalent counterions." The Journal of Physical Chemistry B 119.25 (2015): 8184-8193. https://doi.org/10.1021/acs.jpcb.5b02556
Israelachvili, Jacob N. (1992). Intermolecular and surface forces. Boston: Academic Press
Kryuchkova, Marina, et al. "Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study." Environmental Science: Nano 3.2 (2016): 442-452. https://doi.org/10.1039/C5EN00201J
Yu, X., & Somasundaran, P. (1996). Role of polymer conformation in interparticle-bridging dominated flocculation. Journal of Colloid and Interface Science, 177(2), 283-287. https://doi.org/10.1006/jcis.1996.0033
Smoluchowski (public domain) https://en.wikipedia.org/wiki/Marian_Smoluchowski
Niels Janniksen Bjerrum (public domain) https://pubs.rsc.org/en/content/articlelanding/1959/tf/tf959550x001/unauth#!divAbstract
Coussot, P. (1995). Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Physical review letters, 74(20), 3971. https://doi.org/10.1103/PhysRevLett.74.3971
Handbook of Clay Science Edited by F. Bergaya, B.K.G. Theng and G. Lagaly Developments in Clay Science, Vol. 1, Chapter 5
Batchelor, G. K., & Green, J. T. (1972). The determination of the bulk stress in a suspension of spherical particles to order c2. Journal of Fluid Mechanics, 56(03), 401-427. https://doi.org/10.1017/S0022112072002435
Mendoza, C. I., & Santamaria-Holek, I. (2009). The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model. The Journal of chemical physics, 130(4), 044904. https://doi.org/10.1063/1.3063120
de Kruif, C. D., Van Iersel, E. M. F., Vrij, A., & Russel, W. B. (1985). Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction. The Journal of chemical physics, 83(9), 4717-4725. https://doi.org/10.1063/1.448997
Hunter, G. L., & Weeks, E. R. (2012). The physics of the colloidal glass transition. Reports on progress in physics, 75(6), 066501 and https://arxiv.org/pdf/1106.3581.pdf https://doi.org/10.1088/0034-4885/75/6/066501
Wette, P., Schöpe, H. J., & Palberg, T. (2003). Experimental determination of effective charges in aqueous suspensions of colloidal spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222(1), 311-321. https://doi.org/10.1016/S0927-7757(03)00247-4
Bergenholtz, J., Willenbacher, N., Wagner, N. J., Morrison, B., Van den Ende, D., & Mellema, J. (1998). Colloidal charge determination in concentrated liquid dispersions using torsional resonance oscillation. Journal of colloid and interface science, 202(2), 430-440. https://doi.org/10.1006/jcis.1998.5463
Buscall, R., Goodwin, J. W., Hawkins, M. W., & Ottewill, R. H. (1982). Viscoelastic properties of concentrated latices. Part 2.-Theoretical Analysis. J. Chem. Soc., Faraday Trans. 1, 1982,78, 2889-2899 https://doi.org/10.1039/f19827802889
Mewis, J., & Wagner, N. J. (2012). Colloidal suspension rheology. Cambridge University Press. https://doi.org/10.1017/CBO9780511977978
L'Heureux, J. S., et al. (2012). The 1978 quick clay landslide at Rissa, mid Norway: subaqueous morphology and tsunami simulations. In Submarine mass movements and their consequences (pp. 507-516). Springer Netherlands https://doi.org/10.1007/978-94-007-2162-3_45
https://www.youtube.com/watch?v=3q-qfNlEP4A
Barnes, H. A. (1997). Thixotropy-a review. Journal of Non-Newtonian fluid mechanics, 70(1), 1-33. https://doi.org/10.1016/S0377-0257(97)00004-9
https://www.ngu.no/en/topic/quick-clay-and-quick-clay-landslides
Talmon, A. M., & Huisman, M. (2005). Fall velocity of particles in shear flow of drilling fluids. Tunnelling and underground space technology, 20(2), 193-201. https://doi.org/10.1016/j.tust.2004.07.001
Ovarlez, G., Bertrand, F., Coussot, P., & Chateau, X. (2012). Shear-induced sedimentation in yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 177, 19-28. https://doi.org/10.1016/j.jnnfm.2012.03.013
Pashias, N., Boger, D. V., Summers, J., & Glenister, D. J. (1996). A fifty cent rheometer for yield stress measurement. Journal of Rheology (1978-present), 40(6), 1179-1189. https://doi.org/10.1122/1.550780
Coussot, P. (2005). Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. John Wiley & Sons. https://doi.org/10.1002/0471720577
Scales, P. J., Johnson, S. B., Healy, T. W., & Kapur, P. C. (1998). Shear yield stress of partially flocculated colloidal suspensions. AIChE Journal, 44(3), 538-544. https://doi.org/10.1002/aic.690440305
Zhou, Z., Scales, P. J., & Boger, D. V. (2001). Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chemical Engineering Science, 56(9), 2901-2920. https://doi.org/10.1016/S0009-2509(00)00473-5
Johnson, S. B., Franks, G. V., Scales, P. J., Boger, D. V., & Healy, T. W. (2000). Surface chemistry-rheology relationships in concentrated mineral suspensions. International Journal of Mineral Processing, 58(1), 267-304. https://doi.org/10.1016/S0301-7516(99)00041-1
Jouannot-Chesney, P., Jernot, J. P., & Lantuéjoul, C. (2011). Practical determination of the coordination number in granular media. Image Analysis & Stereology, 25(1), 55-61. https://doi.org/10.5566/ias.v25.p55-61
McAnally, W.H. et al. 2007. Management of fluid mud in estuaries, bays and lakes. Part I: Present state of understanding on character and behaviour. Journal of Hydraulic Engineering, Vol. 133, No. 1, 9-22 https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(9)
Guazzelli, E., & Morris, J. F. (2011). A physical introduction to suspension dynamics (Vol. 45). Cambridge University Press. https://doi.org/10.1017/CBO9780511894671
Richardson and Zaki, Sedimentation and fluidization: Part I. Trans. Inst. Chem. Engrs., 32, 35-53 (1954)
Nicolai, H., et al. "Particle velocity fluctuations and hydrodynamic self‐diffusion of sedimenting non‐Brownian spheres." Physics of Fluids 7.1 (1995): 12-23. https://doi.org/10.1063/1.868733
Oliver, D. R. "The sedimentation of suspensions of closely-sized spherical particles." Chemical Engineering Science 15.3 (1961): 230-242. https://doi.org/10.1016/0009-2509(61)85026-4
Gourdin-Bertin, S., and C. Chassagne. "Onsager's reciprocal relations for electroacoustic and sedimentation: Application to (concentrated) colloidal suspensions." The Journal of chemical physics 142.19 (2015): 194706. https://doi.org/10.1063/1.4921375
Guazzelli, Élisabeth, and John Hinch. "Fluctuations and instability in sedimentation." Annual review of fluid mechanics 43 (2011): 97-116. https://doi.org/10.1146/annurev-fluid-122109-160736
Hadamard, J. S. (1911). "Mouvement permanent lent d'une sphere liquide et visqueuse dans un liquide visqueux". CR Acad. Sci. (in French). 152: 1735-1738
Rybczynski, W. (1911). "Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium". Bull. Acad. Sci. Cracovie, A. (in German): 40-46.
Beenakker, C. W. J., and P. Mazur. "Is sedimentation container‐shape dependent?." Physics of Fluids (1958-1988) 28.11 (1985): 3203-3206. https://doi.org/10.1063/1.865367
Bruneau, D., et al. "Intrinsic convection in a settling suspension." Physics of Fluids (1994-present) 8.8 (1996): 2236-2238. https://doi.org/10.1063/1.868995
Buscall, Richard. "The sedimentation of concentrated colloidal suspensions." Colloids and surfaces 43.1 (1990): 33-53. https://doi.org/10.1016/0166-6622(90)80002-L
Dhont, J. KG. (1996). An introduction to dynamics of colloids. Vol. 2. Elsevier.
Auzerais, F. M., Jackson, R., & Russel, W. B. (1988). The resolution of shocks and the effects of compressible sediments in transient settling. J. Fluid Mech, 195(1), 437-462. https://doi.org/10.1017/S0022112088002472
http://www.jmburgerscentrum.nl/
Davis, R. H., & Acrivos, A. (1985). Sedimentation of noncolloidal particles at low Reynolds numbers. Annual Review of Fluid Mechanics, 17(1), 91-118. https://doi.org/10.1146/annurev.fl.17.010185.000515
Xu, Z. J., & Michaelides, E. E. (2005). A numerical simulation of the Boycott effect. Chem. Eng. Comm., 192(4), 532-549. https://doi.org/10.1080/00986440590477971
Buzzaccaro, S., Tripodi, A., Rusconi, R., Vigolo, D., & Piazza, R. (2008). Kinetics of sedimentation in colloidal suspensions. Journal of Physics: Condensed Matter, 20(49), 494219. https://doi.org/10.1088/0953-8984/20/49/494219
Russel W B, Saville D A and Schowalter W R 1992 Colloidal Dispersions (Cambridge: Cambridge University Press)
Josiah Willard Gibbs https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs
Jacobus H. van 't Hoff https://www.nobelprize.org/prizes/chemistry/1901/hoff/biographical/ https://en.wikipedia.org/wiki/Jacobus_Henricus_van_%27t_Hoff
Burgers http://www.burgers.umd.edu/burgers.html
Arthur Boycott https://www.npg.org.uk/collections/search/portrait/mw97885/Arthur-Edwin-Boycott
Sobolewski, M. (2005). Various methods of the measurement of the permeability coefficient in soils-possibilities and application. Electronic Journal of Polish Agricultural Universities. Series Civil Engineering, 8(2).
Coe, H. S. "Methods for determining the capacities of slime settling tanks." Transactions American Institute of Mining Engineering 55 (1916).
Toorman, E.A. (1996) "Sedimentation and self-weight consolidation: general unifying theory", Géotechnique 46, No 1, 103-113. https://doi.org/10.1680/geot.1996.46.1.103
Gibson, R. E., G. L. England, and M. J. L. Hussey. "The Theory of one-dimensional consolidation of saturated clays: 1. finite non-Linear consildation of thin homogeneous layers." Geotechnique 17.3 (1967): 261-273. https://doi.org/10.1680/geot.1967.17.3.261
"Consolidation behaviour of gassy mud: theory and experimental validation”, B. Wichman, PhD thesis (1999), TU Delft
P.N. Sen et al. "A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads", Geophysics, 46,5,781-795 (1981) https://doi.org/10.1190/1.1441215
S. Kostek et al. "Fluid permeability in porous media: Comparison of electrical estimates with hydrodynamical calculation", Physical Review B, 45, 1 (1992) https://doi.org/10.1103/PhysRevB.45.186
Kirichek, A., C. Chassagne, and R. Ghose. "Dielectric spectroscopy of granular material in an electrolyte solution of any ionic strength." Colloids and Surfaces A: Physicochemical and Engineering Aspects 533 (2017): 356-370. https://doi.org/10.1016/j.colsurfa.2017.07.040
Jaafar, M. Z., J. Vinogradov, and M. D. Jackson, 2009, Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NaCl brine: Geophysical Research Letters, 36, L21306. https://doi.org/10.1029/2009GL040549
P.W.J. Glover et al. "Streaming-potential coefficient of reservoir rock: A theoretical model", Geophysics, 77, 2 (2012). https://doi.org/10.1190/geo2011-0364.1
De Groot, Sybren Ruurds, and Peter Mazur. Non-equilibrium thermodynamics. Courier Corporation, 2013.
Lars Onsager https://www.nobelprize.org/prizes/chemistry/1968/onsager/biographical/
"Consolidation and strength evolution of soft mud layers", Lucas Merckelbach, PhD thesis TU Delft, 2000
van den Bosch, B.A.P. The effect of initial concentration on the consolidation behaviour of mud: A study on lake Markermeer sediment, Master thesis, TU Delft, 2016
Kranenburg, C. (1994). The fractal structure of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science, 39(5), 451-460. https://doi.org/10.1006/ecss.1994.1075
Verruijt, Arnold. An Introduction to Soil Mechanics. Springer, Theory and Applications of Transport in Porous Media, Vol.30 (2018). https://doi.org/10.1007/978-3-319-61185-3
Verney, Romaric, et al. "Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling." Continental Shelf Research 31.10 (2011): S64-S83. https://doi.org/10.1016/j.csr.2010.02.005
Lee, Byung Joon, et al. "A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments." Water research 45.5 (2011): 2131-2145. https://doi.org/10.1016/j.watres.2010.12.028
Manning, Andrew J., et al. "Flocculation settling characteristics of mud: sand mixtures." Ocean dynamics 60.2 (2010): 237-253. https://doi.org/10.1007/s10236-009-0251-0
Manning, A. J., and K. R. Dyer. "Mass settling flux of fine sediments in Northern European estuaries: measurements and predictions." Marine Geology 245.1-4 (2007): 107-122. https://doi.org/10.1016/j.margeo.2007.07.005
Kruyt, H. R. editor. (1952) Colloid Science. Vol. 1. Irreversible Systems. Elsevier.
Russel, W. B., Saville, D. A., & Schowalter, W. R. (1989). Colloidal dispersions. Cambridge university press. https://doi.org/10.1017/CBO9780511608810
Van de Ven, T. G. (1989) Colloidal hydrodynamics. Academic Press.
Hunter, R. J. (1993) Introduction to modern colloid science. Oxford University Press.
Hunter, R. J. (2000) Foundations of Colloid Science. Oxford University Press.
Shaw, D. J., & Costello, B. (1993) Introduction to colloid and surface chemistry. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/0301-679X(93)90102-7
Dhont, J. KG. (1996) An introduction to dynamics of colloids. Vol. 2. Elsevier.
Hiemenz, P. C., & Rajagopalan, R. (Eds.). (1997) Principles of Colloid and Surface Chemistry, revised and expanded (Vol. 14). CRC press.
Ohshima, H. Theory of colloid and interfacial electric phenomena. Vol. 12. Academic Press, 2006.
G.J.M. Koper (2011) An introduction to Interfacial Engineering. VSSD.
Mewis, J., & Wagner, N. J. (2012) Colloidal suspension rheology. Cambridge University Press. https://doi.org/10.1017/CBO9780511977978
Hunter, R. J. (2013) Zeta potential in colloid science: principles and applications (Vol. 2). Academic press.