Traffic Flow Theory: An introduction with exercises
Keywords:
traffic flow theory, traffic jams, road traffic, cumulative curves, traffic variables, shock wave theory, traffic states, traffic models, headway modelsSynopsis
Traffic processes cause several problems in the world. Traffic delay, pollution are some of it. They can be solved with the right road design or traffic management (control) measure. Before implementing these designs of measures, though, their effect could be tested. To this end, knowledge of traffic flow theory is needed.
Downloads
References
Ahn, S. and Cassidy,M. (2007). Freeway traffic oscillations and vehicle lane-change maneuvers. In Allsop, R. E., Bell, M. G. H., and Heydecker, B. G., editors, Proceedigs of the International Symposium of Transportation and Traffic Theory, pages 691-710. Elsevier, Amsterdam.
Aw, A. and Rascle (2000). Resurrection of the "second order" models of traffic flow. SIAM Journal on Applied Mathematics, 60:916-938. https://doi.org/10.1137/S0036139997332099
Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2):1035. https://doi.org/10.1103/PhysRevE.51.1035
Bliemer, M. (2007). Dynamic queuing and spillback in analytical multiclass dynamic network loading model. Transportation Research Record: Journal of the Transportation Research Board, (2029):14-21. https://doi.org/10.3141/2029-02
Brackstone, M. and McDonald, M. (1999). Car-Following: A Historical Review. Transportation Research F, 2:181 - 186. https://doi.org/10.1016/S1369-8478(00)00005-X
Carlson, R. C., Papamichail, I., Papageorgiou, M., and Messmer, A. (2010). Optimal motorway traffic flow control involving variable speed limits and ramp metering. Transportation Science, 44(2):238-253. https://doi.org/10.1287/trsc.1090.0314
Cassidy, M. and Bertini, R. (1999). Some traffic features at freeway bottlenecks. Transportation Research Part B:Methodological, 33(1):25 - 42. https://doi.org/10.1016/S0191-2615(98)00023-X
Cassidy, M., Jang, K., and Daganzo, C. (2011). Macroscopic fundamental diagram for freeway networks: Theory and observation. In Proceedings of the 90th Annual Meeting of the Transportation Research Board. https://doi.org/10.3141/2260-02
Cassidy, M. J. and Rudjanakanoknad, J. (2005). Increasing the capacity of an isolated merge by metering its on-ramp. Transportation Research Part B: Methodological, (10):896 - 913. ISSN 0191-2615. https://doi.org/10.1016/j.trb.2004.12.001
Chiabaut, N., Leclercq, L., and Buisson, C. (2010). From heterogeneous drivers to macroscopic patterns in congestion. Transportation Research Part B:Methodological, (2):299 - 308. ISSN 0191-2615. https://doi.org/10.1016/j.trb.2009.07.009
Chung, K., Rudjanakanoknad, J., and Cassidy,M. J. (2007). Relation between traffic density and capacity drop at three freeway bottlenecks. Transportation Research Part B: Methodological, 41(1):82-95. https://doi.org/10.1016/j.trb.2006.02.011
Corthout, R., Flötteröd, G., Viti, F., and Tampère, C. M. (2012). Non-unique flows in macroscopic first-order intersection models. Transportation Research Part B:Methodological, (3):343-359. https://doi.org/10.1016/j.trb.2011.10.011
Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen differenzengleichungen der mathematischen physik. Mathematische annalen, 100(1):32-74. https://doi.org/10.1007/BF01448839
Daganzo, C. (2007). Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B:Methodological, 41(1):49-62. https://doi.org/10.1016/j.trb.2006.03.001
Daganzo, C. F. (1994). The Cell TransmissionModel: a Dynamic Representation of Highway Traffic Consistent With the Hydrodynamic Theory. Transportation research part B, 28B(4):269-287. https://doi.org/10.1016/0191-2615(94)90002-7
Daganzo, C. F. (1995a). The cell transmission model, part ii: network traffic. Transportation Research Part B:Methodological, 29(2):79-93. https://doi.org/10.1016/0191-2615(94)00022-R
Daganzo, C. F. (1995b). Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B:Methodological, 29:277-286. https://doi.org/10.1016/0191-2615(95)00007-Z
Daganzo, C. F. (1997). Fundamentals of Transportation and Traffic Operations. Pergamon. https://doi.org/10.1108/9780585475301
Daganzo, C. F. (2002a). A behavioral theory of multi-lane traffic flow. part i: Long homogeneous freeway sections. Transportation Research Part B: Methodological, 36(2):131 - 158. ISSN 0191-2615. https://doi.org/10.1016/S0191-2615(00)00042-4
Daganzo, C. F. (2002b). A behavioral theory ofmulti-lane traffic flow. part ii: Merges and the onset of congestion. Transportation Research Part B: Methodological, 36(2):159 - ISSN 0191-2615. https://doi.org/10.1016/S0191-2615(00)00043-6
Daganzo, C. F. (2005). A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part B: Methodological, (2):187-196. https://doi.org/10.1016/j.trb.2004.04.003
Drake, J. S., Schöfer, J. L., and May, A. (1967). A statistical analysis of speed density hypotheses. In Edie, L. C., Herman, R., and Rothery, R., editors, Proceedings of the Third International Symposium on the Theory of Traffic Flow. Elsevier North-Holland, New York.
Driels, M. R. and Shin, Y. S. (2004). Determining the number of iterations for monte carlo simulations of weapon effectiveness. https://doi.org/10.21236/ADA423541
Dynasmart (2003). DYNAMSMART-X - User's Guide. Technical report, University of Maryland.
Flötteröd, G. and Rohde, J. (2011). Operational macroscopic modeling of complex urban road intersections. Transportation Research Part B:Methodological, 45(6):903-922. https://doi.org/10.1016/j.trb.2011.04.001
Fortuijn, L. G. H. and Hoogendoorn, S. P. (2015). Turbo roundabouts: Comparing capacity estimation on gap and flow level. In Proceedings of the 94th Annual Meeting of the Transportation Research Board. https://doi.org/10.3141/2517-08
Geroliminis, N. and Daganzo, C. F. (2008). Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 42(9):759-770. https://doi.org/10.1016/j.trb.2008.02.002
Gipps, G. P. (1986). A model for the structure of lane-changing descisions. Tranportation Research Part B:Methodological, 20:403-414. https://doi.org/10.1016/0191-2615(86)90012-3
Godunov, S. K. (1959). A difference scheme for numerical computation of of discontinuous solutions of equations of fluid dynamics. Math. Sb., 47:271 - 290.
Greenshields, B. D. (1934). A Study of Traffic Capacity. Proceedings Highway Research Board, 14:448-477.
Hajiahmadi, M., Knoop, V. L., De Schutter, B., and Hellendoorn, H. (2013). Optimal dynamic route guidance: A model predictive approach using the macroscopic fundamental diagram. In Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, pages 1022-1028. IEEE. https://doi.org/10.1109/ITSC.2013.6728366
Hall, F. L. and Agyemang-Duah, K. (1991). Freeway Capacity Drop and the Definition of Capacity. Transportation Research Record: Journal of the Transportation Research Board No.1320, pages 91-98.
Heikoop, H., editor (2011). Capaciteitswaarden Infrastructuur Autosnelwegen. Dienst Verkeer en Scheepvaart.
Helbing, D. (2003). A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. Journal of Physics A: Mathematical and General, (46):L593. https://doi.org/10.1088/0305-4470/36/46/L03
Helbing, D., Hennecke, A., and Treiber, M. (1999). Phase diagram of traffic states in the presence of inhomogeneities. Physical Review Letters, 82(21):4360. https://doi.org/10.1103/PhysRevLett.82.4360
Helly, W. . (1959). Simulation of bottlenecks in single lane traffic flow. In Proceedings of the Symposium on Theory of Traffic Flow, pages 207- 238. General Motors Research Laboratories, Elsevier, New York.
Hoogendoorn, S., Hoogendoorn, R. G., and Daamen, W. (2011). Wiedemann revisited. Transportation Research Record: Journal of the Transportation Research Board, (1):152-162. https://doi.org/10.3141/2260-17
Hoogendoorn, S. P. (2005). Unified approach to estimating free speed distributions. Transportation Research Part B:Methodological, 39(8):709-727. https://doi.org/10.1016/j.trb.2004.09.001
Ji, Y. and Geroliminis, N. (2012). On the spatial partitioning of urban transportation networks. Transportation Research Part B:Methodological, 46(10):1639-1656. https://doi.org/10.1016/j.trb.2012.08.005
Kerner, B. S. (2004). The Physics Of Traffic: Empirical Freeway Pattern Features, Engineering Applications, And Theory. Springer, Berlin.
Keyvan-Ekbatani, M., Daamen, W., and Knoop, V. (2016). Categorization of the lane change decision process on freeways. Transportation Research part C. https://doi.org/10.1016/j.trc.2015.11.012
Knoop, V., Tamminga, G., , and Leclercq, L. (2016). Network transmission model: Application to a real world city. In proceedings of the 95th Annual Meeting of the Transportation Research Board.
Knoop, V. L., Duret, A., Buisson, C., and Van Arem, B. (2010). Lane distribution of traffic near merging zones - influence of variable speed limits. In Proceedings of IEEE Intelligent Transportation Systems. https://doi.org/10.1109/ITSC.2010.5625034
Knoop, V. L. and Hoogendoorn, S. P. (2015). An area-aggregated dynamic traffic simulation model. European Journal of Transport and Infrastructure Research (EJTIR), 15 (2), https://doi.org/10.18757/EJTIR.2015.15.2.3070
Knoop, V. L., Hoogendoorn, S. P., and Van Zuylen, H. J. (2007). Empirical Differences between Time Mean Speed and Space Mean Speed. In Proceedings of Traffic and Granular Flow 07. Springer, Paris, France.
Knoop, V. L., van Lint, H., and Hoogendoorn, S. P. (2015). Traffic dynamics: Its impact on the macroscopic fundamental diagram. Physica A: Statistical Mechanics and its Applications, 438:236-250. https://doi.org/10.1016/j.physa.2015.06.016
Knoop, V. L., Van Zuylen, H. J., and Hoogendoorn, S. P. (2009). Proceeding of the International Symposium of Transportation and Traffic Theory, chapter Microscopic Traffic Behavior near Accidents. Springer, New York. https://doi.org/10.1007/978-1-4419-0820-9_5
Koshi, M., Iwasaki, M., and Ohkura, I. (1981). Some findings and an overview on vehicular flow characteristics. In Proceedings of the 8th International Symposium on Transportation and Traffic Theory, pages 403-426. Univ. of Toronto Press, Toronto.
Kotsialos, A., Papageorgiou, M., Diakaki, C., Pavlis, Y., and Middelham, F. (2002). Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool metanet. Intelligent Transportation Systems, IEEE Transactions on, 3(4):282-292. https://doi.org/10.1109/TITS.2002.806804
Laval, J. and Castrillón, F. (2015). Stochastic approximations for the macroscopic fundamental diagram of urban networks. In Transportation Research Procedia, volume 7, page 615-630. https://doi.org/10.1016/j.trpro.2015.06.032
Laval, J. A. (2011). Hysteresis in traffic flow revisited: An improved measurement method. Transportation Research Part B: Methodological, 45(2):385 - 391. https://doi.org/10.1016/j.trb.2010.07.006
Laval, J. A. and Daganzo, C. F. (2006). Lane-changing in traffic streams. Transportation https://doi.org/10.1016/j.trb.2005.04.003
Laval, J. A. and Leclercq, L. (2013). The hamilton-jacobi partial differential equation and the three representations of traffic flow. Transportation Research Part B: Methodological, :17-30. https://doi.org/10.1016/j.trb.2013.02.008
Lebacque, J.-P. (2005). First-order macroscopic traffic flow models: Intersection modeling, network modeling. In Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory. https://doi.org/10.1016/B978-008044680-6/50021-0
Leclercq, L., Chiabaut, N., Laval, J. A., and Buisson, C. (2007). Relaxation Phenomenon After Lane Changing. Transportation Research Record: Journal of the Transportation Research Board, No. 1999, pages 79-85. https://doi.org/10.3141/1999-09
Leclercq, L. and Geroliminis, N. (2013). Estimating mfds in simple networks with route choice. Transportation Research Part B: Methodological, 57:468-484. https://doi.org/10.1016/j.trb.2013.05.005
Leclercq, L., Parzani, C., Knoop, V. L., Amourette, J., and Hoogendoorn, S. P. (2015). Macroscopic traffic dynamics with heterogeneous route patterns. Transportation Research Part C: Emerging Technologies, 59: 292-307. https://doi.org/10.1016/j.trc.2015.05.006
Lighthill, M. J. and Whitham, G. B. (1955). On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads,. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 229(1178):317 - 345. https://doi.org/10.1098/rspa.1955.0089
Nagalur Subraveti, H. H. S., Knoop, V. L., and van Arem, B. (2019). First order multi-lane traffic flow model-an incentive based macroscopic model to represent lane change dynamics. Transportmetrica B: Transport Dynamics, 7(1):1758-1779. https://doi.org/10.1080/21680566.2019.1700846
Newell, G. (2002). A simplified car-following theory: a lower order model. Transportation Research Part B:Methodological, 36(3):195-205. https://doi.org/10.1016/S0191-2615(00)00044-8
Newell, G. F. (1993). A simplified theory of kinematic waves in highway traffic, part ii: Queueing at freeway bottlenecks. Transportation Research Part B: Methodological, (4):289 - 303. https://doi.org/10.1016/0191-2615(93)90039-D
Oh, S. and Yeo, H. (2012). Estimation of capacity drop in highway merging sections. Transportation Research Record: Journal of the Transportation Research Board, (1):111-121. https://doi.org/10.3141/2286-13
Ossen, S. J. L. (2008). Longitudinal Driving Behavior: Theory and Empirics. Trail thesis series, Delft University of Technology.
Payne, H. J. (1971). Models of freeway traffic and control, mathematical models of public systems. Simulation Council Proceedings Series, 28(1):51-61.
Pueboobpaphan, R. and van Arem, B. (2010). Understanding the relation between driver/vehicle characteristics and platoon/traffic flow stability for the design and assessment of cooperative cruise control. In Proceedings of the 89th Annual Meeting of the Transportation Research Board. https://doi.org/10.3141/2189-10
Richards, P. I. (1956). Shock waves on the highway. Operations Research 4, 4:42 - 51. https://doi.org/10.1287/opre.4.1.42
Schakel, W. J., Van Arem, B., and Knoop, V. (2012). Lmrs: An integrated lane change model with relaxation and synchronization. In Proceedings of the 91st Annual Meeting of the Transportation Research Board. https://doi.org/10.3141/2316-06
Schreiter, T., Van Lint, H., Yuan, Y., and P., H. S. (2010). Propagation wave speed estimation of freeway traffic with image processing tools. In Proceedings of the 89th Annual Meeting.
Smits, E.-S., Bliemer, M. C., Pel, A. J., and van Arem, B. (2015). A family of macroscopic node models. Transportation Research Part B:Methodological, 74:20-39. https://doi.org/10.1016/j.trb.2015.01.002
Smulders, S. (1989). Control of freeway traffic flow. CWI Tract, 80.
Srivastava, A. and Geroliminis,N. (2013). Empirical observations of capacity drop in freeway merges with ramp control and integration in a first-order model. Transportation Research Part C: Emerging Technologies, 30:161-177. https://doi.org/10.1016/j.trc.2013.02.006
Tampère, C. M., Corthout, R., Cattrysse, D., and Immers, L. H. (2011). A generic class of first order node models for dynamic macroscopic simulation of traffic flows. Transportation Research Part B:Methodological, 45(1):289-309. https://doi.org/10.1016/j.trb.2010.06.004
Toledo, T., Koutsopoulos, H. N., and Ben-Akiva, M. (2007). Integrated driving behavior modeling. Transportation Research Part C: Emerging Technologies, 15(2):96 - 112. ISSN-090X. https://doi.org/10.1016/j.trc.2007.02.002
Toledo, T., Koutsopoulos, H. N., and Ben-Akiva, M. (2009). Estimation of an integrated driving behavior model. Transportation Research Part C: Emerging Technologies, (4):365 - 380. ISSN 0968-090X. https://doi.org/10.1016/j.trc.2009.01.005
Transportation Research Board, (2000). Highway Capacity Manual. Technical report.
Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations. Physical Review E, 62(2):1805. https://doi.org/10.1103/PhysRevE.62.1805
Treiber, M. and Kesting, A. (2013). Traffic Flow Dynamics; Data, Models and Simulation. Springer. https://doi.org/10.1007/978-3-642-32460-4
Treiber, M., Kesting, A., and Helbing, D. (2006). Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and its Applications, (1):71-88. https://doi.org/10.1016/j.physa.2005.05.001
Van der Gun, J. P., Pel, A. J., and Van Arem, B. (2015). A general activity-based methodology for simulating multimodal transportation networks during emergencies. In ICEM: 3rd International Conference on Evacuation Modeling and Management, Tainan, Taiwan, 1-3 June 2015.
Van Lint, J., Bertini, R. L., and Hoogendoorn, S. P. (2014). Data fusion solutions to compute performance measures for urban arterials. In Symposium Celebrating 50 years of Traffic Flow Theory 2014 FTF Summer Meeting, Portland (USA), 11-13 August, 2014. TRB.
van Lint, J. W., Hoogendoorn, S. P., and Schreuder, M. (2008). Fastlane: New multiclass first-order traffic flow model. Transportation Research Record: Journal of the Transportation Research Board, 2088(1):177-187. https://doi.org/10.3141/2088-19
van Wageningen-Kessels, F., van Lint, H., Hoogendoorn, S., and Vuik, K. (2010). Lagrangian formulation of multiclass kinematic wave model. Transportation Research Record: Journal of the Transportation Research Board, (2188):29-36. https://doi.org/10.3141/2188-04
Van Wageningen-Kessels, F. L. M. (2013). Multi-class continuum traffic flow models: Analysis and simulation methods. Ph.D. thesis, Delft University of Technology.
Wiedemann, R. (1974). Stimulation des Strassenverkehrsflusses. Heft 8 der schriftenreihedes ifv, Universität Karlsruhe.
Wu, N. (2002). A new approach for modeling of Fundamental Diagrams. Transportation Research Part A: Policy and Practice, 36(10):867-884. Doi: DOI: 10.1016/S0965-(01)00043-X. https://doi.org/10.1016/S0965-8564(01)00043-X
Yperman, I. (2007). The link transmission model for dynamic network loading.
Yperman, I., Logghe, S., Tampère, C. M. J., and Immers, B. (2006). Multicommodity link transmission model for dynamic network loading. In Proceedings of the 85th Annual Meeting of the Transportation Research Board.
Yuan, K., Knoop, V., and Hoogendoorn, S. (2015a). Capacity drop: A relation between the speed in congestion and the queue discharge rate. In Proceedings of the 94th Annual Meeting of the Transportation Research Board. https://doi.org/10.3141/2491-08
Yuan, Y. (2013). Lagranian Multi-Class traffic State Estimation. Ph.D. thesis, Delft University of Technology.
Yuan, Y., Van Wageningen-Kessels, F., Van Lint, H., and Hoogendoorn, S. (2015b). Proceedings of Traffic and Granular Flow 2011, chapter Two modeling and discretization choices for Lagrangian multi-class first-order traffic flow model and their related (dis-)advantages. Springer.
Zhang, H.M. (1999). A mathematical theory of traffic hysteresis. Transportation Research Part B:Methodological, 33(1):1 - 23. https://doi.org/10.1016/S0191-2615(98)00022-8

Published
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.