Dredging Engineering: Special Topics

Authors

Sape A. Miedema
Department of Maritime and Transport Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands
https://orcid.org/0000-0002-2986-9784
Keywords: dredging, hopper sedimentation, cutter spillage, water jets, erosion

Synopsis

In dredging, production estimating is carried out mainly with analytical physical models of the different dredging processes. Slurry transport of settling slurries and cutting processes in sand, clay and rock are already covered in two other books by the author. Other processes like hopper sedimentation and erosion, water jet fluidization, cutter head spillage, pump/pipeline dynamics and clamshell dredging are covered in this Special Topics Edition. New topics may be added in the near future.

Downloads

Download data is not yet available.

Author Biography

Sape A. Miedema, Department of Maritime and Transport Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands

Dr.ir. S.A. Miedema teaches (or has taught) courses on soil mechanics and soil cutting, pumps and slurry transport, hopper sedimentation and erosion, mechatronics, applied thermodynamics related to energy, drive system design principles, mooring systems, hydromechanics and mathematics. He is (or has been) also teaching at Hohai University, Changzhou, China, at Cantho University, Cantho Vietnam, at Petrovietnam University, Baria, Vietnam and different dredging companies in the Netherlands and the USA.His research focuses on the mathematical modeling of dredging systems like, cutter suction dredges, hopper dredges, clamshell dredges, backhoe dredges and trenchers. The fundamental part of the research focuses on the cutting processes of sand, clay and rock, sedimentation processes in Trailing Suction Hopper Dredges and the associated erosion processes. Lately the research focuses on hyperbaric rock cutting in relation with deep sea mining and on hydraulic transport of solids/liquid settling slurries.

References

(WIHEE), W. I. (1960). River Mechanics (In Chinese). Industry Press, China, 44-60.

Abelev, A., & Valent, P. (2010). Strain rate dependency of strength of soft marine deposits of the Gulf of Mexico.Stennis Space Center, MS 39529, USA.: Naval Research Laboratory. https://doi.org/10.23919/OCEANS.2009.5422349

Abulnaga, B. E. (2002). Slurry Systems Handbook.USA: McGraw Hill.

Azamathulla, H. M., & Ahmad, Z. (2013). Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. Journal of Pipeline Systems Engineering and Practice., 131-137. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000123

Babcock, H. A. (1970). The sliding bed flow regime. Hydrotransport 1(pp. H1-1 -H1-16). Bedford, England: BHRA.

Bagnold, R. A. (1954). Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings Royal Society, Vol. A225., 49-63. https://doi.org/10.1098/rspa.1954.0186

Bagnold, R. A. (1957). The flow of cohesionless grains in fluids. Phil. Trans. Royal Society, Vol. A249, 235-297. https://doi.org/10.1098/rsta.1956.0020

Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. Physiographic & Hydraulic Studies of Rivers., I1-I37. https://doi.org/10.3133/pp422I

Bain, A. G., & Bonnington, S. T. (1970). The hydraulic transport of solids by pipeline.Pergamon Press.

Barker, A., Sayed, M., & Carrieres, M. (2004). Determination of iceberg draft, mass and cross sectional areas. 14th international offshore and polar engineering conference.Toulon, France.

Barrette, P. (2011). Offshore pipeline protection against seabed scouring, an overview. Cold Regions Science Technology, Vol. 69., 3-20. https://doi.org/10.1016/j.coldregions.2011.06.007

Barry, K. (2003). The effect of clay particles in pore water on the critical shear stress of sand. (PhD thesis).Gainesville: University of Florida.

Barry, K., Thieke, R., & Mehta,A. (2006). Quasi-hydrodynamic lubrication effect of clay particles on sand grain erosion. Estuarine, Coastal and Shelf Science (67), 161-169. https://doi.org/10.1016/j.ecss.2005.11.009

Bauerslag, D. (1979). Untersuchungen zum Fullverhalten von Motorgreifern. PhD Thesis.Hannover, Germany: Universitat Hannover

Becker, S., Miedema, S., Jong, P., & Wittekoek, S. (1992). On the Closing Process of Clamshell Dredges in Water Saturated Sand. WODCON XIII(p. 22 pages). Bombay, India: WODA.

Becker, S., Miedema, S., Jong, P., & Wittekoek, S. (1992, September). The Closing Process of Clamshell Dredges in Water Saturated Sand. Terra et Aqua, No. 49, 22 pages

Berg, C. H. (1998). Pipelines as Transportation Systems.Kinderdijk, the Netherlands: European Mining Course Proceedings, IHC-MTI.

Berg, C. v. (2013). IHC Merwede Handbook for Centrifugal Pumps & Slurry Transportation.Kinderdijk, Netherlands: IHC Merwede

Berman, V. P. (1994). Gidro i aerodinamiceskie osnovy rascota truboprovodnych sistem gidrokontejnernogo i vysokonapornogo pnevmaticeskogo transporta.Lugansk: East Ukrainian State University.

Biot, M. (1941). General theory of three dimensional consolidation. Journal of Applied Physics, vol. 12., 155-164. https://doi.org/10.1063/1.1712886

Bishop, A. (1966). The strength of soils as engineering materials. Geotechnique, vol. 16, no. 2., 91-128. https://doi.org/10.1680/geot.1966.16.2.91

Bisschop, F., Miedema, S. A., Rhee, C. v., & Visser, P. J. (2014). Erosion experiments on sand at high velocities. To be submitted to the Journal of Hydraulic Engineering, 28.

Blasco, S. M., Shearer, J. M., & Myers, R. (1998). Seabed scouring by sea ice: scouring process and impact rates. 1st ice scour and arctic marine pipelines workshop, 13th international symposium on Okhotsk Sea and Sea Ice., (pp. 53-58). Mombetsu, Hokkaido, Japan.

Blatch, N. S. (1906). Discussion of Works for the purification of the water supply of Washington D.C. Transactions ASCE 57., 400-409.

Blythe, C., & Czarnotta, Z. (1995). Determination of hydraulic gradient for sand slurries. 8th International Freight Pipeline Society Symposium, (pp. 125-130). Pittsburg, USA.

Bobertz, B., Harff, J., & Bohling, B. (2009). Parameterisation of clastic sediments including benthis structures. Journal of Marine Systems (75), 371-381. https://doi.org/10.1016/j.jmarsys.2007.06.010

Bohling, B. (2009). Measurements of threshold values for incipient motion of sediment particles with two different erosion devices. Journal of Marine Systems (75), 330-335. https://doi.org/10.1016/j.jmarsys.2007.01.014

Bonneville, R. (1963). essais de synthese des lois debut d'entrainment des sediment sous l'action d'un courant en regime uniform.Chatou: Bulletin Du CREC, No. 5.

Bonnington, S. T. (1961). Estimation of Pipe Friction Involved in Pumping Solid Material.BHRA, TN 708 (December 1961).

Boothroyde, J., Jacobs, B. E., & Jenkins, P. (1979). Coarse particle hydraulic transport. Hydrotransport 6: 6th International Conference on the Hydraulic Transport of Solids in Pipes.(p. Paper E1). BHRA.

Bos, C. G. (1987). Weerstand vangrijpermessen in stortgoed. MSc Thesis.Delft, The Netherlands: Delft University of Technology.

Bourbonnair, J., & Lananyi, B. (1985). The mechanical behaviour of a frozen clay down to cryogenic temperatures. 4th symposium on ground freezing., (pp. 237-244). Sapporo, Japan.

Braaksma, J., Klaassens, J., Babuska, R., & Keizer, C. d. (2007). A computationally efficient model for predicting overflow mixture density in a hopper dredger. Terra et Aqua, 106(16), 16-25.

Brakel, J. (1981). Mathematisch model voor de krachten op een roterende snijkop van een in zeegang werkende snijkopzuiger.Delft, Netherlands: Delft University of Technology -ScO/80/96.

Brauer, H. (1971). Grundlagen der einphasen-und mehrphasenstromungen.Verslag Sauerlander.

Bree, S. E. (1977). Centrifugal DredgePumps. Ports & Dredging (10 issues, IHC Holland).

Brooks, F. A., & Berggren, W. (1944). Remarks on turbulent transfer across planes of zero momentum exchange. Transactions of the American Geophysics Union, Pt. VI., 889-896. https://doi.org/10.1029/TR025i006p00889

Brownlie, W. (1981). Compilation of alluvial channel data: laboratory and field, Technical Report KH-R-43B.Pasadena, California, USA: California Institute of Technology.

Buffington, J. M. (1999). The legend of A.F. Shields. Journal of Hydraulic Engineering, 125, 376-387. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(376)

Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33, 1993-2029. https://doi.org/10.1029/96WR03190

Burger, M. (2001). Influence of ladder inclination angle and particle size on cutterhead production. WODCON XVI.Kuala Lumpur, Malaysia: WODA.

Burger, M. (2003). Mixture forming processes in dredge cutter heads. PhD Thesis.Delft, Netherlands: Delft University of Technology.

Burger, M. d., & Talmon, A. M. (2001). Mechanical transportation of particles induced by cutterblade geometry. CEDA Dredging Days 2001.Amsterdam, the Netherlands: CEDA.

Burger, M. d., & Talmon, A. M. (2002). Particle trajectories along a cutter blade, using the results of a CFD modelfor the flow. Dredging 02 Key Technologies for Global Prosperity.Orlando, Florida, USA: ASCE.

Burger, M. d., Vlasblom, W. J., & Talmon, A. M. (1999). Influence of operational parameters on dredge cutterhead spillage. CEDA DRedging Days 1999.Amsterdam, the Netherlands: CEDA.

Burger, M. d., Vlasblom, W. J., & Talmon, A. M. (2005). Design aspects for cutter heads related to the mixture forming process when cutting coarse materials. Terra et Aqua 98, 12-18.

Butterfield, R., & Andrawes, K. (1972). On the angles of friction between sand and plane surfaces. Journal of Terramechanics, vol. 8, no. 4., 15-23. https://doi.org/10.1016/0022-4898(72)90043-2

Camenen, B., & Larson, M. (2013). Accuracy of Equivalent Roughness Height Formulas in Practical Applications. Journal of Hydraulic Engineering., 331-335. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000670

Camenen, B., Bayram, A. M., & Larson, M. (2006). Equivalent roughness height for plane bed under steady flow. Journal of Hydraulic Engineering, 1146-1158. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1146)

Camp, T. (1936). Study of rational design of settling tanks. Sewage Works Journal 8-5., 742-758.

Camp, T. (1946). Sedimentation and the design of settling tanks. ASCE Transactions, 895-936. https://doi.org/10.1061/TACEAT.0005912

Camp, T. (1953). Studies of sedimentation design. Sewage & Industrial Wastes 25, 1-14.

Cao, Z. (1997). Turbulent Bursting Based Sediment Entrainment Function. Journal of Hydraulic Engineering, Vol. 123(3). https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(233)

Carman, P. (1937). Fluid flow through granular beds. Transactions Institute Chemical Engineering, 15, 150.

Carman, P. (1956). Flow of gases through porous media.London: Butterworths Scientific Publications

Charles, M. E. (1970). Transport of solids by pipeline. Hydrotransport 1.Cranfield: BHRA.

Charru, F., Mouilleron, H., & Eiff, O. (2004). Erosion and deposition of particles on a bed sheared by a viscous flow. Journal of fluid mechanics, Vol. 519., 55-80. https://doi.org/10.1017/S0022112004001028

Chaskelberg, K., & Karlin. (1976). Rascot gidrotransporta pesanych materialov.Moskov: Gidromechanizacija.

Chen, X., & Miedema, S. A. (2014). NUMERICAL METHODS FOR MODELING THE ROCK CUTTING PROCESS IN DEEP SEA MINING. OMAE 2014(p. 10). San Francisco, USA: ASME. https://doi.org/10.1115/OMAE2014-23094

Chepil, W. (1958). The use of evenly spaced hemispheres to evaluate aerodynamic force on a soil failure. Transaction of the American Geophysics Union, Vol. 39(3), 397-404. https://doi.org/10.1029/TR039i003p00397

Chepil, W. (1959). Equilibrium of soil grains at the threshold of movement by wind. Soil Science Society of America Proceedings 23, (pp. 422-428). https://doi.org/10.2136/sssaj1959.03615995002300060019x

Chien, N., & Wan, Z. (1999). Mechanics of sediment transport. ASCE.Reston, Va, USA: ASCE. https://doi.org/10.1061/9780784404003

Chin, C. O., & Chiew, Y. M. (1993). Effect of bed surface structure on spherical particle stability. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(3), 231-242. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:3(231)

Clift, R., Wilson, K. C., Addie, G. R., & Carstens, M. R. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8(pp. 91-101). Cranfield, UK.: BHRA Fluid Engineering

Clift, R., Wilson, K., Addie, G., & Carstens, M. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8(pp. 91-101). Cranfield, UK.: BHRA.

Colebrook, C. F., & White, C. M. (1937). Experiments with Fluid Friction in Roughened Pipes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 161 (906).(pp. 367-381). London: Royal Society of London. https://doi.org/10.1098/rspa.1937.0150

Coleman, N. L. (1967). A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical stream bed. International Association for Hydraulic Research,12th Congress, 3, pp. 185-192.

Coleman, N. L., & Ellis, W. M. (1976). Model study of the drag coefficient of a streambed particle. Federal Interagency Sedimentation Conference, (pp. 4-12). Denver, Colorado.

Condolios, E., & Chapus, E. E. (1963A). Transporting Solid Materials in Pipelines, Part I. Journal of Chemical Engineering, Vol. 70(13)., 93-98.

Condolios, E., & Chapus, E. E. (1963B). Designing Solids Handling Pipelines Part II. Journal of Chemical Engineering, Vol. 70(14)., 131-138.

Condolios, E., & Chapus, E. E. (1963C). Operating solids pipelines, Part III. Journal of Chemical Engineering, Vol.70(15)., 145-150.

Coulomb, C. (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l'architecture. Academie royale des sciences, Paris, Memoires de mathematique et de physique, vol. 7., 343-382.

Cox, C. M., Eygenraam, J. A., Granneman, C. C., & Njoo, M. (1995). A Training Si,ulator for Cutter Suction Dredgers: Bridging the Gap between Theory and Practice. WODCON XIV(p. 10). Amsterdam, The Netherlands.: WODA.

Crowe, C. T. (2006). MultiPhase Flow Handbook.Boca Raton, Florida, USA: Taylor & Francis Group.

Dade, W., Nowell, A., & Jumars, P. (1992). Predicting erosion resistance of muds. Marine Geology, 105, 285-297. https://doi.org/10.1016/0025-3227(92)90194-M

Davies, J. T. (1987). Calculation of critical velocities to maintain solids in suspension in horizontal pipes. Chemical Engineering Science, Vol. 42(7)., 1667-1670 https://doi.org/10.1016/0009-2509(87)80171-9

Dekker, M. A., Kruyt, N. P., Burger, M. d., & Vlasblom, W. J. (2003). Experimental and numerical investigation of cutter head dredging flows. Journal of Waterways, Port, Coastal and Ocean Engineering, Vol. (129 (5)., 203-209. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:5(203)

Dekker, M. A., Vlasblom, W. J., & Kruyt, N. P. (1999). Measuring water velocities round a cutterhead. CEDA Dredging Days 1999.Amsterdam, the Netherlands: CEDA.

Detournay, E., & Atkinson, C. (2000). Influence of pore pressure on the drilling response in low permeability shear dilatant rocks. International Journal of Rock Mechanics & Mining Sciences, vol. 37., 1091-1101. https://doi.org/10.1016/S1365-1609(00)00050-2

Dey,S. (1999). Sediment threshold. Applied Mathematical Modelling, 399-417. https://doi.org/10.1016/S0307-904X(98)10081-1

Dey, S. (2003). Incipient motion of bivalve shells on sand beds under flowing water. Journal of Hydraulic Engineering, 232-240. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(232)

Dey, S. (2014). Fluvial Hydrodynamics.Kharagpur, India: Springer, GeoPlanet: Earth and Planetary Sciences. https://doi.org/10.1007/978-3-642-19062-9

Dey, S., & Raikar, R. (2007). Characteristics of loose rough boundary streams at near threshold. Journal of Hydraulic Engineering, ASCE., 288-304. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:3(288)

DHL. (1972). Systematic Investigation of Two Dimensionaland Three Dimensional Scour, Report M648/M863.Delft, Netherlands: Delft Hydraulics Laboratory.

Di Filice, R. (1999). The sedimentation velocity of dilute suspensions of nearly monosized spheres. International Journal of Multiphase Flows 25, 559-574. https://doi.org/10.1016/S0301-9322(98)00084-6

Dietrich, G. (1968). Einfluss der Korngrosse des Schuttgutes auf die Fullmasse von zwei Schalengreifern. PhD Thesis.Dresden, Germany: Technische Universitat Dresden.

Dittrich, A., Nestmann, F., & Ergenzinger, P. (1996). Ratio of lift and shear forces over rough surfaces. Coherent flow structures in open channels., 126-146.Dobbins, W. (1944). Effect of Turbulence on Sedimentation. ASCE Transactions Vol. 109, No. 2218, 629-656. https://doi.org/10.1061/TACEAT.0005696

Doron, P., & Barnea, D. (1993). A three layer model for solid liquid flow in horizontal pipes. International Journal of Multiphase Flow, Vol. 19, No.6., 1029-1043. https://doi.org/10.1016/0301-9322(93)90076-7

Doron, P., & Barnea, D. (1995). Pressure drop and limit deposit velocity for solid liquid flow in pipes. Chemical Engineering Science, Vol. 50, No. 10., 1595-1604. https://doi.org/10.1016/0009-2509(95)00024-Y

Doron, P., &Barnea, D. (1996). Flow pattern maps for solid liquid flow in pipes. International Journal of Multiphase Flow, Vol. 22, No. 2., 273-283. https://doi.org/10.1016/0301-9322(95)00071-2

Doron, P., Granica, D., & Barnea, D. (1987). Slurry flow in horizontal pipes, experimental and modeling. InternationalJournal of Multiphase Flow, Vol. 13, No. 4., 535-547. https://doi.org/10.1016/0301-9322(87)90020-6

Doron, P., Simkhis, M., & Barnea, D. (1997). Flow of solid liquid mixtures in inclined pipes. International Journal of Multiphase Flow, Vol. 23, No. 2., 313-323. https://doi.org/10.1016/S0301-9322(97)80946-9

Dou, G. (1962). theorie de l'entrainement des particeles sedimentaires. Scienta Sinica, vol. XI, Nr. 7, Trad. 1314 CREC, 1962.

Dou, G. (1964). On threshold velocity of sediment particle. Journal of Hydraulic Engineering (in Chinese), 22-31.

Dou, G. (2000).Incipient motion of sediment under currents. China Ocean Engineering (4, in Chinese)., 391.

Dou, G. (2001). Incipient motion of sediment by waves. Science in China (44-3), 309-318. https://doi.org/10.1007/BF02916708

Duckworth, & Argyros. (1972). Influence of density ratio on the pressure gradient in pipes conveying suspensions of solids in liquids. Hydrotransport 2.Coventry: BHRA.

Durand, R. (1953). Basic Relationships of the Transportation of Solids in Pipes -Experimental Research. Proceedings of the International Association of Hydraulic Research.Minneapolis.

Durand, R., & Condolios, E. (1952). Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. Deuxiemes Journees de l'Hydraulique., 27-55.

Durand, R., & Condolios, E. (1952). Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. (Experimental study of the discharge pipes materieaux especially products of dredging and slurries). Deuxiemes Journees de l'Hydraulique., 27-55.

Durand, R., & Condolios, E. (1956). Donnees techniques sur le refoulement des mixture en conduites. Revue de lÍndustriele Minerale, no. 22F, 460-481.

Durand, R., & Condolios, E. (1956). Technical data on hydraulic transport of solid materials in conduits.Revue de L'Industrie Minerale, Numero Special 1F.

Durepaire, M. P. (1939). Contribution a létude du dragage et du refoulement des deblais a état de mixtures. Annales des ponts et chaussees, Memoires I., 165-254.

Egiazarof, I. (1965).Calculation of non-uniform sediment concentrations. Journal of the Hydraulic Division, ASCE, 91(HY4), 225-247. https://doi.org/10.1061/JYCEAJ.0001277

Einstein, A. (1905). On the motion of small particles suspended in liquids at rest required by the molecular kinetic theory of heat. Annalen derPhysik Vol.17., 549-560.

Ellis, H. S., & Round, G. F. (1963). Laboratory studies on the flow of Nickel-Water suspensions. Canadian Journal on Minerals & Mettalurgy, Bull. 56.

Engelund, F., & Hansen, E. (1967). A monograph on sediment transport to alluvial streams. Copenhagen: Technik Vorlag.

Evans, I. (1962). A theory on basic mechanics of coal ploughing. International symposium on mining research., (pp. 761-798). https://doi.org/10.1016/B978-1-4832-8307-4.50053-2

Evans, I. (1964). The force required to cut coal with blunt wedges. Mining Research Establishment Isleworth.

Evans, I. (1965). The force required to cut coal with blunt wedges. International journal of rock mechanics and mining science., 1-12. https://doi.org/10.1016/0148-9062(65)90018-5

Evans, I., & Pomeroy, C. (1966). The strength, fracture and workability of coal.Pergamon Press.

Everts,C. (1973). Particle overpassing on flat granular boundaries. Journal of Waterways, Harbors, & Coastal Engineering, ASCE Vol. 99(WW4)., 425-438. https://doi.org/10.1061/AWHCAR.0000211

Fairhurst, C. (1964). On the validity of the Brazilian test for brittle materials. International Journal of Rock Mechanics & Mining Sciences, vol. 1., 535-546. https://doi.org/10.1016/0148-9062(64)90060-9

Feiler, A., Bergstrom, L., & Rutland, M. (2008). Superlubricity using repulsive van der Waals forces. Langmuir (24), 2274-2276. https://doi.org/10.1021/la7036907

Fenton, J. D., & Abbott, J. E. (1977). Initial movement of grains on a stream bed: The effect of relative protrusion. Proceedings of Royal Society, 352(A), pp. 523-537. London. https://doi.org/10.1098/rspa.1977.0014

Fernandez-Luque. (1974). Erosion and Transport of Bed-Load Sediment. PhD Thesis.Meppel, The Netherlands: Krips Repro B.V.

Fitton, T. G. (2015). A deposit velocity equation for open channels and pipes. 17th International Conference on Transport & Sedimentatin of Solid Particles.(pp. 69-77). Delft, The Netherlands: Delft University of Technology.

Fowkes, R. S., & Wancheck, G. A. (1969). Materials handling research: Hydraulic transportation of coarse solids.U.S. Department of the interior, Bureau of Mines, Report 7283.

Franzi, G. (1941). Sul moto dei liquidi con materie solide in suspensione.Milano, Italy: Instituto di idraulica e costrusioni idrauliche dei politechnico di Milano, No. 47.

Fuhrboter, A. (1961). Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen.Mitteilungen des Franzius-Instituts, H. 19.

Fuhrboter, A. (1961). Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. (On the advances of sand -water mixtures in pipelines).Mitteilungen des Franzius-Instituts, H. 19.

Gandhi, R. (2015, February). Personal communication.

Garcia, M. H. (2008). Sedimentation Engineering(Vol. 110). ASCE Manuals & Reports on Engineering Practise No. 110.

Garside, J., & Al-Dibouni, M. (1977). Velocity-Voidage Relationships for Fluidization and Sedimentation in Solid-Liquid Systems. 2nd Eng. Chem. Process Des. Dev., 16, 206. https://doi.org/10.1021/i260062a008

Gebhardt, R. (1972). Eindringwiederstande korniger haufwerke. Hebezuege und Fordermittel 12., 241-247

Gehking, K. (1987). Rock Testing Procedures at VA's Geotechnical Laboratory in Zeltweg.Zeltweg, Austria.: Voest Alphine, International Report TZU 48.

Gibert,R. (1960). Transport hydraulique et refoulement des mixtures en conduites. Annales des Ponts et Chausees., 130(3), 307-74, 130(4), 437-94.

Gibert, R. (1960). Transport hydraulique et refoulement des mixtures en conduites. (Hydraulic transport and discharge pipes of mixtures). Annales des Ponts et Chausees., 130(3), 307-74, 130(4), 437-94.

Gillies, D. P. (2013). Particle contributions to kinematic friction in slurry pipeline flow, MSc Thesis.University of Alberta, Department of Chemical Engineering.

Gillies, R. G. (1993). Pipeline flow of coarse particles, PhD Thesis.Saskatoon: University of Saskatchewan.

Gillies, R. G. (2015). Personal communication. https://doi.org/10.1002/14651858.CD009736.pub2

Gillies, R. G., & Shook, C. A. (1994). Concentration distributions of sand slurries in horizontal pipe flow. Particulate Science and Technology, Vol. 12., 45-69. https://doi.org/10.1080/02726359408906641

Gillies, R. G., & Shook, C. A. (2000A). Modeling high concentration settling slurry flows. Canadian Journal of Chemical Engineering, Vol. 78., 709-716. https://doi.org/10.1002/cjce.5450780413

Gillies, R. G., Schaan, J., Sumner, R. J.,McKibben, M. J., & Shook, C. A. (2000B). Deposition velocities for Newtonian slurries in turbulent flow. Canadian Journal of Chemical Engineering, Vol. 78., 704-708. https://doi.org/10.1002/cjce.5450780412

Gillies, R. G., Shook, C. A., & Wilson, K. C. (1991). An improved two layer model for horizontal slurry pipeline flow. Canadian Journal of Chemical Engineering, Vol. 69., 173-178. https://doi.org/10.1002/cjce.5450690120

Gillies, R. G., Shook, C. A., & Xu, J. (2004). Modelling heterogeneous slurry flows at high velocities. The Canadian Journal of Chemical Engineering, Vol. 82., 1060-1065. https://doi.org/10.1002/cjce.5450820523

Glasstone, S., Laidler, K., & Eyring, H. (1941). The theory of rate processes.New York: McGraw Hill.

Goedde, E. (1978). To the critical velocity of heterogeneous hydraulic transport. Hydrotransport 5(pp. B4-81-B4-98). Cranfield, Bedford, England: BHRA.

Gogus, M., & Kokpinar, M. A. (1993). Determination of critical flow velocity in slurry transporting pipeline systems. Proceeding of the 12th International Conference on Slurry Handling and Pipeline Transport.(pp. 743-757). Bedfordshire, UK.: British Hydraulic Research Group.

Govers, G. (1987). Initiation of motion in overland flow. Sedimentology (34), 1157-1164. https://doi.org/10.1111/j.1365-3091.1987.tb00598.x

Govier, G. W., & Aziz, K. (1972). The Flow of Complex Mixtures in Pipes.New York: University of Calgary, Alberta, Canada.

Grace, J. (1986). Contacting modes and behaviour classification of gas-solid and other two-phase suspensions. Canadian Journal of Chemical Engineering, vol. 64., 353-363. https://doi.org/10.1002/cjce.5450640301

Graf, W. H., & Pazis, G. C. (1977). Les phenomenes dedeposition et d'erosion dans un canal alluvionnaire. Journal of Hydraulic Research, 15, 151-165. https://doi.org/10.1080/00221687709499653

Graf, W. H., Robinson, M. P., & Yucel, O. (1970). Critical velocity for solid liquid mixtures.Bethlehem, Pensylvania, USA.: Fritz Laboratory Reports, Paper 386. Lehigh University.

Graf, W. H., Robinson, M., & Yucel, O. (1970). The critical deposit velocity for solid-liquid mixtures. Hydrotransport 1(pp. H5-77-H5-88). Cranfield, UK: BHRA.

Grant, W. D., & Madsen, O. S. (1982). Movable bed roughness in unsteady oscillatory flow. Journal Geophysics Resources, 469-481. https://doi.org/10.1029/JC087iC01p00469

Grass, A. J. (1970). The initial instability of fine bed sand. Journal of Hydraulic Division, ASCE, 96(3), 619-632. https://doi.org/10.1061/JYCEAJ.0002369

Groot, J. (1981). Rapport Beunbezinking (in Dutch).Papendrecht: Royal Boskalis Westminster.

Grunsven, F. v. (2012). Measuring the slip factor for various slurry flows using temperature calibrated Electrical Resistance Tomography.Delft, The Netherlands.: Delft University of Technology.

Hansen, B. (1958). Line ruptures regarded as narrowrupture zones. Earth Pressure Problems, (pp. 39-48). Brussels.

Harada, E., Kuriyama, M., & Konno, H. (1989). Heat transfer with a solid liquid suspension flowing through a horizontal rectangular duct. Heat Transfer Jap. Res. Vol. 18., 79-94.

Hatamura, Y.,& Chijiiwa, K. (1975). Analyses of the mechanism of soil cutting, 1st report. Bulletin of JSME, vol. 18, no. 120, 619-626. https://doi.org/10.1299/jsme1958.18.619

Hatamura, Y., & Chijiiwa, K. (1976A). Analyses of the mechanism of soil cutting, 2nd report. Bulletin of the JSME, vol. 19, no. 131., 555-563. https://doi.org/10.1299/jsme1958.19.555

Hatamura, Y., & Chijiiwa, K. (1976B). Analyses of the mechanism of soil cutting, 3rd report. Bulletin of the JSME, vol. 19, no. 139., 1376-1384. https://doi.org/10.1299/jsme1958.19.1376

Hatamura, Y., & Chijiiwa, K. (1977A). Analyses of the mechanism of soil cutting, 4th report. Bulletin of the JSME, vol. 20, no. 139., 130-137. https://doi.org/10.1299/jsme1958.20.130

Hatamura, Y., & Chijiiwa, K. (1977B). Analyses of the mechanism of soil cutting, 5th report. Bulletin of the JSME, vol. 20, no. 141., 388-395. https://doi.org/10.1299/jsme1958.20.388

Hazen, A. (1982). Some physical properties of sands and gravels with special reference to their use in filtration. 24th Annual Report, Massachusetts State Board of Health, Pub. Doc. No. 34., 539-556.

He, J., & Vlasblom, W. (1998). Modelling of saturated sand cutting with large rake angles. WODCON XV.Las Vegas, USA: WODA.

He, J., Miedema, S., & Vlasblom, W. (2005). FEM Analyses Of Cutting Of Anisotropic Densely Compacted and Saturated Sand. WEDAXXV/TAMU37.New Orleans, Louisiana, USA: WEDA/TAMU.

Helmons, R. L., Miedema, S. A., & Rhee, C. v. (2014). A NEW APPROACH TO MODEL HYPERBARIC ROCK CUTTING PROCESSES. OMAE 2014(p. 9). San Francisco, USA: ASME. https://doi.org/10.1115/OMAE2014-23671

Hepy, F. M., Ahmad, Z., & Kansal, M. L. (2008). Critical velocity for slurry transport through pipeline. Dam Engineering, Vol. XIX(3)., 169-184.

Hettiaratchi, D. (1967A). The mechanics of soil cultivation. AES, no. 3/245/C/28.

Hettiaratchi, D., & Reece, A. (1967B). Symmetrical three-dimensional soil failure. Journal of Terramechanics 4 (3)., 45-67. https://doi.org/10.1016/0022-4898(67)90126-7

Hettiaratchi, D., & Reece, A. (1974). The calculation of passive soil resistance. Geotechnique 24, no. 3., 289-310. https://doi.org/10.1680/geot.1974.24.3.289

Hettiaratchi, D., & Reece, A. (1975). Boundary wedges in two dimensional passive soil failure. Geotechnique 25, no. 2., 197-220. https://doi.org/10.1680/geot.1975.25.2.197

Hettiaratchi, D., Witney, B., & Reece, A. (1966). The calculation of passive pressure in two dimensional soil failure. Journal of Agriculture Engineering Resources 11 (2), 89-107. https://doi.org/10.1016/S0021-8634(66)80045-8

Hinze, J. (1975). Turbulence.McGraw Hill Book company.

Hjulstrøm, F. (1935). Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institute, 25, 221-527. University of Uppsala.

Hjulstrøm, F. (1939). Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments. A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, (pp. 5-31). Tulsa, Oklahoma.

Hoek, E., & Brown, E. T. (1988). The Hoek-Brown Failure Criterion -a 1988 Update. 15th Canadian Rock Mechanics Symposium., (pp. 31-38).

Hofland, B. (2005). Rock & Roll.Delft, The Netherlands: PhD Thesis, Delft University of Technology.

Howard, G. W. (1938). Transportation of Sand and Gravel in a 4 Inch Pipe. Transactions ASCE Vol. 104., No. 2039., 1334-1348. https://doi.org/10.1061/TACEAT.0005098

Howard, G. W. (1939). Discussion on: Transportation of sand and gravel in a four inch pipe. Transactions ASCE Vol. 104., 157, 316, 460, 1011. https://doi.org/10.1061/TACEAT.0005098

Hsu. (1986). Flow of non-colloidal slurries in pipeline.PhD Thesis, University of Illinois.

Huisman, L. (1973-1995). Sedimentation & Flotation 1973-1995.Delft, Netherlands: Delft University of Technology.

Huisman, L. (1980). Theory of settling tanks.Delft, Netherlands: Delft University of Technology.

Hunerjager, H. (1957). Kenngrossen fur das Forderverhalten von Schuttgutern. PhD Thesis.Hannover, Germany: Technische Universitat Hannover.

Hunt, J. N. (1954). The turbulent transport of suspended sediment in open channels. Royal Society of London, Proc. Series A, Vol. 224(1158)., 322-335. https://doi.org/10.1098/rspa.1954.0161

Hupe, W., & Schuszter, M. (1965). Verbesserte Motorgreifer als Beitrag zur allgemeinen Verbesserung des Greifernumschlages. Hebezeuge und Fordermittel 1, 6-9.

Huygens, M., & Verhofen, R. (1996). Some fundamental particularities on partly cohesive sediment transport in a circular test flume. Advances in Fluid Mechanics (9), 11-20.

Ikeda, S. (1982). Incipient motion of sand particles on side slopes. Journal of the Hydraulic division, ASCE, 108(No. HY1). https://doi.org/10.1061/JYCEAJ.0005812

Ismail, H. M. (1952). Turbulent transfer mechanism and suspended sediment in closed channels. Transactions of ASCE, Vol. 117., 409-446. https://doi.org/10.1061/TACEAT.0006695

Israelachvili, J. (1985). Intermolecular and Surface Forces.New York: Elsevier.

Iwagaki, Y. (1956). Fundamental study on critical tractive force. Transactions of the Japanese Society of Civil Engineers, Vol. 41, 1-21. https://doi.org/10.2208/jscej1949.1956.41_1

Jin, L., McNeil, J., Lick, W., & Gailani, J. (2002). Effects of bentonite on the erosion rates of quartz particles.Santa Barbara, California: Mechanics & Environmental Engineers, University of California.

Joanknecht, L. (1973). Mechanisch graaf onderzoek onder water.Delft, Netherlands: Delft University of Technology.

Joanknecht, L. (1974). Cutting forces in submerged soils.Delft, Netherlands: Delft University of Technology.

Jong, P. (1987). Onderzoek naar de mogelijkheid van gecombineerd snijden en spuiten in zand, report: 87.3.GV.2311.Delft, Netherlands: Delft University of Technology.

Jong, P. (1988A). De uitvoering van een laboratorium onderzoek naar de mogelijkheden van gecombineerd snijden en spuiten in zand, report: 88.3.GV.2365.Delft, Netherlands: Delft University of Technology.

Jong, P. (1988B). Een productie optimalisatie van het gebruik van spuiters op de sleephopperzuiger Volvox Delta, report: 88.3.GV.2438.Delft, Netherlands: Delft University of Technology.

Jonge, K. (2017). A trailing suction hopper dredge draghead production model, Masters Thesis.Delft, Netherlands: Delft University of Technology.

Josselin de Jong, G. (1976). Rowe's stress dilatancy relation based on friction. Geotechnique 26, no. 3, 527-534. https://doi.org/10.1680/geot.1976.26.3.527

Jufin, A. P. (1965). Gidromechanizacija.Moskau.Jufin, A. P., & Lopatin, N. A. (1966). O projekte TUiN na gidrotransport zernistych materialov po stalnym truboprovodam. Gidrotechniceskoe Strojitelstvo, 9., 49-52.

Jukes, P., Kenny, S., Panapitiya, U., Jafri, S., & Eltaher, A. (2011). Arctic and harsh environment pipeline trenching technologies and challenges. OTC.Houston: OTC. https://doi.org/10.4043/22083-MS

Julien, P. (1995). Erosion and sedimentation. Cambridge University Press. https://doi.org/10.1017/CBO9781139174107

Kaitkay, P., & Lei, S. (2005). Experimental study of rock cutting under external hydrostatic pressure. Journal of Materials Processing Technology, vol. 159., 206-213. https://doi.org/10.1016/j.jmatprotec.2004.04.418

Karabelas, A. J. (1977). Vertical Distribution of Dilute Suspensins in Turbulent Pipe Flow. AIChE Journal, Vol. 23(4)., 426-434. https://doi.org/10.1002/aic.690230404

Karasik, U. A. (1973). Hydraulische Forderung von feinkorniqen Suspensionen (in russisch). Gidromechanika, S.BO ff, Vol. 25. Kiew.

Kaushal, D. R. (1995). Prediction of particle distribution in the flow of multisized particulate slurries through closed ducts and open channels.Delhi, India: I.I.T.. Department of Applied Mechanics, PhD Thesis.

Kaushal, D. R., & Tomita, Y. (2002B). Solids concentration profiles and pressure drop in pipeline flow of multisized particulate slurries. International Journal of Multiphase Flow, Vol. 28., 1697-1717. https://doi.org/10.1016/S0301-9322(02)00047-2

Kaushal, D. R., & Tomita,Y. (2002C). An improved method for predicting pressure drop along slurry pipeline. Particulate Science and Technology: An International Journal, Vol. 20(4)., 305-324. https://doi.org/10.1080/02726350216190

Kaushal, D. R., & Tomita, Y. (2003B). Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. International Journal of Multiphase Flow, Vol. 29., 1473-1487. https://doi.org/10.1016/S0301-9322(03)00125-3

Kaushal, D. R., & Tomita, Y. (2013). Prediction of concentration distribution in pipeline flow of highly concentrated slurry. Particulate Science and Technology: An International Journal, Vol. 31(1)., 28-34. https://doi.org/10.1080/02726351.2011.639045

Kaushal, D. R., Sato, K., Toyota, T., Funatsu, K., & Tomita, Y. (2005). Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. International Journal of Multiphase Flow, Vol. 31., 809-823. https://doi.org/10.1016/j.ijmultiphaseflow.2005.03.003

Kaushal, D. R., Seshadri, V., & Singh, S. N. (2002D). Prediction of concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangularduct. Applied Mathematical Modelling, Vol. 26., 941-952. https://doi.org/10.1016/S0307-904X(02)00054-9

Kaushal, D. R., Seshadri, V., & Singh, S. N. (2003A). Concentration and particle size distribution in the flow of multi-sized particulate slurry through rectangular duct. Journal of Hydrology & Hydromechanics, 114-121.

Kaushal, D. R., Tomita, Y., & Dighade, R. R. (2002A). Concentration at the pipe bottom at deposition velocity for transportation of commercial slurries through pipeline. Powder Technology Vol. 125., 89-101. https://doi.org/10.1016/S0032-5910(02)00031-1

Kazanskij, I. (1967). Vyzkum proudeni hydrosmesi voda-pisek (untersuchung uber sans-wasser stromungen).Mitteilungen des Franzius Instituts, Heft 33.

Kazanskij, I. (1972). Berechnungsverfahren fur die Forderung von Sand-Wasser Gemischen in Rohrleitungen.Hannover: Franzius Institut, Heft 33.

Kazanskij, I. (1978). Scale-up effects in hydraulic transport theory and practice. Hydrotransport 5(pp. B3: 47-74). Cranfield, UK: BHRA Fluid Engineering.

Kazanskij, I. (1980). Vergleich verschiedener Rohrmaterialen in Bezug auf Verschleiss und Energieverbrauch beim Hydrotransport in Rohrleitungen. VDI Berichte Nr. 371, pp. 51-58.

Kelessidis, V., & Maglione, R. (2008). Yield stress of water bentonite dispersions. Colloids and Surfaces A: Physicochemical Engineering Aspects 318., 217-226. https://doi.org/10.1016/j.colsurfa.2007.12.050

Kelessidis, V., Tsamantaki, C., & Dalamarinis, P. (2007). Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science 38., 86-96. https://doi.org/10.1016/j.clay.2007.01.011

Kesteren, W. G. (1995). Numerical simulations of crack bifurcation in the chipforming cutting process in rock. In G. B. Karihaloo (Ed.), Fracture of brittle disordered materials: concrete, rock and ceramics.(pp. 505-524). London, UK.: E&FN Spon.

Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. https://doi.org/10.1017/S0022112087000892

King, R. P. (2002). Introduction to Practical Fluid Flow.University of Utah.: Butterworth Heineman.https://doi.org/10.1016/B978-075064885-1/50001-6

Kirkby, M., & Statham, I. (1975). Surface stone movement and scree formation. Journal of Geology, Vol. 83., 349-362. https://doi.org/10.1086/628097

Kokpinar, M. A., & Gogus, M. (2001). Critical velocity in slurry transport in horizontal pipelines. Journal of Hydraulic Engineering, Vol. 127(9)., 763-771. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:9(763)

Koning, J. d. (1977). Constant Tonnage Loading System of Trailing Suction Hopper Dredges. International Course on Modern Dredging(p. D6). The Hague, The Netherlands: Delft University of Technology & KIVI.

Koning, J. d., Miedema, S., & Zwartbol, A. (1983). Soil/Cutterhead Interaction under Wave Conditions. WODCON X.Singapore: WODA.

Korreman, S., & Posselt, D. (2001). Modification of anomalous swelling in multilamellar vesicles induced by alkali halide salts. Euro Biophysics Journal (30), 121-128. https://doi.org/10.1007/s002490000125

Korzajev, M. (1964). Metod rascota parametrov gidrotransporta gruntov. Gidromechanizacija, Moskau.

Kozeny, J. (1927). Uber kapillare leitung des wassers in boden.Wien: Sitzungsber. Akad. Wiss. Wien, Math. Naturwiss. Kl. Abt. 2a, 136, 271-306.

Kramer, H. (1935). Sand mixtures and sand movement in fluvial levels. Transaction of ASCE 100., 798-838. https://doi.org/10.1061/TACEAT.0004653

Kril, S. I. (1990). Nopernye vzvesenesuscie potoki (pressurised slurry flows).Kiev: Naukova Dumka.

Krivenko. (1970). Energieverlust in zwei phasen stromungen in hochkonzentrierten grobdispersionen. Gidromechanica, Kiev.

Krone, R. (1986). The significance of aggregate properties to transport processes. Workshop on Cohesive Sediment Dynamics with Special Reference to Physical Processes in Estuaries.(pp. 66-84). Tampa Florida: Springer Verlag.

Kumar, U., Mishra, R., Singh, S. N., & Seshadri, V. (2003). Effect of particle gradation on flow characteristics of ash disposal pipelines. Powder Technology Vol. 132., 39-51. https://doi.org/10.1016/S0032-5910(03)00045-7

Kumar, U., Singh, S. N., & Seshadri, V. (2008). Prediction of flow characteristics of bimodal slurry in horizontal pipe flow. Particulate Science and Technology, Vol. 26., 361-379. https://doi.org/10.1080/02726350802084564

Kurihara, M. (1948). On the critical tractive force. Research Institute for Hydraulic Engineering, Report No. 3, Vol. 4.

Lahiri, S. K. (2009). Study on slurry flow modelling in pipeline.Durgapur, India: National Institute of Technology, Durgapur, India.

Lambe, T., & Whitman, R. (1969). Soil Mechanics.John Wiley & Sons.

Lambe, T., & Whitman, R. (1979). Soil mechanics, SI version.New York: John Wiley & Sons.

Lane, E. W., & Kalinske, A. A. (1941). Engineering calculations of suspended sediment. Trans. Am. Geophysics Union, Vol. 20(3)., 603-607. https://doi.org/10.1029/TR022i003p00603

Laribi, S., Fleureau, J., Grossiord, J., & Ariguib, N. (2005). Comparative yield stress determination for pure and interstratified smectite clays. Rhology Acta (44)., 262-269 https://doi.org/10.1007/s00397-004-0406-3

Leussen, W. v., & Os, A. v. (1987 December). Basic research on cutting forces in saturated sand. Journal of Geotechnical Engineering, vol. 113, no. 12., 1501-1516. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:12(1501)

Leussen, W., & Nieuwenhuis, J. (1984). Soil mechanics aspects of dredging. Geotechnique 34, no. 3., 359-381. https://doi.org/10.1680/geot.1984.34.3.359

Lick, W., Jin, L., & Gailani, J. (2004). Initiation of movement of quartz particles. Journal of Hydraulic Engineering, 755-761. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:8(755)

Liefferink, D. M., Alvarez Grima, M., Miedema, S. A., Plat, R., & Rhee, C. v. (2014). Failure mechanism of cutting submerged frozen clay in an arctic trenching process. OTC 2014.Houston, Texas, USA.: OTC. https://doi.org/10.4043/25337-MS

Liu, H. (1957). Mechanics of sediment ripple formation. Journal of the Hydraulics Division, Vol. 83, No. 2, March/April., 1-23. https://doi.org/10.1061/JYCEAJ.0000075

Liu, Z. (2001). Sediment Transport.Aalborg, Denmark: Aalborg University.

Lobanov, V., & Joanknecht, L. (1980). The cutting of soil under hydrostatic pressure. WODCON IX.Vancouver, Canada: WODA.

Lodge, P. (2006). Effects of surface slope on erosion rates of quartz particles. (MSc thesis Wilbert Lick).Santa Barbara: University of California.

Loiseleux, T., Gondret, P., Rabaud, M., & Doppler, D. (2005). Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow. Physicsof fluids, Vol. 17, 1-9. https://doi.org/10.1063/1.2109747

Longwell, P. A. (1977). Mechanics of Fluid Flow.New York: McGraw Hill.

Louis, A. A. (2017). Cutter Suction Spillage.Delft, the Netherlands: Delft University of Technology.

Luckner, T. (2002). Zum Bewegungsbeginn von Sedimenten. Dissertation.Darmstadt, Germany: Technische Universitat Darmstadt.

Luckner, T., & Zanke, U. (2007). An analytical solution for calculating the initiation of sediment motion. International Journal of sediment Research, Vol. 22, No. 2., 87-102.

Ma, Y. (2001). Mathematical model analysis for the saturated sand cutting with large cutting angles in the non-vavitation situation.Delft, Netherlands: Delft University of Technology, Report: 2001.BT.5581.

Ma, Y., Ni, F., & Miedema, S. (2006A). Calculation of the Blade Cutting Force for small Cutting Angles based on MATLAB. The 2nd China Dredging Association International Conference & Exhibition, themed Dredging and Sustainable Development.Guangzhou, China: CHIDA.

Ma, Y., Ni, F., & Miedema, S. (2006B). Mechanical Model of Water Saturated Sand Cutting at Blade Large Cutting Angles. Journal of Hohai University, ISSN 1009-1130, CN 32-1591.

Madsen, O. S., Wright, L. D., Boon, J. D., & Chrisholm, T. A. (1993). Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event.Continental Shelf Research 13, 1303-1324. https://doi.org/10.1016/0278-4343(93)90054-2

Madsen, O., & Grant, W. (1976). Sediment transport in the coastal environment.Cambridge, Massachusetts, USA: Technical report 209, M.I.T.

Mantz, P. A. (1977). Incipient transport of fine grains and flakes by fluids-Extended Shields diagram. Journal of Hydraulic Division, ASCE, 103(6), 601-615. https://doi.org/10.1061/JYCEAJ.0004766

Marsh, N. A., Western, A. W., & Grayson, R. B. (2004, July 1). Comparison of Methods for Predicting Incipient Motion for Sand Beds.Journal of Hydraulic Engineering, 130(No. 7, July 1, 2004)). https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(616)

Matousek, V. (1996). Solids Transportation in a Long Pipeline Connected with a Dredge. Terra et Aqua 62., 3-11.

Matousek, V. (1997). Flow Mechanism of Sand/Water Mixtures in Pipelines, PhD Thesis.Delft, Netherlands: Delft University of Technology.

Matousek, V. (2001). On the Amplification of Density Waves in Long Pipelines Connected with a Dredge. World Dredging Conference 16.Kuala Lumpur, Malaysia: WODA.

Matousek, V. (2004). Dredge Pumps & Slurry Transport, Lecture Notes.Delft: Delft University of Technology.

Matousek, V. (2007). Interaction of slurry pipe flow with a stationary bed. Journal of the South African Institute of Mining and Metallurgy, 107(6)., 367-374.

Matousek, V. (2009). Concentration profiles and solids transport above stationary deposit in enclosed conduit. Journal of Hydraulic Engineering, Vol. 135, 1101-1106. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000113

Matousek, V. (2009). Predictive model for frictional pressure drop in settling-slurry pipe with stationar deposit. Powder Technology, 367-374. https://doi.org/10.1016/j.powtec.2009.01.017

Matousek, V. (2011). Solids Transport Formula in Predictive Model for Pipe Flow of Slurry above Deposit. Particulate Science and Technology, Vol. 29(1)., 89-106. https://doi.org/10.1080/02726351.2010.510549

Matousek, V., & Krupicka, J. (2009). On equivalent roughness of mobile bed at high shear stress. Journal of Hydrology & Hydromechanics, Vol. 57-3., 191-199. https://doi.org/10.2478/v10098-009-0018-9

Matousek, V., & Krupicka, J. (2010). Modeling of settling slurry flow around deposition limit velocity. Hydrotransport 18(p. 12). Rio de Janeiro, Brazil: BHR Group.

Matousek, V., & Krupicka, J. (2010). Semi empirical formulae for upper plane bed friction. Hydrotransport 18(pp. 95-103). BHRA.

Matousek, V., & Krupicka, J. (2011). Unified model for coarse slurry flow with stationary and sliding bed. 15th International Conference on Transport & Sedimentation of Solid Particles., (p. 8). Wroclaw, Poland.

Matousek, V., & Krupicka, J. (2011). Unified model for coarse slurry flow with stationary and sliding bed. Transport and Sedimentation of Solid Particles, 15th, (p. 9). Wroclav, Poland.

Matousek, V., & Krupicka, J. (2014). Interfacial friction and transport in stratified flows. Maritime Engineering, Vol. 167(MA3), 125-134. https://doi.org/10.1680/maen.14.00005

Matousek, V., & Krupicka, J. (2014). One dimensional modelling of concentration distribution in pipe flow of combined load slurry. Powder Technology, Vol. 260., 42-51. https://doi.org/10.1016/j.powtec.2014.03.070

Matousek, V., Krupicka, J., & Penik, V. (2014). Distribution of medium to coarse glass beads in slurry pipe flow: Evaluation of measured concentration profiles. Particulate Science and Technology, Vol. 32, 186-196. https://doi.org/10.1080/02726351.2013.840706

Matousek, V., Krupicka, J., & Picek, T. (2013). Validation of transport and friction formulae for upper plane bed by experiments in rectangular pipe. Journal of Hydrology and Hydromechanics., 120-125. https://doi.org/10.2478/johh-2013-0016

Mavis, F., & Laushey, L. (1948). A Re-appraisal of the Beginning of Bed Movement Competent Velocity. IAHR.Stockholm.

Mehta, A., & Lee, S. (1994). Problems in linking the threshold condition for the transport of cohesionless and cohesive sediment grain. Journal of Coastal Research 10, 170-177.

Meijer, K. (1981). Berekening van spanningen en deformaties in verzadigde grond.Delft, Netherlands: Delft Hydraulics Laboratory, Report R914 part 1.

Meijer, K. (1985). Computation of stresses and strains in saturated soil, PhD Thesis.Delft, Netherlands: Delft University of Technology.

Meijer, K., & Os, A. (1976). Pore pressures neara moving under water slope. Geotechnical Engineering Division ASCE 102, no. GT4., 361-372. https://doi.org/10.1061/AJGEB6.0000260

Merchant, M. (1944). Basic mechanics of the metal cutting process. Journal of Applied Mechanics, vol. 11A., 168-175. https://doi.org/10.1115/1.4009380

Merchant, M. (1945A). Mechanics of metal cutting process, orthogonal cutting and a type 2 chip. Journal of Applied Physics, vol. 16, no. 5., 267-275. https://doi.org/10.1063/1.1707586

Merchant, M. (1945B). Mechanics of metal cutting, plasticity conditions in orthogonal cutting. Journal of Applied Physics, vol. 16, no. 6., 318-324. https://doi.org/10.1063/1.1707596

Meyer-Peter, E., & Muller, R. (1948). Formulas for bed load transport. 2nd Meeting of the International Association for Hydraulic Structures Research., (pp. 39-64).

Miedema, S. (1981). The flow of dredged slurry in and out hoppers and the settlement process inhoppers.Delft, The Netherlands: Delft University of Technology, ScO/81/105, 147 pages.

Miedema, S. (1995). Production Estimation Based on Cutting Theories for Cutting Water Saturated Sand. WODCON IV(p. 30 pages). Amsterdam, The Netherlands: WODA.

Miedema, S. (2008A). An Analytical Approach to the Sedimentation Process in Trailing Suction Hopper Dredges. Terra et Aqua 112, 15-25.

Miedema, S. (2008B). An analytical method to determine scour. WEDA XXVIII & Texas A&M 39.St. Louis, USA: Western Dredging Association (WEDA).

Miedema, S. (2009A). The effect of the bed rise velocity on the sedimentation process in hopper dredges. Journal of Dredging Engineering, Vol. 10, No. 1, 10-31.

Miedema, S. (2009B). A sensitivity analysis of the scaling of TSHD's. WEDA 29 &TAMU 40 Conference.Phoenix, Arizona, USA: WEDA.

Miedema, S. (2010). Constructing the Shields curve, a new theoretical approach and its applications. WODCON XIX(p. 22 pages). Beijing, September 2010: WODA.

Miedema, S. (2010A). Constructing the Shields Curve: Part A Fundamentals of the Sliding, Rolling and Lifting Mechanisms for the Entrainment of Particles. Submitted to the Journal of Hydraulic Engineering. https://doi.org/10.1115/OMAE2011-49232

Miedema, S. (2010B). Constructing the Shields Curve: Part B Sensitivity Analysis, Exposure & Protrusion Levels, Settling Velocity, Shear Stress & Friction Velocity, Erosion Flux and Laminar Main Flow. Submitted to the Journal of Hydraulic Engineering.

Miedema, S. (2010D). Constructing the Shields Curve: Part D Cohesion by Clay. Submitted to the Journal of Hydraulic Engineering.

Miedema, S. A. (1981). The soil reaction forces on a crown cutterhead on a swell compensated ladder.Delft, The Netherlands: Delft University of Technology.

Miedema, S. A. (1982). The Interaction between Cutterhead and Soil at Sea. Dredging Day November 19th(p. 25 pages in Dutch). Delft, The Netherlands: Delft University of Technology.

Miedema, S. A. (1982). The mathematical modeling of the soil reaction forces on a cutterhead and the development of the computer program DREDMO.Delft, The Netherlands: Delft University of Technology.

Miedema, S. A. (1984A). Mathematical Modeling of a Seagoing Cutter Suction Dredge.Delft, The Netherlands: Delft University of Technology/KIVI.

Miedema, S. A. (1984B, October). The Cutting of Densely Compacted Sand under Water. Terra et Aqua, No. 28, 4-10.

Miedema, S. A. (1985A, September). Derivation of the Differential Equation for Sand Pore Pressures. Dredging and Port Construction, 35.

Miedema, S. A. (1985B, July). Mathematical Modeling of the Cutting of Densely Compacted Sand Under Water. Dredging and Port Construction, 22-26.

Miedema, S. A. (1986A). The Application of a Cutting Theory on a Dredging Wheel. WODCON XI(p. 14 pages). Brighton, UK: WODA.

Miedema, S. A. (1986B, June). Underwater Soil Cutting: a Study in Continuity. Dredging and Port Construction, 47-53.

Miedema, S. A. (1987 September). The Calculation of the Cutting Forces when Cutting Water Saturated Sand, PhD Thesis.Delft: Delft University of Technology.

Miedema, S. A. (1987). The Calculation of the Cutting Forces when Cutting Water Saturated Sand, PhD Thesis.Delft: Delft University of Technology.

Miedema, S. A. (1987). The Calculation of the Cutting Forces when Cutting Water Saturated Sand, PhD Thesis.Delft: Delft University of Technology.

Miedema, S. A. (1989). Clamshell V1.50. Software for the simulation of theclosing process of clamshell dredges.Chicago, USA: Great Lakes Dredge & Dock Company.

Miedema, S. A. (1989). On the Cutting Forces in Saturated Sand of a Seagoing Cutter Suction Dredge. WODCON XII(p. 27 pages). Orlando, Florida, USA: WODA.

Miedema, S. A. (1989, December). On the Cutting Forces in Saturated Sand of a Seagoing Cutter Suction Dredge. Terra et Aqua, No. 41, 27 pages.

Miedema, S. A. (1992). New developments of cutting theories with respect to dredging, the cutting of clay. WODCON XIII.Bombay, India: World Dredging Association (WODA).

Miedema, S. A. (1994). On the Snow-Plough Effect when Cutting Water Saturated Sand with Inclined Straight Blades. ASCE Dredging 94(p. 24 pages). Orlando, Florida, USA: ASCE.

Miedema, S. A. (1995). Dynamic Pump/Pipeline Behavior Windows. Software. Delft, The Netherlands: SAM-Consult.

Miedema, S. A. (1995). Production Estimation Based on Cutting Theories for Cutting Water Saturated Sand. WODCON IV(p. 30 pages). Amsterdam, The Netherlands: WODA.

Miedema, S. A. (1996). Modeling and Simulation of the Dynamic Behavior of a Pump/Pipeline System. 17th Annual Meeting & Technical Conference of WEDA.(p. 10). New Orleans, USA.: WEDA.

Miedema, S. A. (1999). Considerations in Building and using Dredge Simulators. WEDA XIX & TAMU 31(p. 10). Louisville, Kentucky, USA: WEDA.

Miedema, S. A. (1999). Considerations on limits of dredging processes. 19th Annual Meeting & Technical Conference of the Western Dredging Association.Louisville, Kentucky, USA: WEDA/TAMU.

Miedema, S. A.(2000). The modelling of the swing winches of a cutter dredge in relation with simulators. Texas A/M 32nd Annual Dredging Seminar.Warwick, Rhode Island, USA: WEDA/TAMU.

Miedema, S. A. (2003). The Existence of Kinematic Wedges at Large Cutting Angles. CHIDA Dredging Days.Shanghai, China: CHIDA.

Miedema, S. A. (2004). The Cutting Mechanisms of Water Saturated Sand at Small and Large Cutting Angles. International Conference on Coastal Infrastructure Development -Challenges in the 21st Century.Hongkong: ICCD.

Miedema, S. A. (2005). The Cutting of Water Saturated Sand, the FINAL Solution. WEDAXXV/TAMU37.New Orleans, Louisiana, USA: WEDA/TAMU.

Miedema, S. A. (2006A). The Cutting of Water Saturated Sand, the Solution. CEDA African Section: Dredging Days.Tangiers, Morocco: CEDA.

Miedema, S. A. (2006B). The Cutting of Water Saturated Sand, the Solution. The 2nd China Dredging Association International Conference & Exhibition, themed Dredging and Sustainable Development.Guangzhou, China: CHIDA.

Miedema, S. A. (2009). New Developments Of Cutting Theories With Respect To Dredging, The Cutting Of Clay And Rock. WEDA XXIX/Texas A/M 40.Phoenix, Arizona, USA: WEDA/TAMU.

Miedema, S. A. (2010). New Developments of Cutting Theories with respect to Offshore Applications.ISOPE(p. 8). Beijing, China.: ISOPE.

Miedema, S. A. (2012A). Constructing the Shields Curve: Part A Fundamentals of the Sliding, Rolling and Lifting Mechanisms for the Entrainment of Particles. Journal of Dredging Engineering, Vol. 12., 1-49.

Miedema, S. A. (2012A). Constructing the Shields Curve: Part A Fundamentals of the Sliding, Rolling and Lifting Mechanisms for the Entrainment of Particles. Journal of Dredging Engineering. https://doi.org/10.1115/OMAE2011-49232

Miedema, S. A. (2012B). Constructing the Shields Curve: Part B Sensitivity Analysis, Exposure & Protrusion Levels, Settling Velocity, Shear Stress & Friction Velocity, Erosion Flux and Laminar Main Flow. Journal of Dredging Engineering, Vol. 12., 50-92.

Miedema, S. A. (2012B). Constructing the Shields Curve: Part B Sensitivity Analysis, Exposure & Protrusion Levels, Settling Velocity, Shear Stress & Friction Velocity, Erosion Flux and Laminar Main Flow. Journal of Dredging Engineering. https://doi.org/10.1115/OMAE2011-49232

Miedema, S. A. (2013). An overview of theories describing head losses in slurry transport. A tribute to some of the early researchers. OMAE 2013, 32nd International Conference on Ocean, Offshore and Arctic Engineering.(p. 18). Nantes, France: ASME. https://doi.org/10.1115/OMAE2013-10521

Miedema, S. A. (2013). Constructing the Shields Curve: Part C Cohesion by Silt, Hjulstrom, Sundborg. OMAE(p. 22). Nantes: ASME. https://doi.org/10.1115/OMAE2013-10524

Miedema, S. A. (2013D). Constructing the Shields Curve: Part D Cohesion by Clay. Not yet submitted. https://doi.org/10.1115/OMAE2013-10524

Miedema, S. A. (2013S). Software MS Excel 2LM & 3LM.Retrieved from The Delft Head Loss & Limit Deposit Velocity Model: www.dhlldv.com

Miedema, S. A. (2014). An analytical approach to explain the Fuhrboter equation. Maritime Engineering, Vol. 167, Issue 2., 68-81. https://doi.org/10.1680/maen.13.00023

Miedema, S. A. (2014). Dredging Processes Hydraulic Transport.Delft, Netherlands: Delft University of Technology.

Miedema, S. A. (2014). The Delft Sand, Clay & Rock Cutting Model.(1st ed.). Delft: IOS Press, Delft University Press. https://doi.org/10.3233/978-1-61499-454-1-i

Miedema, S. A. (2014A). An overview of theories describing head losses in slurry transport -A tribute to some of the early researchers. Journal of Dredging Engineering, Vol. 14(1), 1-25.

Miedema, S. A. (2014B). An analysis of slurry transport at low line speeds. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, OMAE.(p. 11). San Francisco, USA.: ASME.

Miedema, S. A. (2014C). An analytical approach to explain the Fuhrboter equation. Maritime Engineering, Vol. 167(2)., 1-14. https://doi.org/10.1680/maen.13.00023

Miedema, S. A. (2014W). DHLLDV/Experiments. Retrieved from The Delft Head Loss & Limit Deposit Velocity Model.: www.dhlldv.com

Miedema, S. A. (2015). A head loss model for homogeneous slurry transport. Journal of Hydrology & Hydrodynamics, Vol. 63(1)., 1-12. https://doi.org/10.1515/johh-2015-0005

Miedema, S. A. (2015). Head Loss Model for Slurry Transport in the Heterogeneous Regime. Submitted to the Journal of Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2015.07.015

Miedema, S. A. (2015A). A head loss model for homogeneous slurry transport. Journal of Hydrology & Hydrodynamics, Vol. 1., 14 pages. https://doi.org/10.1515/johh-2015-0005

Miedema, S. A. (2015B). Head Loss Model for Slurry Transport in the Heterogeneous Regime. Journal of Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2015.07.015

Miedema, S. A. (2015B). THE SLIP RATIO OR HOLDUP FUNCTION IN SLURRY TRANSPORT. Dredging Summit and Expo 2015.(p. 12). Houston, Texas, USA.:WEDA.

Miedema, S. A. (2015C). Head Loss Model for Slurry Transport in the Heterogeneous Regime. Journal of Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2015.07.015

Miedema, S. A. (2015D). A method to compare slurry transport models. 17th International Conference on Transport & Sedimentation of Solid Particles.(p. 8). Delft, The Netherlands, September 2015.: T&S17.

Miedema, S. A. (2016). OE4607 Introduction Dredging Engineering(2nd Edition ed.). Delft, The Netherlands: Delft University of Technology.

Miedema, S. A. (2016). The heterogeneous to homogeneous transition for slurry flow in pipes. Ocean Engineering, Vol. 123., 422-431. https://doi.org/10.1016/j.oceaneng.2016.07.031

Miedema, S. A. (2017A). A new approach to determine the concentration distribution in slurry transport. Dredging Summit & Expo(p. 16). Vancouver, Canada: WEDA.

Miedema, S. A. (2017B). The influence of local hindered settling on the concentration distribution in slurry transport. Transport & Sedimentation of Solid Particles(p. 8). Prague, Czech Republic: T&S17.

Miedema, S. A. (2017C). Slurry transport in inclined pipes. Dredging Summit & Expo(p. 15). Vancouver, Canada: WEDA.

Miedema, S. A. (2017D). A comparison of graded PSD methods in slurry transport. 20th International Conference on Hydrotransport.(p. 15). Melbourne, Australia.: BHR.

Miedema, S. A. (2017E). Slurry transport of very large particles at high line speeds. 20th International Conference on Hydrotransport.(p. 15). Melbourne, Australia.: BHR.

Miedema, S. A. (2018). Spillage models for a cutter head in dredging sand or gravel.Delft, The Netherlands: Delft University of Technology.

Miedema, S. A. (2018A). Slurry transport, fully stratified flow in the sliding flow regime. Dredging Summit & Expo(p. 15). Norfolk, Virginia, USA.: WEDA.

Miedema, S. A. (2018B). Which slurry transport regime should be used and why? Terra et Aqua 152, 7-17.

Miedema, S. A. (2019). Production Estimation of Waterjets in Drag Heads. Proceedings of the Twenty-Second World Dredging Congress, WODCON XXII(p. 17). Shanghai, China: CHIDA, EADA, WODA.

Miedema, S. A. (June 2016). Slurry Transport: Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework.(1st Edition ed.). (R. C. Ramsdell, Ed.) Miami, Florida, USA: Delft University of Technology.

Miedema, S. A. (June 2017). Slurry Transport: Fundamentals, A Historical Overview & The Delft Head Loss & Limit Deposit Velocity Framework.(2nd Edition ed.). (R. C. Ramsdell, Ed.) Delft, Netherlands: Delft University of Technology.

Miedema, S. A. (September 2015). OE4607 Introduction Dredging Engineering(1st Edition ed.). Delft, The Netherlands: Delft University of Technology.

Miedema, S. A., & Becker, S. (1993). The Use of Modeling and Simulation in the Dredging Industry, in Particular the Closing Process of Clamshell Dredges. CEDA Dredging Days(p. 26 pages). Amsterdam, The Netherlands: CEDA.

Miedema, S. A., & Chen, X. (2018). Criterion for the transition of heterogeneous flow to fully stratified flow in slurry transport. Proceedings of The 1st International Water Environment Ecological Construction Development Conference.(p. 9). Wuhan, China: CHIDA.

Miedema, S. A., & Frijters, D. (2003). The Mechanism of Kinematic Wedges at Large Cutting Angles -Velocity and Friction Measurements. 23rd WEDA Technical Conference/35th TAMU Dredging Seminar(p. 14 pages). Chicago, Illinois, USA: WEDA/TAMU.

Miedema, S. A., & Frijters, D. (2004). The wedge mechanism for cutting of water saturated sand at large cutting angles. WODCON XVII.Hamburg, Germany: WODA. https://doi.org/10.1061/40680(2003)111

Miedema, S. A., & He, J. (2002B). The Existance of Kinematic Wedges at Large Cutting Angles. WEDA XXII Technical Conference/34th Texas A/M Dredging Seminar(p. 20 pages). Denver, Colorado, USA: WEDA/TAMU.

Miedema, S. A., & Ma, Y. (2002A). The Cutting of Water Saturated Sand at Large Cutting Angles. ASCE Dredging 02(p. 16 pages). Orlando, Florida, USA: ASCE. https://doi.org/10.1061/40680(2003)111

Miedema, S. A., & Matousek, V. (2014). An explicit formulation of bed friction factor for sheet flow. International Freight Pipeline Society Symposium, 15th.(p. 17 pages). Prague, Czech Republic: IFPS.

Miedema, S. A., & Nieuwboer, B. J. (2019). Cutterhead spillage when dredging sand or gravel. Dredging Summit & Expo 2019(p. 20). Chicago, USA: WEDA.

Miedema, S. A., & Ramsdell, R. C. (2011). Hydraulic transport of sand/shell mixtures in relation with the critical velocity. Terra et Aqua, Vol. 122. https://doi.org/10.1115/OMAE2011-49695

Miedema, S. A., & Ramsdell, R. C. (2013). A head loss model for slurry transport based on energy considerations. World Dredging Conference XX(p. 14). Brussels, Belgium: WODA.

Miedema, S. A., & Ramsdell, R. C. (2014). An Analysis of the Hydrostatic Approach of Wilson for the Friction of a Sliding Bed. WEDA/TAMU(p. 21). Toronto, Canada: WEDA

Miedema, S. A., & Ramsdell, R. C. (2014A). The Delft Head Loss & Limit Deposit VelocityModel. Hydrotransport(p. 15). Denver, USA.: BHR Group.

Miedema, S. A., & Ramsdell, R. C. (2014B). An Analysis of the Hydrostatic Approach of Wilson for the Friction of a Sliding Bed. WEDA/TAMU(p. 21). Toronto, Canada: WEDA.

Miedema, S. A., & Ramsdell, R. C. (2015, May). Pages from The Delft Head Loss & Limit Deposit Velocity Framework: Wilson.Retrieved from ResearchGate: https://www.researchgate.net/publication/277340666_Pages_from_The_Delft_Head_Loss_Limit_Deposit_Velocity_Framework_Wilson

Miedema, S. A., & Ramsdell, R. C. (2015). The Limit Deposit Velocity Model, a New Approach. Journal of Hydrology & Hydromechanics, submitted., 15. https://doi.org/10.1515/johh-2015-0034

Miedema, S. A., & Ramsdell, R. C. (2015B). The Delft Head Loss & Limit Deposit Velocity Framework. Journal of Dredging Engineering, Vol. 15(2)., pp. 28.

Miedema, S. A., & Ramsdell, R. C. (2016). The Delft Head Loss & Limit Deposit Velocity Framework. Journal of Dredging Engineering, Vol. 15(2)., 3-33.

Miedema, S. A., & Ramsdell, R. C. (2017F). A head loss & limit deposit velocity framework. Journal of Marine & Environmental Engineering, Vol10(1)., 45-69.

Miedema, S. A., & Vlasblom, W. J. (1996). Theory for Hopper Sedimentation. 29th Annual Texas A&M Dredging Seminar & WEDA Conference.(p. 10). New Orleans, USA.: WEDA.

Miedema, S. A., & Yi, Z. (2001). An Analytical Method of Pore Pressure Calculations when Cutting Water Saturated Sand. Texas A/M 33nd Annual Dredging Seminar(p. 18 pages). Houston, USA: WEDA/TAMU.

Miedema, S. A., & Zijsling, D. (2012). Hyperbaric rock cutting. OMAE International Conference on Ocean, Offshore and Arctic Engineering(p. 14). Rio de Janeiro, Brazil: ASME. https://doi.org/10.1115/OMAE2012-83249

Miedema, S. A., Riet, E. J., & Matousek, V. (2002). Theoretical Description And Numerical Sensitivity Analysis On Wilson Model For Hydraulic Transport Of Solids In Pipelines. WEDA Journal of Dredging Engineering.

Miedema, S. A., Talmon, A. M., & Nieuwboer, B. J. (2019). Scaling laws for spillage in cutterheads in dredging. 19th International Conference on Transport & Sedimentation of Solid Particles(p. 8). Cape Town, South Africa: Cape Peninsula University of Technology, Flow Process and Rheology Centre.

Miedema, S., & Rhee, C. v. (2007). A sensitivity analysis on the effects of dimensions and geometry of Trailing Suction Hopper Dredges. WODCON.Orlando, Florida, USA: WODA.

Miedema, S., & Vlasblom, W. (1996). Theory of Hopper Sedimentation. 29th Annual Texas A&M Dredging Seminar.New Orleans: WEDA/TAMU.

Migniot, C. (1968). Etude des propriete physiques des differents sediments tres fins et de leur comportement sous des actions hydrodynamiques. Houille Blanche 7, 591-620. https://doi.org/10.1051/lhb/1968041

Miller, D., & Bruggers, D. (1980). Soil and permafrost conditions in the Alaskan Beaufort Sea. OTC 1980.Houston, Texas, USA.: OTC. https://doi.org/10.4043/3887-MS

Miller, M., McCave, I., & Komar, P. (1977). Threshold of sediment motion under unidirectional currents. Sedimentology, Vol. 24., 507-527. https://doi.org/10.1111/j.1365-3091.1977.tb00136.x

Miltenburg, C. J. (1982). Stroming en mengselvorming in grote snijkoppen. LaO/82/101.Delft, the Netherlands: Delft University of Technology.

Ming, G., Ruixiang, L., Ni, F., & Liqun, X. (2007). Hydraulic transport of coarse gravel. WODCON XVIII.Orlando, Florida, USA: WODA.

Mitchell, J. (1976). Fundamentals of soil behavior.John Wiley & Sons, Inc.

Mitchell, J., Campanella, R., & Singh, A. (1968). Soil creep as a rate process. Journal SMFD, vol. 94, no. 1, ASCE. https://doi.org/10.1061/JSFEAQ.0001085

Mitchener, H., & Torfs, H. (1996). Erosion of mud/sand mixtures. Coastal Engineering, 1-25. https://doi.org/10.1016/S0378-3839(96)00002-6

Mogi, K. (1966). Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin Earthquake Res. Inst. Japan, Vol. 44., 215-232.

Mol, A. (1977A). Stroombeeld rond en in cutter deel II: Vrij in water draaiend; Injecties met kleurstof. BAGT 236.Delft, the Netherlands: Delft Hydraulics.

Mol, A. (1977B). Stroombeeld rond en in cutter deel III: Stroombeeld in cutter bij kunstmatige taluds; Injecties met stukjes plastic. BAGT 237.Delft, the Netherlands: Delft Hydraulics.

Moody, L. F. (1944). Friction Factors for Pipe Flow. Transactions of the ASME 66 (8)., 671-684. https://doi.org/10.1115/1.4018140

Moret, G. E. (1977A). Stroombeeld rond en in cutter deel I: Stroombeeld rondom cutter bij kunstmatige taluds.Delft, the Netherlands: Delft Hydraulics, BAGT 235.

Moret, G. E. (1977B). Stroombeeld rond en in cutter deel IV: Stroombeeld bij kunstmatige taluds.Delft, the Netherlands: Delft Hydraulics, BAGT 238.

Morsi, S., & Alexander, A. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, Vol. 55, 193-208. https://doi.org/10.1017/S0022112072001806

Mukhtar, A. (1991). Investigations of the flow of multisized heterogeneous slurries in straight pipe and pipe bends.Delhi, India: PhD Thesis, IIT.

Naden, P. (1987). An erosion criterion for gravel bed rivers. Earth Surface and Landforms, Vol. 12., 83-93. https://doi.org/10.1002/esp.3290120110

Nakagawa, H., & Nezu, I. (1977). Prediction of the contribution to the Reynolds stress from the bursting events in open-channel flows. Journal of Fluid Mechanics, 80, 99-128. https://doi.org/10.1017/S0022112077001554

Neil, C. (1967). Mean velocity criterion for scour of coarse uniform bed material. Proceedings of the twelfth I.H.A.R. Congress., (pp. 46-54).

Newitt, D. M., Richardson, J. F., & Gliddon, B. J. (1961). Hydraulic conveying of solids in vertical pipes. Transactions Institute of Chemical Engineers, Vol. 39., 93-100.

Newitt, D. M., Richardson, J. F., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers Vo.l 33., 93-110.

Newitt, D. M., Richardson, M. C., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers Vo.l 33., 93-110.

Nezu, I., & Nakagawa, H. (1993). Turbulence in Open Channel Flows.A. A. Balkema.

Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering . ASCE, 112, 335-355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335)

Ni, F., Zhao, L., Matousek, V., Vlasblom, W. J., & Zwartbol, A. (2004). Two phase flow of highly concentrated slurry in a pipeline. Journal of Hydrodynamics, Series B, Vol. 16, No. 3., 325-331.

Ni, F., Zhao, L., Xu, L., & Vlasblom, W. J. (2008). A model calculation for flow resistance in the hydraulic transport of sand. WODCON 18(pp. 1377-1384). Orlando, Florida, USA: WODA.

Nielsen, P. (1981). Dynamics and geometry of wave generated ripples. Journal of Geophysics Research, Vol. 86., 6467-6472. https://doi.org/10.1029/JC086iC07p06467

Nieman, G. (1935). Neue erkentnisse im Greiferbau. Zeitschrift VDI 79, Nr. 10, , 325-328.

Nikuradse, J. (1933, July/August). Stromungsgesetze in rauen Rohren. VDI Forschungsheft 361, Beilage zo "Forschung auf dem Gebiete des Ingenieurwesens", Ausgabe B, Band 4. https://doi.org/10.1007/BF02716946

Ninnelt, A. (1924). Uber Kraft und Arbeitsverteilung and Greifern besonderes an Motorgreifern.Wittenberg Ziemsen Verlag.

Nino, Y., Lopez, F., & Garcia, M. (2003). Threshold of particle entrainment into suspension. Sedimentology, Vol. 50., 247-263.N https://doi.org/10.1046/j.1365-3091.2003.00551.x

ishimatsu, Y. (1972). The mechanics of rock cutting. International Journal of Rock Mechanics & Mining Science, vol. 9., 261-270. https://doi.org/10.1016/0148-9062(72)90027-7

Nnadi, F. N., & Wilson, K. C. (1992). Motion of contact load particles at high shear stress. Journal of Hydraulic Engineering,Vol. 118., 1670-1684. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:12(1670)

Nnadi, F. N., & Wilson, K. C. (1995). Bed Load Motion at High Shear Stress: Dune Washout and Plane Bed Flow. Journal of Hydraulic Engineering, Vol. 121., 267-273. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:3(267)

O'Brien, M. P. (1933). Review of the theory of turbulent flow and its relations to sediment transportation. Transactions of the American Geophysics Union, Vol. 14., 487-491. https://doi.org/10.1029/TR014i001p00487

O'Brien, M. P., & Folsom, R. G. (1939). The transportation of sand in pipelines. Vol. 3,No. 7 of University of California publications in engineering.

Ofei, T. N., & Ismail, A. Y. (August 2016). Eulerian-Eulerian simulation of particle liquid slurry flow in horizontal pipe. Journal of Petroleum Engineering., 18. https://doi.org/10.1155/2016/5743471

Ooijens, S. (1999). Adding Dynamics to the Camp Model for the Calculation of Overflow Losses.Terra et Aqua 76, 12-21.

Ooijens, S., Gruijter, A. d., Nieuwenhuizen, A., & Vandycke, S. (2001). Research on Hopper Settlement Using Large Scale Modeling. CEDA Dredging Days 2001(pp. 1-11). Rotterdam: CEDA.

Oroskar, A. R., & Turian, R. M. (1980). The hold up in pipeline flow of slurries. AIChE, Vol. 26., 550-558. https://doi.org/10.1002/aic.690260405

Os, A. G. (1976). Snelle deformatie van korrelvormig materiaal onder water. PT-P31, no. 12, 735-741.

Os, A. G. (1977A). Behavior of soil when excavated under water. In International course on modern dredging.The Hague, Netherlands.

Os, A. G. (1977B). Snelle deformatie van korrelvormig materiaal onder water. PT-B32, no. 8., 461-467.

Osman, M. (1964). The mechanics of soil cutting blades. J.A.E.R. 9 (4), 313-328.

Osterkamp, T. (2001). Sub-Sea Permafrost, Encyclopaedia of Ocean Sciences (2902-2912). https://doi.org/10.1006/rwos.2001.0008

Ourimi, M., Aussillous, P., Medale, M., Peysson, Y., & Guazzelli, E. (2007). Determination of the critical Shields number for particle erosion in laminar flow. Physics of fluids, Vol. 19., 1-4. https://doi.org/10.1063/1.2747677

Paintal, A. S. (1971). Concept of critical shear stress in loose boundary open channels. Journal of Hydraulic Research, 8(1), 91-109. https://doi.org/10.1080/00221687109500339

Palmer, A. (1999). Speed effects in cutting and ploughing. Geotechnique 49, no. 3., 285-294. https://doi.org/10.1680/geot.1999.49.3.285

Panagiotopoulos, I., Voulgaris, G., & Collins, M. (1997). The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering (32), 19-43. https://doi.org/10.1016/S0378-3839(97)00013-6

Paphitis, D. (2001). Sediment movement under unidirectional flows: an assesment of empirical threshold curves. Coastal Engineering, 227-245. https://doi.org/10.1016/S0378-3839(01)00015-1

Parchure, T., & Mehta, A. (1985). Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering 111 (10)., 1308-1326. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:10(1308)

Parzonka, W., Kenchington, J. M., & Charles, M. E. (1981). Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Canadian Journal of Chemical Engineering, Vol. 59., 291-296. https://doi.org/10.1002/cjce.5450590305

Patankar, S. (1980). Numerical heat transfer and fluid flow.New York, USA: McGraw-Hill.

Peker, S. M., & Helvaci, S. S. (2008). Solid-Liquid Two Phase Flow.Amsterdam, The Netherlands: Elsevier.

Petrache, H., Zemb, T., Belloni, L., & Parsegian, V. (2006). Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. National Academy of Sciences of the USA No. 21., 7982-7987. https://doi.org/10.1073/pnas.0509967103

Pfahl, G. (1912). Kraftverteilung und greifenbei selbst greifern. VDI 1912-1913.Pilotti, M., & Menduni, G. (2001). Beginning of sediment transport of incoherent grains in shallow shear flows. Journal of Hydraulic Research, Vol. 39, No. 2., 115-124. https://doi.org/10.1080/00221680109499812

Poloski, A. P., Etchells, A. W., Chun, J., Adkins,H. E., Casella, A. M., Minette, M. J., & Yokuda, S. (2010). A pipeline transport correlation for slurries with small but dense particles. Canadian Journal of Chemical Engineering, Vol. 88., 182-189. https://doi.org/10.1002/cjce.20260

Postma, H. (1967). Sediment transport and sedimentation in the estuarine environment. Estuaries, AAAS, Washington D.C. Publ. 83., 158-179.

Prager, E., Southard, J., & Vivoni-Gallart, E. (1996). Experiments on the entrainment threshold of well-sorted and poorly sorted carbonate sands. Sedimentology, Vol. 43., 33-40. https://doi.org/10.1111/j.1365-3091.1996.tb01457.x

Prandl, L. (1925). Z. angew. Math. Mech. 5 (1), 136-139.Pugh, F. J., & Wilson, K. C. (1999). Role of the interface in stratified slurry flow. Powder Technology, Vol. 104., 221-226. https://doi.org/10.1016/S0032-5910(99)00098-4

Pugh, F. J., & Wilson, K. C. (1999). Velocity and concentration distribution in sheet flow above plane beds. Journal of Hydraulic Engineering, 117-125. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(117)

Raalte, G., & Zwartbol, A. (1986). Disc bottom cutterhead, a report on laboratory and field tests. WODCON XI.Brighton, UK: WODA.

Rafatian, N., Miska, S., Ledgerwood III, L., Hughes, B., Ahmed, R., Yu, M., & Takach, N. (2009). Experimental study of MSE of a single PDC cutter under simulated pressurized conditions. SPE/IADC 119302 Drilling Conference & Exhibition.Amsterdam, Netherlands: SPE International. https://doi.org/10.2118/119302-MS

Ramsdell, R. C., & Miedema, S. A. (2010). Hydraulic transport of sand/shell mixtures. WODCON XIX.Beijing, China.: WODA. https://doi.org/10.1115/OMAE2011-49695

Ramsdell, R. C., & Miedema, S. A. (2013). An overview of flow regimes describing slurry transport. WODCON XX(p. 15). Brussels, Belgium.: WODA.

Ramsdell, R. C., Miedema, S. A., & Talmon, A. (2011). Hydraulic transport of sand/shell mixtures. OMAE 2011.Rotterdam, Netherlands.: ASME. https://doi.org/10.1115/OMAE2011-49695

Randal, R. E., Jong, P. S., & Miedema, S. A. (2000). Experiences with Cutter Suction Dredge Simulator Training. WEDA/TAMU(p. 10). Rhode Island, USA: WEDA.

Raudviki, A. J. (1990). Loose Boundary Hydraulics.University of Auckland: Pergamon Press.

Ravelet, F., Bakir, F., Khelladi, S., & Rey, R. (2012). Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental Thermal and Fluid Science, 13. https://doi.org/10.1016/j.expthermflusci.2012.11.003

Reece, A. (1965). The fundamental equation of earth moving machinery. Symposium Earth Moving Machinery.London: Institute of Mechanical Engineering.

Reichardt, H. (1951). Vollstandige Darstellung der Turbulenten Geswindigkeitsverteilung in Glatten Leitungen. Zum Angew. Math. Mech., 3(7), 208-219. https://doi.org/10.1002/zamm.19510310704

Rhee, C. (1986). De invloed van een waterstraal op een zandpakket, U12-1.Delft, Netherlands: Waterloopkundig Laboratorium.

Rhee, C. (1987A). Orienterende jetproeven op190 mum zand met middelvaste pakking, U49-01.Delft, Netherlands: Waterloopkundig Laboratorium.

Rhee, C. (1987B). Orienterende jetproeven op 190 mum zand met vaste en zeer losse pakking, U10-1.Delft, Netherlands: Waterloopkundig Laboratorium.

Rhee, C. (2015). Slope failure by unstable breaching. Maritime Engineering ICE Vol. 168(2), 84-92. https://doi.org/10.1680/maen.14.00006

Rhee, C. v. (2002A). The influence of the bottom shear stress on the sedimentation of sand. 11th International Symposium on Transport and Sedimentation of Solid Particles.Ghent, Belgium.

Rhee, C. v. (2002B). Numerical modeling of the flow and settling in a Trailing Suction Hopper Dredge. 15th International Conference on Hydrotransport.Banff, Canada.

Rhee, C. v. (2002C). On the sedimentation process in a Trailing Suction Hopper Dredger.Delft, Netherlands: Delft University of Technology, PhD Thesis.

Rhee, C. v., & Talmon, A. M. (2000). Entrainment of Sediment. 10th International Conference on Transport and Sedimentation of Solid Particles.(pp. 251-262). Wroclaw, Poland.: T&S.

Rhee, C., & Steeghs, H. (1991 June). Multi blade ploughs in saturated sand, modelcutting tests. Dredging & Port Construction.

Richardson, J. F., & Zaki, W. N. (1954). Sedimentation & Fluidization: Part I. Transactions of the Institution of Chemical Engineering 32, 35-53.

Richardson, J., & Zaki, W. (1954). Sedimentation & Fluidization: Part I. Transactions of the Institution of Chemical Engineering 32, 35-53.

Ridder, J. K. (2018). Horizontal slurry transport on a large laboratory scale.Delft, the Netherlands: Delft University of Technology.

Ridder, J. K., Vreede, M. A., Wang, F., Talmon, A. M., & Chen, X. (2017). Preliminary results on the behavior of hydraulic transported solids through a horizontal pipeline in a large laboratory test setup. 5th International Dredging Technology Development Conference of China.Beijing, China: CHIDA.

Riet, E. J., Matousek, V., & Miedema, S. A. (1995). A Reconstruction of and Sensitivity Analysis on the Wilson Model for Hydraulic Particle Transport. Proc. 8th Int. Conf. on Transport and Sedimentation of Solid Particles.Prague, Czech Republic.

Riet, E. J., Matousek, V., & Miedema, S. A. (1996). A Theoretical Description and Numerical Sensitivity Analysis on Wilson's Model for Hydraulic Transport in Pipelines. Journal of Hydrology & Hydromechanics.

Rijn, L. v. (1984). Sediment transport: Part I: Bed load transport. Journal of Hydraulic Engineering, Vol. 110(10), 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

Rijn, L. v. (1993). Principles of sediment transport in rivers, estuaries and coastal seas.Utrecht & Delft: Aqua Publications, The Netherlands.

Rijn, L. v. (1993). Principles of Sediment Transport, Part 1. .Blokzijl: Aqua Publications.

Rijn, L. v. (2006). Principles of sediment transport in rivers, estuaries and coastal areas, Part II: Supplement 2006.Utrecht & Delft: Aqua Publications, The Netherlands.

Roberts, J., Jepsen, R., Gotthard, D., & Lick, W. (1998). Effects of particle size and bulk density on erosion of quartz particles. Journal of Hydraulic Engineering, 1261-1267. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:12(1261)

Robinson, M. P. (1971). Critical deposit velocities for low concentration solid-liquid mixtures. MSc Thesis.Lehigh University, Fritz Laboratory.

Robinson, M. P., & Graf, W. H. (1972). Critical deposit velocities for low concentration sand water mixtures. ASCE National Water Resources EnVg Meeting Preprint 1637, January 1972. Paper 1982.Atlanta, Georgia, USA.: Lehigh University, Fritz Laboratory.

Roco, M. C., & Shook, C. A. (1983). Modeling of Slurry Flow: The effect of particle size. The Canadian Journal of Chemical Engineering, Vol. 61., 494-503. https://doi.org/10.1002/cjce.5450610402

Rodi, W. (1993). Turbulence models and their application in hydraulics, a state of the art review.IAHR, Third Edition.

Rouse, H. (1937). Modern conceptions of the mechanics of fluid turbulence. Transactions of the American Society of Cicil Engineers, Vol. 102, 463-505, Discussion 506-543. https://doi.org/10.1061/TACEAT.0004872

Rowe, P. (1962). The stress dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings Royal Society A269.(pp. 500-527). Royal Society. https://doi.org/10.1098/rspa.1962.0193

Rowe, P. (1987). A convinient empirical equation for estimation of the Richardson-Zaki exponent. Chemical Engineering Science Vol. 42, no. 11, 2795-2796. https://doi.org/10.1016/0009-2509(87)87035-5

Rowe, P. N. (1987). A convinient empirical equation for estimation of the Richardson-Zaki exponent. Chemical Engineering Science Vol. 42, no. 11, 2795-2796. https://doi.org/10.1016/0009-2509(87)87035-5

Roxborough, F. (1987). The role of some basic rock properties in assessing cuttability. Seminar on Tunnels -Wholly Engineered Structures(pp. 1-21). Canberra, Australia: AFCC.

Saffman, P. G. (1965). The lift on small sphere in a slow shear low. Journal of Fluid Mechanics, 22, 385-400. https://doi.org/10.1017/S0022112065000824

Sanders, R. S., Sun, R., Gillies, R. G., McKibben, M., Litzenberger,C., & Shook, C. A. (2004). Deposition Velocities for Particles of Intermediate Size in Turbulent Flows. Hydrotransport 16(pp. 429-442). Santiago, Chile.: BHR Group.

Schaan, J., & Shook, C. A. (2000). Anomalous friction in slurry flows. Canadian Journal of Chemical Engineering, Vol. 78., 726-730. https://doi.org/10.1002/cjce.5450780415

Scheffler, M. (1972). Neue Erkentnisse uber die Auslegung von Zweischalen Schuttgutgreifern. Deutsche Hebe und Fordermittel Nr. 12.

Scheffler, M., Pajer, G., & Kurth, F. (1976). Grundlagen der Fordertechnik. Grondlagen der Fordertechnik, 134-145.

Scheurel, H. G. (1985). Rohrverschleiss beim hydraulischen feststoffentransport.Karlsruhe: Universitat Karlsruhe.

Schiller, R. E., & Herbich, J. B. (1991). Sediment transport in pipes. Handbook of dredging.New York: McGraw-Hill.

Schlichting, H. (1968). Boundary layer theory.6th ed. New York: McGraw-Hill.

Schrieck, G. (1996). Introduction to Dredging Engineering.Delft, the Netherlands: Delft University of Technology.

Segal, G. (2001). Sepra analysis programmers guide, standard problems and users manual.Leidschendam, Netherlands: Ingenieursbureau Sepra.

Sellgren, A., & Wilson, K. (2007). Validation of a four-component pipeline friction-loss model. Hydrotransport 17(pp. 193-204). BHR Group.

Sellgren, A., Visintainer, R., Furlan, J., & Matousek, V. (2014). Pump and pipeline performance when pumping slurries with different particle gradings. Hydrotransport 19(pp. 131-143). Denver, Colorado, USA.: BHR Group.

Sellgren, A., Visintainer, R., Furlan, J., & Matousek, V. (2016). Pump and pipeline performance when pumping slurries with different particle gradings. The Canadian Journal of Chemical Engineering, Vol. 94(6), 1025-1031. https://doi.org/10.1002/cjce.22489

Seshadri, V., Singh, S. N., & Kaushal, D. R. (2006). A model for the prediction of concentration and particle size distribution for the flow of multisized particulate suspensions through closed ducts and open channels. Particulate Science and Technology: An International Journal., 239-258. https://doi.org/10.1080/02726350500544265

Sha, Y. (1965). Elementary sediment mechanics. Industry Press, China 302 (in Chinese).

Sharif, A. (2002). Critical shear stress and erosion of cohesive soils.Buffalo, New York: SUNY Buffalo, NY.

Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilung der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Heft 26, Berlin.Belin.

Shook, C. A., Geller, L., Gillies, R. G., Husband, W. H., & Small, M. (1986). Experiments with coarse particles in a 250 mm pipeline. 10th International Conference on the Hydraulic Transport of Solids in Pipelines (Hydrotransport 10).(pp. 219-227). Cranfield, UK.: BHRA Fluid Eng.

Shook, C. A., Gillies, R. G., & Sanders, R. S. (2002). Pipeline Hydrotransport with Application in the Oil Sand Industry.Saskatoon, Canada: Saskatchewan Research Council, SRC Publication 11508-1E02.

Shook, C., & Roco, M. (1991). Slurry Flow, Principles & Practice.Boston: Butterworth Heineman.Silin, M. O., Kobernik, S. G., & Asaulenko, I. A. (1958). Druckhohenverluste von Wasser und Wasser-Boden-Gemischen in Rohrleitungen grossen Durchmessers.Ukrain: Dopovidi Akad. Nauk. Ukrain RSR.

Silin, N. A., & Kobernik, S. G. (1962). Rezimy raboty zemlijesosnych snarjadov, Kijev.Simons, D. (1957). Theory and design of stable channels in alluvial material.PhD thesis: Colorado State University.

Sinclair, C. G. (1962). The limit deposit velocity of heterogeneous suspensions. Proceedings Symposium on the Interaction Btween Fluids and Particles.Institute of Chemical Engineers.

Smoldyrev. (1970). Truboprowodnyi transport( rohrleitungstransport).Moskau.Sobota, J., & Kril, S. I. (1992). Liquid and solid velocity during mixture flow. Proceedings 10th International Colloquium Massenguttransport durch Rohrleitungen., (p. K). Meschede, Germany.

Sohne, W. (1956). Some basic considerations of soil mechanics as applied to agricultural engineering. Grundlagen der landtechnik (7)., 11-27.

Soleil, G., & Ballade, P. (1952). Le transport hydraulique des materiaux dans les travaux publics, observations des resultats d'essais en grandeur nature. Deuxiemes Journees de l'Hydraulique, 9-26.

Soulsby, R., & Whitehouse, R. (1997). Threshold of sediment motion in coastal environment. Proceedings Pacific Coasts and Ports.(pp. 149-154). Christchurch, New Zealand: University of Canterbury.

Souza Pinto, T. C., Moraes Junior, D., Slatter, P. T., & Leal Filho, L. S. (2014). Modelling the critical velocity for heterogeneous flow of mineral slurries. International Journal of Multiphase Flow, 65., 31-37. https://doi.org/10.1016/j.ijmultiphaseflow.2014.05.013

Soydemir, C. (1977). Potential models for shear strength generation in soft marine clays. International Symposium on Soft Clay.Bangkok, Thailand.

Spelay, R., Hashemi, S. A., Gillies, R. G., Hegde, R., Sanders, R. S., & Gillies, D. G. (2013). Governing friction loss mechanisms and the importance of offline characterization tests in the pipeline transport of dense coarse particle slurries. Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting.(pp. 1-7). Incline Village, Nevada, USA.: FEDSM2013. https://doi.org/10.1115/FEDSM2013-16464

Stam, P. (1983). Analyse ten behoeve van het ontwerp van een klei snijdende sleepkop, CO/82/129.Delft, Netherlands: Delft University of Technology

Stansby, P. (1997). Semi-implicit finite shallow-water flow and solute transport solver with k-epsilon turbulence model. International Journal for Numerical Methods in Fluids, vol. 25., 285-313. https://doi.org/10.1002/(SICI)1097-0363(19970815)25:3<285::AID-FLD552>3.3.CO;2-H

Steeghs, H. (1985A). Snijden van zand onder water, part I. Ports & Dredging no. 121

Steeghs, H. (1985B). Snijden van zand onder water, part II. Ports & Dredging no. 123.

Steinbusch, P. J., Vlasblom, W. J., & Burger, M. d. (1999). Numerical simulation of the flow generated by cutter heads. Hydrotransport 14(pp. 435-443). Cranfield, UK: BHRG.

Stelling, G., & Kester, J. (1994). On the approximation of horizontal gradients insigma coordinates for bathymetry with steep bottom slopes. International Journal for Numerical Methods in Fluids, vol. 18, 915-935. https://doi.org/10.1002/fld.1650181003

Stevenson, P., Cabrejos, F. J., & Thorpe, R. B. (2002). Incipient motion of particles on a bed of like particles in hydraulic and pneumatic conveying. Fourth World Congress of Particle Technology, Sydney, 21st-25th July (paper 400).Sydney.

Stevenson, P., Thorpe, R. B., & Davidson, J. F. (2002). Incipient motion of a small particle in the viscous boundary-layer at a pipe wall.Chemical Engineering Science, 57, 4505-4520. https://doi.org/10.1016/S0009-2509(02)00418-9

Sundborg, A. (1956). The River Klarålven: Chapter 2. The morphological activity of flowing water erosion of the stream bed. Geografiska Annaler, 38, 165-221. https://doi.org/10.2307/520140

Swamee, P. K. (1993). Critical depth equations for irrigation canals. Journal of Irrigation and Drainage Engineering, ASCE., 400-409. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:2(400)

Swamee, S. E., & Jain, K. A. (1976). Explicit equations for pipe-flow problems. Journal of the Hydraulics Division (ASCE) 102 (5)., 657-664. https://doi.org/10.1061/JYCEAJ.0004542

Talmon, A. (2013). Analytical model for pipe wall friction of pseudo homogeneous sand slurries. Particulate Science & technology: An International Journal, 264-270. https://doi.org/10.1080/02726351.2012.717588

Talmon, A. M. (1999). Mathematical Analysis of the Amplification of Density Variations in Long Distance Sand Transport Pipelines. Hydrotransport 14(pp. 3-20). Maastricht, The Netherlands: BHRA.

Talmon, A. M. (2011). Hydraulic Resistance of Sand-Water Mixture Flow in Vertical Pipes. T&S, Transport and Sedimentation of Solid Particles(pp. 137-147). Wroclaw, Poland: T&S.

Talmon, A. M. (2013). Analytical model for pipe wall friction of pseudo homogeneous sand slurries. Particulate Science & technology: An International Journal, 264-270. https://doi.org/10.1080/02726351.2012.717588

Talmon, A. M., Vlasblom, W. J., & Burger, M. d. (2010). Cutter production and kinematics of mixture forming. WODCON XIX(pp. 838-847). Beijing, China: WODA.

Talmon, A., & Huisman, M. (2005). Fall velocity of particles in shear flow of drilling fluids. Tunneling and Underground Space Technology (20)., 193-201. https://doi.org/10.1016/j.tust.2004.07.001

Tang, C. (1964). Law of sediment threshold. Journal of Hydraulic Engineering (in Chinese).

Tauber, B. A. (1958). The effect of the design of a cable grab on its scooping capacity. Collection of Scientific Works of MLTI 8, 30-34.

Televantos, Y., Shook, C. A., Carleton, A., & Street, M. (1979). Flow of slurries of coarse particles at high solids concentrations. Canadian Journal of Chemical Engineering, Vol. 57., 255-262. https://doi.org/10.1002/cjce.5450570302

Ternat, F. (2007). Erosion des Sediments Cohesifs en Auto Consolidation (PhD thesis in French).Marseille: Universite de la Medirerranee.

Ternat, F., Boyer, P., Anselmet, F., & Amielh, M. (2008). erosion threshold of saturated natural cohesive sediments: Modeling and experiments. water Resources Research, Vol. 44, W11434, 1-18. https://doi.org/10.1029/2007WR006537

Terzaghi, K., & Peck, R. (1964). Soil mechanics in engineering practise.New York: John Wiley & Sons.

Thomas, A. (1976). SCALE-UP METHODS FOR PIPELINE TRANSPORT OF SLURRIES. InternationalJournal of Mineral Processing, Vol. 3., 51-69. https://doi.org/10.1016/0301-7516(76)90015-6

Thomas, A. D. (1979). Predicting the deposit velocity for horizontal turbulent pipe flow of slurries. International Journal of Multiphase Flow, Vol. 5., 113-129. https://doi.org/10.1016/0301-9322(79)90040-5

Thomas, A. D. (2014). Slurries of most interest to the mining industry flow homogeneously and the deposit velocity is the key parameter. HydroTransport 19.(pp. 239-252). Denver, Colorado, USA.: BHR Group.

Thomas, A. D. (2015). A modification of the Wilson & Judge deposit velocity, extending its application to finer particles and larger pipe sizes. 17th International Conference on Transport & Sedimentation of Solid Particles.(pp. 335-344). Delft, The Netherlands: Delft Univesity of Technology.

Thomas, D. G. (1962). Transport Characteristics of Suspensions: Part VI. Minimum velocity for large particle size suspensions in round horizontal pipes. A.I.Ch.E. Journal, Vol.8(3)., 373-378. https://doi.org/10.1002/aic.690080323

Thomas, D. G. (1965). Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal Of Colloidal Sciences, Vol. 20., 267-277. https://doi.org/10.1016/0095-8522(65)90016-4

Tison, L. (1953). Studies of the critical tractive force of entrainment of bed materials. Proceedings of the fifth I.A.H.R. Congress., (pp. 21-35).

Torfs, H. (1995). Erosion of mud/sand mixtures. (PhD thesis).Leuven: Katholieke Universiteit Leuven.

Torfs, H., Jiang, J., & Mehta, A. (2001). Assesment of the erodibility of fine/coarse sediment mixtures. Coastal and Estuarine Fine Sediment Processes (McAnnally, W.H. & Mehta, A.J. Editors)(pp. 109-123). Amsterdam: Elsevier. https://doi.org/10.1016/S1568-2692(00)80116-3

Torke, H. J. (1962). Untersuchungen uber Fullvorgang bei Versuchen im Sand. Deutsche Hebe und Fordertechnik Nr. 8.

Turian, R. M., & Yuan, T. F. (1977). Flow of slurries in pipelines. AIChE Journal, Vol. 23., 232-243. https://doi.org/10.1002/aic.690230305

Turian, R. M., Hsu, F. L., & Ma, T. W. (1987). Estimation of the critical velocity in pipeline flow of slurries. Powder Technology, Vol. 51., 35-47. https://doi.org/10.1016/0032-5910(87)80038-4

Turnage, G., & Freitag, D. (1970). Effects of cone velocity and size on soil penetration resistance. ASEA 69-670. https://doi.org/10.21236/ADA032899

Turner, T. (1996). Fundamentals of Hydraulic Dredging.New York: ASCE. https://doi.org/10.1061/9780784401477

Turton, R., & Levenspiel, O. (1986). A short note on the drag correlation for spheres. Powder technology Vol. 47, 83-85. https://doi.org/10.1016/0032-5910(86)80012-2

Unsold, G. (1984). Der Transportbeginn rolligen Sohlmaterials in gleichformigen turbulenten Stromungen, Eine kritische Uberprufung der Shields Function und ihre experimentelle Erweiterung auf feinkornige, nichtbindige Sedimente.Kiel, Germany: Dissertation Universitat Kiel Deutschland.

USWES. (1936). Flume tests made to develop a synthetic sand which will not form ripples when used in movable bed models.Vicksburg, Mississippi, USA: United States Waterways Experiment Station, tech. Memo 99-1.

Vanoni, V. A. (1975). Sedimentation Engineering: American Society of Civil Engineers, Manuals and Reports on Engineering Practice. No. 54. P.745.

Verdoodt, L. L., & Burger, M. d. (2001). Measurements of the flow generated by a cutter head. WODCON XVI.Kuala Lumpur, Malaysia: WODA.

Verhoef, P. (1997). Wear of rock cutting tools: Implications for site investigation of rock dredging projects.Delft, Netherlands: Balkema Rotterdam.

Verruijt, A. (1983). Soil Mechanics.Delft: DUM, Netherlands.

Vlasak, P. (2008). Laminar, transitional and turbulent flow of fine grained slurries in pipelines.Prague.: Czech Technical University in Prague, Fakulty of Civil Engineering.

Vlasak, P., Chara, Z., Krupicka, J., & Konfrst, J. (2014). Experimental investigation of coarse particles water mixture flow in horizontal and inclined pipes. Journal of Hydrology & Hydromechanics, Vol. 62(3)., 241-247. https://doi.org/10.2478/johh-2014-0022

Vlasak, P., Kysela, B., & Chara, Z. (2012). FLOW STRUCTURE OF COARSE-GRAINED SLURRY IN A HORIZONTAL PIPE. Journal of Hydrology & Hydromechanics, Vol. 60., 115-124. https://doi.org/10.2478/v10098-012-0010-7

Vlasblom, W. (2003-2007). Rock Cutting, Lecture Notes.Delft, Netherlands: Delft University of Technology.

Vlasblom, W. J. (2003-2007). Designing dredging equipment, lecture notes.Delft, Netherlands: Delft University of Technology.

Vlasblom, W. J., & Talmon, A. M. (2006). Spillage problem of cutter suction dredgers. 2nd Chinese International Dredging Congress.Guangzhou, China: CHIDA.

Vlasblom, W., & Miedema, S. (1995). A Theory for Determining Sedimentation and Overflow Losses in Hoppers. WODCON IV.Amsterdam, Netherlands: WODA.

Vocadlo, J. J. (1972). Prediction of pressure gradient for the horizontal turbulent flow of slurries. Hydrotransport 2.Coventry: BHRA.

Vocadlo, J. J., & E., C. M.(1972). Prediction of pressure gradient for the horizontal turbulent flow of slurries. Conference on the Hydraulic Transport of Solids in Pipes.Warwick, England: British Hydromechanics Research Association.

Vreede, M. d. (2018). Hydraulic transport in inclined large diameter pipelines.Delft, the Netherlands: Delft University of Technology.

Vukovic, M., & Soro, A. (1992). Determination of hydraulic conductivity of porous media from grain size composition. Water Resources Publications, Littleton, Colorado.

Wallis, G. (1969). One Dimensional Two Phase Flow.McGraw Hill.Wasp, E. J. (1963). Cross country coal pipeline hydraulics. Pipeline News., 20-28.

Wasp, E. J., & Slatter, P. T. (2004). Deposition velocities for small particles in large pipes. 12th International Conference on Transport & Sedimentation of Solid Particles, (pp. 20-24). Prague, Czech Republic.

Wasp, E. J., Kenny, J. P., & Gandhi, R. L. (1977). Solid liquid flow slurry pipeline transportation. Transactions Technical Publications.

Wasp, E. J., Kenny, J. P., Aude, T. C., Seiter, R. H., & Jacques, R. B. (1970). Deposition velocities transition velocities and spatial distribution of solids in slurry pipelines. Hydro Transport 1, paper H42.(pp. 53-76). Coventry: BHRA Fluid Engineering.

Weegenaar, R. A., Keetels, G. H., Winkelman, M. O., & Rhee, C. v. (2015). Sand erosion with a traversing circular jet. Maritime Engineering ICE Vol. 168(MA2)., 76-83. https://doi.org/10.1680/maen.14.00004

Weibull, W. (1939). A statistical theory of the strength of materials. Royal Swedish Institute of Engineers, 151:1.

Weijermars, R. (1997-2011). Principles of rock mechanics.Delft, Netherlands: Alboran Science Publishing.

Welte, A. (1971). Grundlagen der Berechnung der Rohrleitungsdruckverluste. Konstruction 23, Heft 5 & 6.

Werkhoven, J. J.,Nieuwboer, B. J., Louis, A. A., Ramsdell, R. C., & Miedema, S. A. (2018). A pseudo analytical model for CSD spillage due to rotational velocity induced flow. Dredging Summit & Expo 18(p. 18). Norfolk, Virginia, USA: WEDA.

Werkhoven, J. J., Nieuwboer, B. J., Louis, A. A., Ramsdell, R. C., & Miedema, S. A. (2019A). Modelling a Rotating Cutterhead's Spillage with more Accuracy. Terra et Aqua 153, 15.

Werkhoven, J. J., Nieuwboer, B. J., Ramsdell, R. C., & Miedema, S. A. (2019). CSD Spillage Model for Sand andRock. World Dredging Conference(p. 17). Shanghai, China: CHIDA, EADA, WODA.

Westendorp, J. H. (1948). Verslag literatuurstudie over persen van zand M.276.Delft, Netherlands: Delft Hydraulics Laboratory.

White, C. M. (1940). The equilibrium of grains on the bed of a stream. Proceedings Royal Society of London, A174, pp. 322-338. https://doi.org/10.1098/rspa.1940.0023

White, S. (1970). Plane bed thresholds of fine grained sediments. Nature Vol. 228., 152-153. https://doi.org/10.1038/228152a0

Whitehouse, R., Soulsby, R., Roberts, R., & Mitchener, H. (2000). Dynamics of estuarine muds: A manual for practical applications.London: Thomas Telford Publications. https://doi.org/10.1680/doem.28647

Whitlock, L., Wilson, K. C., & Sellgren, A. (2004). Effect of near-wall lift on frictional characteristics of sand slurries. Hydrotransport 16(pp. 443-454). Cranfield, UK.: BHR Group.

Wiberg, P. L., & Smith, J. D. (1987A). Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, 23(8), 1471-1480. https://doi.org/10.1029/WR023i008p01471

Wiberg, P., & Smith, J. (1987B). Initial motion of coarse sediment instreams of high gradient. Proceedings of the Corvallis Symposium.IAHS Publication No. 165.

Wiedenroth, W. (1967). Untersuchungen uber die forderung von sand wasser gemischen durch rohrleitungen und kreiselpumpen.Hannover: PhD Thesis, Technische Hochschule Hannover.

Wikipedia. (n.d.). Retrieved from Wikipedia: http://en.wikipedia.org/wiki/Erosion

Wikramanayake, P. N., & Madsen, O. S. (1991). Calculation of movable bed friction factors.Vicksburg, Mississippi.: Tech. Rep. DACW-39-88-K-0047, 105 pp., Coastal Eng. Res. Cent.,.

Wilkinson, H. N. (1963). Research in the design of grabs by tests on models. Proceeding Institution of Mechanical Engineering Nr. 31, (pp. 831-846). https://doi.org/10.1177/0020348363178001121

Wilson, K. C. (1965). Application of the minimum entropy production principle to problems in two-phase flow, PhD Thesis.Kingston, Ontario, Canada.: Queens University.

Wilson, K. C. (1966). Bed Load Transport at High Shear Stress. Journal of the Hydraulics Division, 49-59. https://doi.org/10.1061/JYCEAJ.0001562

Wilson, K. C. (1970). Slip point of beds in solid liquid pipeline flow. Journal of Hydraulic Division, Vol 96(HY1), 1-12. https://doi.org/10.1061/JYCEAJ.0002250

Wilson, K. C. (1970). Slip point of beds in solid-liquid pipeline flow. Proceedings American Society of Civil Engineers, Vol. 96, HY1. https://doi.org/10.1061/JYCEAJ.0002250

Wilson, K. C. (1972). A Formula for the Velocity Required to Initiate Particle Suspension in Pipeline Flow. Hydrotransport 2(pp. E2 23-36). Warwick, UK.: BHRA Fluid Engineering.

Wilson, K. C. (1974). Coordinates for the Limit of Deposition in Pipeline Flow. Hydrotransport 3(pp. E1 1-13). Colorado School of Mines, Colorado, USA.: BHRA Fluid Engineering.

Wilson, K. C. (1975). Stationary Deposits and Sliding Beds in Pipes Transporting Solids. Dredging Technology(pp. C3 29-40). College Station, Texas, USA.: BHRA Fluid Engineering.

Wilson, K. C. (1976). A Unified Physically based Analysis of Solid-Liquid Pipeline Flow. Hydrotransport 4(pp. A1 1-16). Banff, Alberta, Canada: BHRA Fluid Engineering.

Wilson, K. C. (1979). Deposition limit nomograms for particles of various densities in pipeline flow. Hydrotransport 6(p. 12). Canterbury, UK: BHRA Fluid Engineering.

Wilson, K. C. (1980). Analysis of Slurry Flows with a Free Surface. Hydrotransport 7(pp. 123-132). Sendai, Japan: BHRA Fluid Engineering.

Wilson, K. C. (1984). Analysis of Contact Load Distribution and Application to Deposition Limit in Horizontal Pipes. Journal of Pipelines, Vol. 4., 171-176.

Wilson, K. C. (1986). Effect of Solids Concentration on Deposit Velocity. Journal of Pipelines, Vol. 5., 251-257.

Wilson, K. C. (1987). Analysis of Bed Load Motion at High Shear Stress. Journal of Hydraulic Engineering, Vol. 113., 97-103. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:1(97)

Wilson, K. C. (1988). Evaluation of interfacial friction for pipeline transport models. Hydrotransport 11(p. B4). BHRA Fluid Engineering.

Wilson, K. C. (1989). Mobile Bed Friction at High Shear Stress. Journal of Hydraulic Engineering, Vol. 115., 825-830. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:6(825)

Wilson, K. C., & Addie, G. R. (1997). Coarse particle pipeline transport: effect of particle degradation on friction. Powder Technology, Vol. 94., 235-238. https://doi.org/10.1016/S0032-5910(97)03300-7

Wilson, K. C., & Brown, N. P. (1982). Analysis of Fluid Friction in dense Phase Pipeline Flow. The Canadian Journal of Chemical Engineering, Vol. 60., 83-86. https://doi.org/10.1002/cjce.5450600114

Wilson, K. C., & Judge, D. G. (1976). New Techniques for the Scale-Up of Pilot Plant Results to Coal Slurry Pipelines. Proceedings International Symposium on Freight Pipelines.(pp. 1-29). Washington DC, USA: University of Pensylvania.

Wilson, K. C., & Judge, D. G. (1977). Application of Analytical Model to Stationary Deposit Limit in Sand Water Slurries. Dredging Technology(pp. J1 1-12). College Station, Texas, USA.: BHRA Fluid Engineering.

Wilson, K. C., & Judge, D. G. (1978). Analytically based Nomographic Charts for Sand-Water Flow. Hydrotransport 5(pp. A1 1-12). Hannover, Germany: BHRA Fluid Engineering.

Wilson, K. C., & Judge, D. G. (1980). New Techniques for the Scale-up of Pilot Plant Results to Coal Slurry Pipelines. Journal of Powder & Bulk Solids Technology., 15-22.

Wilson, K. C., & Nnadi, F. N. (1990). Behavior of Mobile Beds at High Shear Stress. Proceedings Coastal Engineering 22., (pp. 2536-2541). Delft. https://doi.org/10.1061/9780872627765.194

Wilson, K. C., & Pugh, F. J. (1988). Dispersive Force Basis for Concentration Profiles. Journal of Hydraulic Engineering, Vol. 114, No. 7., 806-810. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(806)

Wilson, K. C., & Pugh, F. J. (1988). Dispersive Force Modelling of Turbulent Suspension in Heterogeneous Slurry Flow. The Canadian Journal of Chemical Engineering, Vol. 66., 721-727. https://doi.org/10.1002/cjce.5450660504

Wilson, K. C., & Sellgren, A. (2001). Hydraulic transport of solids, Pump Handbook, pp. 9.321-9.349.McGraw-Hill.

Wilson, K. C., & Sellgren, A. (2003). Interaction of Particles and Near-Wall Lift in Slurry Pipelines. Journal of Hydraulic Engineering, Vol. 129., 73-76. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(73)

Wilson, K. C., & Sellgren, A. (2010). Behavior of intermediate particle slurries in pipelines. Hydrotransport 18(pp. 117-128). Rio de Janeiro: BHR Group.

Wilson, K. C., & Sellgren, A. (2012). Revised Method for Calculating Stratification Ratios for Heterogeneous Flows. 14th International Conference on Transport & Sedimentation of Solid Particles., (pp. 334-340).

Wilson, K. C., & Watt, W. E. (1974). Influence of Particle Diameter on the Turbulent Support of Solids in Pipeline Flow. Hydrotransport 3(pp. D1 1-9). Colorado School of Mines, Colorado, USA.: BHRA Fluid Engineering.

Wilson, K. C., Addie, G. R., & Clift, R. (1992). Slurry Transport using Centrifugal Pumps.New York: Elsevier Applied Sciences.

Wilson, K. C., Addie, G. R., Clift, R., & Sellgren, A. (1997). Slurry Transport using Centrifugal Pumps.Glasgow, UK.: Chapman & Hall, Blackie Academic & Professional.

Wilson, K. C., Addie, G. R., Sellgren, A., & Clift, R. (2006). Slurry transport using centrifugal pumps.New York: Springer Science+Business Media Inc.

Wilson, K. C., Clift, R., & Sellgren, A. (2002). Operating points for pipelines carrying concentrated heterogeneous slurries. Powder Technology, Vol. 123., 19-24. https://doi.org/10.1016/S0032-5910(01)00423-5

Wilson, K. C., Clift, R., Addie, G. R., & Maffet, J. (1990). Effect of Broad ParticleGrading on Slurry Stratification Ratio and Scale-up. Powder Technology, 61., 165 -172. https://doi.org/10.1016/0032-5910(90)80151-N

Wilson, K. C., Sanders, R. S., Gillies, R. G., & Shook, C. A. (2010). Verification of the near wall model for slurry flow. Powder Technology, Vol. 197., 247-253. https://doi.org/10.1016/j.powtec.2009.09.023

Wilson, K. C., Sellgren, A., & Addie, G. R. (2000). Near-wall fluid lift of particles in slurry pipelines. 10th Conference on Transport and Sedimentation of Solid Particles.Wroclav, Poland: T&S10.Wilson, K. C., Streat, M., & Bantin, R. A. (1972). Slip model correlation of dense two phase flow. Hydrotransport 2(pp. B1 1-10). Warwick, UK: BHRA Fluid Engineering.

Wilson, W. E. (1942). Mechanics of flow with non colloidal inert solids. Transactions ASCE Vol. 107., 1576-1594. https://doi.org/10.1061/TACEAT.0005556

Winterwerp, J., & Kesteren, W. v. (2004). Introduction to the physics of cohesive sediment in the marine environment.Delft: Elsevier. https://doi.org/10.1016/S0070-4571(04)80004-9

Wismer, R., & Luth, H. (1972A). Performance of Plane Soil Cutting Blades. Transactions of ASEA. https://doi.org/10.4271/710179

Wismer, R., & Luth, H. (1972B). Rate effects in soil cutting. Journal of Terramechanics, vol. 8, no. 3., 11-21. https://doi.org/10.1016/0022-4898(72)90092-4

Wittekoek, S. (1991A). The determination of the closing process of clamshell dredges in water saturated sand. MSc Thesis. 90.3.GV.2771.Delft, The Netherlands: Delft University of Technology.

Wittekoek, S. (1991B). The development of an improved clamshell. MSc Thesis 90.3.GV.2858.Delft, The Netherlands: Delft University of Technology.

Wittekoek, S. (1991C). The validation of a calculation method for the simulation of theclosing process of clamshell grabs for dredging purposes. MSc Thesis 90.3.GV.2829.Delft, The Netherlands: Delft University of Technology.

Wood, D. J. (1966). An explicit friction factor relationship. Civil Engineering, Vol. 36, ASCE., 60-61.

Worster, R. C., & Denny, D. F. (1955). Hydraulic transport of solid materials in pipelines. Institution of Mechanical Engineers (London), 563-586. https://doi.org/10.1243/PIME_PROC_1955_169_064_02

Wu, W., & Wang, S. (2006). Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering, 132(8), 858-862. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:8(858)

Xiong, T., Miedema, S. A., & Chen, X. (2018). Comparative Analysis between CFD Model and DHLLDV Model in Fully suspended Slurry Flow. Submitted to: Ocean Engineering, 16. https://doi.org/10.1016/j.oceaneng.2019.03.065

Yagi, T. (1970). Sedimentation effects of soil in hopper. WODCON III(pp. 1-22). Singapore: WODA.

Yagi, T., Okude, T., Miyazaki, S., & Koreishi, A. (1972). An Analysis of the Hydraulic Transport of Solids in Horizontal Pipes.Nagase, Yokosuka, Japan.: Report of the Port & Harbour Research Institute, Vol. 11, No. 3.

Yalin, M. S., & Karahan, E. (1979). Inception of sediment transport. ASCE Journal of the Hydraulic Division, 105, 1433-1443. https://doi.org/10.1061/JYCEAJ.0005306

Yi, Z. (2000). The FEM calculation of pore water pressure in sand cutting process by SEPRAN.Delft, Netherlands: Delft University of Technology, Report: 2001.BT.5455.

Yi, Z., & Miedema, S. (2001). Finite Element Calculations To Determine The Pore Pressures When Cutting Water Saturated Sand At Large Cutting Angles. CEDA Dredging Days(p. 20 pages). Amsterdam, The Netherlands: CEDA.

Yi, Z., & Miedema, S. (2002). Finite Element Calculations To Determine The Pore Pressures When Cutting Water Saturated Sand At Large Cutting Angles. CEDA Dredging Days(p. 20 pages). Amsterdam, The Netherlands: CEDA. https://doi.org/10.1061/40680(2003)111

You, Z. (2006). Discussion of "Initiation of Movement of Quartz Particles". Journal of Hydraulic Engineering, 111-112.Youd, T. (1973). Factors controlling maximum and minimum densities of sands. ASTM special technical publications, no 523., 98-112. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(111)

Zandi, I. (1971). Hydraulic transport of bulky materials. In I. Zandi, Advances in Solid-Liquid Flow in Pipes and its Applications.(pp. 1-38). Oxford: Pergamon Pres. https://doi.org/10.1016/B978-0-08-015767-2.50004-1

Zandi, I., & Govatos, G. (1967). Heterogeneous flow of solids in pipelines. Proc. ACSE, J. Hydraul. Div.,, 93(HY3)., 145-159. https://doi.org/10.1061/JYCEAJ.0001608

Zanke, U. C. (1977). Berechnung der Sinkgeschwindigkeiten von Sedimenten.Hannover, Germany: Mitteilungen Des Francius Instituts for Wasserbau, Heft 46, seite 243, Technical University Hannover.

Zanke, U. C. (1977). Neuer Ansatz zur Berechnung des Transportbeginns von Sedimenten unter Stromungseinfluss.Hannover: Mitteilungen des Francius Instituts.

Zanke, U. C. (1982). Grundlagen der Sedimentbewegung.Berlin, Heidelberg, New York: Springer Verlag. https://doi.org/10.1007/978-3-642-68660-3

Zanke, U. C. (2001). Zum Einfluss der Turbulenz auf den Beginn der Sedimentbewegung.Darmstadt, Germany: Mitteilungen des Instituts fur Wasserbau und Wasserwirtschaft der TU Darmstadt, Heft 120.

Zanke, U. C. (2003). On the influence of turbulence on the initiation of sediment motion. International Journal of Sediment Research, 18(1), 17-31.

Zeng, D., & Yao, Y. (1988). Investigation on the relationship between soil metal friction and sliding speed. 2nd Asian Pacific Conference of ISTVS.Bangkok, Thailand.

Zeng, D., & Yao, Y. (1991). Investigation on the relationship between soil shear strength and shear rate. Journal of Terramechanics, 28 (1). https://doi.org/10.1016/0022-4898(91)90002-N

Ziervogel, K. (2003). Aggregation and transport behavour of sediment surface particles in Mecklenburg Bight, south western Baltic Sea affected by biogenic stickiness.Rostock: PhD Thesis, Universitat Rostock, Germany.

Ziervogel, K., & Bohling, B. (2003). Sedimentological parameters and erosion behaviour of submarine coastal sediments in the South-Western Baltic sea. Geo-Marine Letters (23-1), 43-52. https://doi.org/10.1007/s00367-003-0123-4

Zijsling, D. (1987). Single cutter testing -a key for PDC bit development (SPE 16529). Offshore Europe 87.Aberdeen, Scotland. https://doi.org/10.2118/16529-MS

Published

June 27, 2019

Details about the available publication format: View PDF

ISBN-13 (15)

978-94-6366-174-4