Towards Improved Flood Defences: Five Years of All-Risk Research into the New Safety Standards

Authors

Matthijs Kok (ed)
Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands
https://orcid.org/0000-0002-9148-0411
Juliette Cortes Arevalo (ed)
Department of Multi Actor Systems, Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands
https://orcid.org/0000-0003-2551-1942
Martijn Vos (ed)
Brût Design, The Netherlands
Keywords: flood defences, safety standards, dikes, risk framework, flood risk management

Synopsis

Without our dikes and dunes, 60% of the Netherlands would flood on a regular basis. This area is home to 9 million people.

The latest report of the Intergovernmental Panel on Climate Change (IPCC, February 2022) underlines the importance of reinforcing water safety. Sea levels are rising and extreme weather is becoming increasingly common. The Flood Protection Programme, the largest Dutch water safety operation since the Delta Works, will help us minimise the likelihood of flooding.

New knowledge and innovation are urgently needed The Dutch dikes have stood firm for more than 1,000 years. After disasters in 1916 and 1953, storm surge barriers and dams have been added to the network of protective dikes. Following the floods in 1993 and 1995, the Room for the River programme was implemented. New knowledge of flood risks led to the introduction of new, often stricter standards for flood defences in 2017.

Funder: NWO Domain Applied and Engineering Sciences P15-21.

Downloads

Download data is not yet available.

References

Chapter 1

Expertise Netwerk Waterveiligheid [ENW] (2020). Naar geloofwaardige

overstromingskansen. https://www.enwinfo.nl/publish/pages/

/enw-20-01b-achtergrondrapportage-naar-geloofwaardige-

overstromingskansen-dv.pdf

Jonkman, S. N., Slager, K., Moll, R., van den Hurk, B., Rongen, G., Strijker,

B., Pol, J.C., Kok, M., Kolen, B., Rikkert, S.J.H., Schlumberger, J., van

Haren, M. & Wüthrich, D. (2021). Hoogwater 2021: Feiten en Duiding.

Expertise Netwerk Waterveiligheid. Doi: 10.4233/uuid:06b03772-ebe0-

-9c4d-7c1593fb094e

Klijn, F., ten Brinke, W., Asselman, N. & Mosselman, E. (n.d.). Het Verhaal

van de Rivier: een eerste versie. Deltares/Rijkswaterstaat. https://edepot.

wur.nl/460187

Slager, K., de Moel, H., & de Jong, J.. (2021). Maximum flood extents Limburg

floods July 2021 (Version 1). 4TU.ResearchData. Doi: 10.4121/16817389.v1

Rijkswaterstaat (2019). Programmaplan BOI 2020-2023. https://www.

helpdeskwater.nl/publish/pages/178471/programmaplan_boi_1.pdf

Chapter 2

Interagency Performance Evaluation Task Force [IPET] (U.S.) & United

States (Eds.) (2006). Performance evaluation of the New Orleans and

Southeast Louisiana hurricane protection system: Draft final report

of the Interagency Performance Evaluation Task Force [Electronic resource].

US Army Corps of Engineers. https://ipet.wes.army.mil

Kok, M., Jongejan, R., Nieuwjaar, M., Tánczos, I. (2017). Fundamentals

of Flood Protection. Expertise Network for Flood Protection (ENW).

https://www.enwinfo.nl/publicaties

Pol, J.C., Kanning, W., & Jonkman, S.N. (2021). Temporal Development

of Backward Erosion Piping in a Large-Scale Experiment. Journal of

Geotechnical and Geoenvironmental Engineering, 147(2). Doi: 10.1061/

(ASCE)GT.1943-5606.0002415

TU Delft. (2021, December 18). SAFELevee. https://www.tudelft.nl/citg/

over-faculteit/afdelingen/hydraulic-engineering/sections/hydraulicstructures-

and-flood-risk/research/safelevee-project

van Beek, V.M. (2015). Backward erosion piping: Initiation and progression

[Doctoral thesis, Delft University of Technology]. Doi: 10.4233/

uuid:4b3ff166-b487-4f55-a710-2a2e00307311

van der Krogt, M.G., Klerk, W.J., Kanning, W., Schweckendiek, T. & Kok, M.

(2020). Value of information of combinations of proof loading and pore

pressure monitoring for flood defences. Structure and Infrastructure Engineering,

(4), 505-520. Doi: 10.1080/15732479.2020.1857794

VNK Project Office [Rijkswaterstaat] (2015). The national Flood Risk Analysis

for the Netherlands. https://www.helpdeskwater.nl/onderwerpen/waterveiligheid/

programma-projecten/veiligheid-nederland/publicaties/

Weichel, T. (2013). “Failure of the Breitenhagen levee (2013).” Drone Film

Breitenhagen: Landesbetrieb für Hochwasserschutz und Wasserwirtschaft

Sachsen-Anhalt.

Chapter 3

Möller, I., Kudella, M., Rupprecht, F. et al. (2014). Wave attenuation over

coastal salt marshes under storm surge conditions. Nature Geosci 7,

–731. Doi: 10.1038/ngeo2251

Rondags, drs. E.J.N. (RAAP) (2019): Lent zones K en L, archeologisch dijkonderzoek,

gemeente Nijmegen. DANS. Doi: 10.17026/dans-ze9-ars8

Silvis, F. (1991). Verificatie Piping Model; Proeven in de Deltagoot. Evaluatierapport.

Rapport Grondmechanica Delft, CO317710/7.

Temmink, R.J.M., Angelini, C., Fivash, G.S., Swart, L., Nouta, R., Teunis, M.,

Lengkeek, W., Didderen, K., Lamers, L.P.M., Bouma, T.J. & van der Heide, T.

(2021). Life cycle informed restoration: Engineering settlement substrate

material characteristics and structural complexity for reef formation.

Journal of Applied Ecology, 58(10), 2158-2170. Doi: 10.1111/1365-2664.13968

Vuik, V., Jonkman, S. N., Borsje, B. W., & Suzuki, T. (2016). Nature-based

flood protection: The efficiency of vegetated foreshores for reducing

wave loads on coastal dikes. Coastal Engineering, 116, 42–56. Doi:

1016/j.coastaleng.2016.06.001

Willemsen, P. W. J. M., Borsje, B. W., Vuik, V., Bouma, T. J., & Hulscher, S.

J. M. H. (2020). Field-based decadal wave attenuating capacity of combined

tidal flats and salt marshes. Coastal Engineering, 156, 103628.

Doi: 10.1016/j.coastaleng.2019.103628

Zhu Z., Vuik. V., Visser, P.J., Soens, T., van Wesenbeeck, B., van de Koppel,

J., Jonkman, S.N., Temmerman, S. & Bouma, T.J. (2020). Historic storms

and the hidden value of coastal wetlands for nature-based flood defence.

Nature Sustainability 3; 853-862. Doi: 10.1038/s41893-020-0556-z

Chapter 4

van Beek, V.M. (2015). Backward erosion piping: Initiation and progression

[Doctoral thesis, Delft University of Technology]. Doi: 10.4233/

uuid:4b3ff166-b487-4f55-a710-2a2e00307311

Gouw, M.J.P. (2017). Alluvial architecture of fluvio-deltaic successions: a

review with special reference to Holocene settings. Netherlands Journal

of Geosciences, 86(3), 211-227. Doi: 10.1017/S0016774600077817

Huismans, Y., Van Velzen, G., Mahoney, T.S.D.O., Hoffmans, G. & Wiersma,

A.P. (2016). Scour hole development in river beds with mixed sandclay-

peat stratigraphy. In: ICSE 2016, 8th Int. Conf. on Scour and Erosion,

-15 September 2016, Oxford, UK.

Knaake, S.M., Straatsma, M.W., Huismans, Y., Cohen, K.M., Stouthamer,

E. & Middelkoop, H. (2019). The influence of subsurface heterogeneity

on scour hole development in the Rhine-Meuse delta, the Netherlands.

NCR Abstract.

Rijkswaterstaat (2017). Beoordelingsinstrumentarium (WBI2017). https://

www.helpdeskwater.nl/onderwerpen/waterveiligheid/primaire/

beoordelen/beoordelingsinstrumentarium-wbi2017-0/

Chapter 5

Calle, E.O.F. & Knoeff, J.G. (2002). Dijkdoorbraakprocessen: Beschrijving,

doorbraakprocessen en reststerkte (GeoDelft-report 720201/39).

Delft Cluster. http://resolver.tudelft.nl/uuid:d3a25bfd-afd3-4519-9b07-

cafc

EurOtop, 2018. Manual on wave overtopping of sea defences and related

structures. An overtopping manual largely based on European

research, but for worldwide application. Van der Meer, J.W., Allsop,

N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf,

H., Troch, P. & Zanuttigh, B., www.overtopping-manual.com.

Grubert, P. (2013). Saaledeich bei Breitenhagen, Geotechnische Untersuchungen

der Bruchstelle, Empfehlungen zur Sanierung. Gesellschaft

für Grundbau und Umwelttechnik mbH, Magdeburg

Hoffmans, G.J.C.M. (2014). Erosiebestendigheid Overgangen: Validatie

Engineering Tools (Deltares report 1209437-003). Deltares. https://

repository.tudelft.nl/islandora/object/uuid%3Ac77cec99-4c56-4412-

de-458c3ddc9e50

Jüpner, R., Brauneck, J. & Pohl, R. (2015). Einsatz von Drohnen im Hochwasserfall

– Erfahrungen und Ideen. WasserWirtschaft 9(2015), 49-54.

Man, C. (2021). Visualization of the Random Material Point Method for

macro-instability [Master Thesis, Delft University of Technology].

http://resolver.tudelft.nl/uuid:9d24b208-9d5a-4bff-bfca-9ebb87347ee0

Remmerswaal, G., Vardon, P.J., Hicks, M.A. (2021). Evaluating residual

dyke resistance using the Random Material Point Method. Computers

and Geotechnics 133(2021), 104034. Doi: 10.1016/j.compgeo.2021.104034

Robbins, B.A. & Sharp M.K. (2016). Incorporating Uncertainty into Backward

Erosion Piping Risk Assessments. E3S Web Conf., 7 (2016) 03007.

Doi: 10.1051/e3sconf/20160703007

TAW, (2002). Wave Run-up and Wave Overtopping at Dikes (Technical

Report). Written by Van der Meer, J.W. The Technical Advisory Committee

on Flood Defence. http://www.overtopping-manual.com/assets/

downloads/TRRunupOvertopping.pdf

Weichel, T. (2013). “Failure of the Breitenhagen levee (2013).” Drone Film

Breitenhagen: Landesbetrieb für Hochwasserschutz und Wasserwirtschaft

Sachsen-Anhalt.

Chapter 6

Province of Gelderland (2019). Ga voor de Grebbedijk Nota Voorkeursalternatief.

https://www.grebbedijk.com/kennisbank/200416_grebbedijk_

adviesnota-vka_incl_bijlagen_v3.pdf

Roode, N., Maaskant, B., Boon, M. (2019). Handreiking Voorlanden. Projectoverstijgende

Verkenning Voorlanden.

STOWA (2017). DeltaFacts: Meerlaagsveiligheid in de praktijk. Retrieved

April 11, 2022, from https://www.stowa.nl/deltafacts/waterveiligheid/

innovatieve-dijkconcepten/meerlaagsveiligheid-de-praktijk

Cover image of the book Towards improved flood defences

Published

June 9, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: Download PDF

ISBN-13 (15)

978-94-6366-548-3

Publication date (01)

2022-06-09