The Fluid Dynamic Basis for Actuator Disc and Rotor Theories: Revised Second Edition
Synopsis
The first rotor performance predictions were published by Joukowsky exactly 100 years ago. Although a century of research has expanded the knowledge of rotor aerodynamics enormously, and modern computer power and measurement techniques now enable detailed analyses that were previously out of reach, the concepts proposed by Froude, Betz, Joukowsky and Glauert for modelling a rotor in performance calculations are still in use today, albeit with modifications and expansions. This book is the result of the author's curiosity as to whether a return to these models with a combination of mathematics, dedicated computations and wind tunnel experiments could yield more physical insight and answer some of the old questions still waiting to be resolved. Although most of the work included here has been published previously, the book connects the various topics, linking them in a coherent storyline.
"The Fluid Dynamic Basis for Actuator Disc and Rotor Theories" was first published in 2018. This Revised Second Edition (2022) will be of interest to those working in all branches of rotor aerodynamics - wind turbines, propellers, ship screws and helicopter rotors. It has been written for proficient students and researchers, and reading it will demand a good knowledge of inviscid (fluid) mechanics.
DOI 10.3233/STAL9781643682792
Downloads
References
Akay, B.; Ferreira, C.S., and van Bussel, G.J.W. (2012), Experimental and Numerical Quantification
of Radial Flow in the Root Region of a HAWT. AIAA 50th Aerospace Science
Meeting, AIAA 2012-0896: 1–10. doi: pdf/10.2514/6.2012-896.
Anderson, H.B.; Mi1borrow, D.J., and Ross, J.N. (1982), Performance and wake measurements
on a 3 m diameter horizontal axis wind turbine rotor. In Proc. 4th Int. Symposium on Wind
Energy Systems. Stockholm, BHRA, 1982.
Anderson, J.D. (2010), Fundamentals of Aerodynamics. McGraw-Hill, New York, 5th edn.
ISBN 978-0-07-339810-5.
Asmuth, H.; Olivares-Espinosa, H., and Ivanell, St. (2020), Actuator line simulations of wind
turbine wakes using the lattice Boltzmann method. Wind Energy Science, 5(2):623–645.
ISSN 23667451. doi: 10.5194/wes-5-623-2020.
Batchelor, G.K. (1970), An introduction to fluid dynamics. Cambridge University Press, Cambridge.
doi: 10.1017/CBO9780511800955.
Bendemann, F. (1910), Luftschraubenuntersuchenden. Zeitschrift fur Flugtechnik und Motorluftschiffahrt,
:177–198.
Betz, A. (1919), Schraubenpropeller mit geringstem Energieverlust. In Vier Abhandlungen zur
Hydrodynamik und Aerodynamik. Reprint of 4 famous papers by Universitatsverlag Gottingen.
Betz, A. (1920), Das Maximum der theoretisch moglichen Ausnutzung des Windes durch Windmotoren.
Zeitschrift fur das gesamte Turbinenwesen, 26:307–309.
Betz, A. (1921), Vortices and the related principles of hydrodynamics. Naca TN 68, translated
from Zeitschrift fur Flugtechnik und Motorluftschiffart.
Betz, A. (1926), Wind-Energie und ihre Ausnutzung durch WindMuhlen. Vandenhoed &
Ruprecht, Gottingen.
Betz, A. (1950), Wie entsteht ein Wirbel in einer wenig zahen Flussigkeit? Die Naturwissenschaften,
(9):7–10.
Bontempo, R. and Manna, M. (2016), A nonlinear and semi-analytical actuator disk method
accounting for general hub shapes. Part 1. Open rotor. Journal of Fluid Mechanics, 792:
–935. ISSN 14697645. doi: 10.1017/jfm.2016.98.
Bontempo, R. and Manna, M. (2018a), A ring-vortex free-wake model for uniformly loaded
propellers. Part II - Solution procedure and analysis of the results. Energy Procedia, 148
(Ati):368–375. ISSN 18766102. doi: 10.1016/j.egypro.2018.08.007.
Bontempo, R. and Manna, M. (2018b), A ring-vortex free-wake model for uniformly loaded
propellers. Part I-Model description. Energy Procedia, 148(Ati):360–367. ISSN 18766102.
doi: 10.1016/j.egypro.2018.08.089.
Bontempo, R. and Manna, M. (2019), On the validity of the axial momentum theory as applied
to the uniformly-loaded propeller. In 13th European Turbomachinery Conference on Turbomachinery
Fluid Dynamics and Thermodynamics, ETC 2019, Lausanne, number April,
Bothezat, G. (1917), Research of work phenomenon for propeller with blades, Petrograd 1917.
English translation in: The General Theory of Blade Screw, Chapter 3. NACA Report, 29:
–225.
Bragg, S.L. and Hawthorne, W.R. (1950), Some exact solutions of the flow through annual
cascade actuator discs. J. Aeronaut. Sci. 17, 243–249. Journal of the Aeronautical Sciences,
(4):243–249.
Branlard, E. (2017), Wind Turbine Aerodynamics and Vorticity-Based Methods. Springer
International Publishing. ISBN 9783319551630. doi: 10.1007/978-3-319-55164-7.
Branlard, E and Gaunaa, M. (2015), Cylindrical vortex wake model : right cylinder. Wind
Energy, 18(11):1973–1987. doi: 10.1002/we.1800.
Branlard, E.; Dixon, K., and Gaunaa, M. (2013), Vortex methods to answer the need for
improved understanding and modelling of tip-loss factors. IET Renewable Power Generation,
(4):311–320. ISSN 1752-1416. doi: 10.1049/iet-rpg.2012.0283.
Branlard, E; Gaunaa, M, and Machefaux, E. (2014), Investigation of a new model accounting
for rotors of finite tip-speed ratio in yaw or tilt. Journal of Physics: Conference Series, 524
(Torque2014):012124. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012124.
Breslin, J.P. and Andersen, P. (1994), Hydrodynamics of ship propellers. Cambridge University
Press. ISBN 0521413605.
Burton, T.; Jenkins, N.; Sharpe, D.J., and Bossanyi, E. (2011), Wind Energy Handbook. Wiley.
ISBN 9780471489979. doi: 10.1002/0470846062.
Calaf, M.; Meneveau, C., and Meyers, J. (2010), Large eddy simulation study of fully developed
wind-turbine array boundary layers. Physics of Fluids, 22(1):1–16. ISSN 10706631. doi:
1063/1.862466.
Chattot, J.J. (2021), On the Edge Singularity of the Actuator Disk Model. Journal of Solar
Energy Engineering, 143(1):1–5. ISSN 0199-6231. doi: 10.1115/1.4047672.
Churchfield, M.; Lee, S.; Moriarty, P.; Martinez, L.; Leonardi, S.; Vijayakumar, G., and
Brasseur, J. (2012), A Large-Eddy Simulation of Wind-Plant Aerodynamics. In 50th AIAA
Aerospace Sciences Meeting, AIAA 2012-0537, p. 1–19, 2012. ISBN 978-1-60086-936-5. doi:
2514/6.2012-537.
Clancy, L.J. (1986), Aerodynamics. reprint by Longman Scientific & Technical, London. ISBN
, 9780582988804.
Conway, J.T. (1998), Exact actuator disk solutions for non-uniform heavy loading and slipstream
contraction. Journal of Fluid Mechanics, 365:235–267. ISSN 00221120. doi:
1017/S0022112098001372.
Corten, G.P. (2001a), Aspect ratio correction for wind turbine blades. In presentation at the
IEA Joint Action Aerodynamics of Wind turbines, 15th symposium, Athens.
Corten, G.P. (2001b), Novel Views on the Extraction of Energy from Wind-Heat Generation
and Terrain Concentration. In EWEC2001 Copenhagen, p. 1–5, 2001b.
Courant, R. and Hilbert, D. (1967), Methoden der mathematischen Physik II. Springer Verlag,
Berlin, Heidelberg. ISBN 978-3-642-58039-0.
Crawford, C. (2006), Re-examination of the Precepts of the Blade Element Momentum Theory
for Coning Rotors. Wind Energy, 9:457–478. doi: 10.1002/we.197.
Craze, D.J. (1977), On the near wake behind a circular disc. 6th Australasian Hydraulics and
Fluid Mechanics Conference, p. 282–286.
Darmofal, D,L. (1993), The Role of Vorticity Dynamics in Vortex Breakdown. In AIAA 24th
Fluid Dynamics Conference, AIAA 93-3036., 1993.
Dağ, K.O. and Sorensen, J.N. (2020), A new tip correction for actuator line computations.
Wind Energy, 23(2):148–160. doi: 10.1002/we.2419.
de Vries, O. (1979), Fluid dynamic aspects of wind energy conversion, AGARD-AG-243.
AGARD, Amsterdam. ISBN 9283513266, 9789283513261.
del Campo, V.; Ragni, D.; Micallef, D.; Akay, B.; Diez, J., and Ferreira, C.S. (2013), Non
intrusive 3D load calculation during yaw conditions. In EWEA2013.
del Campo, V.; Ragni, D.; Micallef, D., and Akay, B. (2014), 3D load estimation on a horizontal
axis wind turbine using SPIV. Wind Energy, 17(11):1645–1657. doi: 10.1002/we.1658.
del Campo, V.; Ragni, D.; Micallef, D.; Diez, J, and Simao Ferreira, C,J. (2015), Estimation of
loads on a horizontal axis wind turbine. Wind Energy, 18(11):1875–1891. doi: 10.1002/we.
Dighe, V.V.; Avallone, F.; Igra, O., and van Bussel, G.J.W. (2019), Multi-element ducts for
ducted wind turbines : a numerical study. Wind Energy Science, 4:439–449. doi: doi.org/
5194/wes-4-439-2019.
El khchine, Y. and Sriti, M. (2017), Tip Loss Factor Effects on Aerodynamic Performances
of Horizontal Axis Wind Turbine. Energy Procedia, 118:136–140. ISSN 18766102. doi:
1016/j.egypro.2017.07.028.
Fleming, P.; Gebraad, P.M.O.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield,
M.; Michalakes, J.; Spalart, P., and Moriarty, P. (2015), Simulation comparison of wake
BIBLIOGRAPHY 135
mitigation control strategies for a two-turbine case. Wind Energy, 18:2135–2143. doi:
1002/we.1810.
Froude, R.E. (1889), On the part played in propulsion by differences of fluid pressure. 13th
Session of the Institution of Naval Architects, 30:390–405.
Glauert, H. (1926), The analysis of experimental results in the windmill brake and vortex ring
state of an airscrew. H.M. Stationary Office, London, arc r&m 10.
Glauert, H. (1935), The General Momentum Theory. In Durand, W,F., editor, Aerodynamic
Theory, volume IV division L. Springer, Berlin.
Goldstein, S. (1929), On the vortex theory of screw propellers. Proc. R. Soc. Lond. A, 123:
–465.
Goorjian, P.M. (1972), An Invalid Equation in the General Momentum Theory of the Actuator
Disk. AIAAjournal, 10(4):543–544.
Gray, R.B.; McMahon, H.M.; Shenoy, K.R., and Hammer, M.L. (1980), Surface pressure measurements
at two tips of a model helicopter rotor in hover. NASA CR3281.
Greenberg, M.D. (1972), Nonlinear actuator disk theory. Zeitschrift fur Flugwissenschaften, 20:
–98.
Haans, W.; Sant, T.; van Kuik, G.A.M., and van Bussel, G.J.W. (2008), HAWT Near-Wake
Aerodynamics, Part I: Axial Flow Conditions. Wind Energy, 11:245–264. doi: 10.1002/we.
Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S., and Larwood,
S.M. (2001), Unsteady aerodynamics experiment phase VI: wind tunnel test configurations
and available data campaigns. Tech Rep. NREL/TP-500-29955. National Renewable Energy
Laboratory.
Hansen, M.O.L. (2008), Aerodynamics of Wind Turbines. Earthscan. ISBN 9781844074389.
Helmholtz, H. (1858), Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen
entsprechen. Journal fur die reine und angewandte Mathematik, 55:25–55.
Herraez, I.; Medjroubi, W.; Stoevesandt, B., and Peinke, J. (2014a), Aerodynamic Simulation
of the MEXICO Rotor. Journal of Physics: Conference Series, 555:012051. ISSN 1742-6588.
doi: 10.1088/1742-6596/555/1/012051.
Herraez, I.; Stoevesandt, B., and Peinke, J. (2014b), Insight into Rotational Effects on a Wind
Turbine Blade Using Navier–Stokes Computations. Energies, 7(10):6798–6822. ISSN 1996-
doi: 10.3390/en7106798.
Herraez, I.; Micallef, D., and van Kuik, G.A.M. (2017), Influence of the conservative rotor loads
on the near wake of a wind turbine. Journal of Physics: Conference Series, 854(1):1–10. ISSN
doi: 10.1088/1742-6596/854/1/012022.
Hjort, S. (2019), Non-Empirical BEM Corrections Relating to Angular and Axial Momentum
Conservation. Energies, 12(320). doi: 10.3390/en12020320.
Hoff, W. (1921), Theory of the ideal windmill, NACA TN 46. Technical report, NACA.
Holling, M.; Peinke, J., and Ivanell, S., editors. (2014), Wind Energy - Impact of Turbulence.
Springer Verlag, Berlin, Heidelberg. ISBN 978-3-642-54696-9. doi: 10.1007/
-3-642-54696-9.
Horlock, J.H. (1978), Actuator Disc Theory. McGraw-Hill. ISBN 978-0070303607.
Hornung, H. (1989), Vorticity generation and transport. In Tenth Australasian fluid mechanics
conference, p. 1-7, Melbourne.
Jamieson, P; Graham, J.M.R.; Hart, E, and Giles, A. (2018), Formulation of the General
Momentum Equations. Journal of Physics Conference Series, 1037(Torque2018):1–10.
Joukowsky, N.J. (1912), Vortex theory of the screw propeller I. Trudy Avia Raschetno- Ispytatelnogo
Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire
de l’Helice Propulsive, Quatrieme Memoire. 1929; 1: 1–47., 16(1):1–31.
Joukowsky, N.J. (1914), Vortex theory of the screw propeller II. Trudy Avia Raschetno- Ispytatelnogo
Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire
de l’Helice Propulsive, Quatrieme Memoire. 1929; 2: 48–93., 17(1):1–33.
Joukowsky, N.J. (1915), Vortex theory of the screw propeller III. Trudy Avia Raschetno-
Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie
Tourbillonnaire de l’Helice Propulsive, Quatrieme Memoire. 1929; 3: 48–93., 17(2):1–23.
Joukowsky, N.J. (1918), Vortex theory of the screw propeller IV. Trudy Avia Raschetno-
Ispytatelnogo Byuro (in Russian] Also published in Gauthier-Villars et Cie. (eds). Theorie
Tourbillonnaire de l’Helice Propulsive, Quatrieme Memoire. 1929; 4: 123–198, 3:1–97.
Joukowsky, N.J. (1920), Joukowsky windmills of the NEJ type. Transactions of the Central
BIBLIOGRAPHY
Institute for Aero-Hydrodynamics of Moscow, (Collected Papers Vol. VI):405–430.
Katz, J. and Plotkin, A. (1991), Low Speed Aerodynamics, From Wing Theory to Panel
Methods. McGraw-Hill Book Co., Singapore, int. edition. ISBN 0070504466.
Kuchemann, F.R.S. (1978), The aerodynamic design of aircraft. Pergamon Press.
Kundu, P.K. (1990), Fluid Mechanics. Academic Press Inc., New York. ISBN 978-0123821003.
Lamb, H.A. (1945), Hydrodynamics. Dover Publications, New York, 6st edition.
Lanchester, F.W. (1907), Aerodynamics. A. Constable & co. ltd., London.
Lanchester, F.W. (1915), A contribution to the theory of propulsion and the screw propeller.
Fifty-sixth session of the Institution of Naval Architects, 57:98–116
Leishman, J.G. (2006), Principles of Helicopter Aerodynamics, 2nd edition. Cambridge University
Press. ISBN 0521858607, 9780521858601.
Lighthill, J. (1986), An informal introduction to fluid mechanics. Clarendon Press, Oxford.
ISBN 0198536313, 9780198536314.
Lighthill, M,J. (1963), Introduction: Boundary layer theory. In Rosenhead, L., editor, Laminar
Boundary Layers. Clarendon Press, Oxford
Lignarolo, L.E,M.; Ferreira, C.S., and van Bussel, G.J.W. (2016a), Experimental comparison of
a wind turbine and of an actuator disc wake. Journal of Renewable and Sustainable Energy,
(023301):1–26. ISSN 1941-7012. doi: 10.1063/1.4941926.
Lignarolo, L.E.M.; Mehta, D.; Stevens, R.J.A.M.; Yilmaz, A.E.; Meyers, J.; Andersen, S J; van
Kuik, G.A.M.; Meneveau, C.; Holierhoek, J.; Simao Ferreira, C.J.; Ragni, D., and van Bussel,
G.J.W. (2016b), Validation of four LES and a vortex model against PIV measurements of
the near wake of an actuator disk and a wind turbine. Renewable Energy, 94:510–523. ISSN
doi: 10.1016/j.renene.2016.03.070.
Limacher, E.J. and Wood, D.H. (2021), An impulse-based derivation of the Kutta –
Joukowsky equation for wind turbine thrust. Wind Energy Science, 6(1):191–201. doi:
5194/wes-6-191-2021.
Madsen, H.A. (1996), A CFD analysis of the actuator disc flow compared with momentum
theory results. 10th IEA Aerodynamic Expert Meeting, p. 109–124.
Madsen, H.A. and Paulsen, U.S. (1990), An integrated rotor and turbulent wake model compared
with experiment. In European Community Wind Energy Conference, p. 269–273,
Madrid.
Madsen, H.A.; Mikkelsen, R.F.; Oye, S.; Bak, C., and Johansen, J. (2007), A Detailed investigation
of the Blade Element Momentum (BEM) model based on analytical and numerical
results and proposal for modifications of the BEM model. Journal of Physics: Conference
Series, 75:012016. ISSN 1742-6596. doi: 10.1088/1742-6596/75/1/012016.
Madsen, H.A.; Bak, C.; Dossing, M.; Mikkelsen, R.F., and Oye, S. (2010), Validation and
modification of the Blade Element Momentum theory based on comparisons with actuator
disc simulations. Wind Energy, 13:373–389. doi: 10.1002/we359.
Maniaci, D. and Schmitz, S. (2016), Extended Glauert Tip Correction to Include Vortex Rollup
Effects. Journal of Physics: Conference Series, 753:022051. ISSN 1742-6588. doi: 10.1088/
-6596/753/2/022051.
Manwell, J.F.; McGowan, J.G., and Rogers, A.L. (2009), Wind energy explained. John Wiley
& Sons, Ltd, 2nd edition. ISBN 9780470015001. doi: 10.1002/9781119994367.
Marshall, J.S. (2001), Inviscid Incompressible Flow. John Wiley and Sons., New York. ISBN
-0-471-37566-1.
Martinez-Tossas, L.A.; Churchfield, M.J., and Meneveau, C. (2017), Optimal smoothing length
scale for actuator line models of wind turbine blades based on Gaussian body force distribution.
Wind Energy, 20(6):1083–1096. doi: 10.1002/we.2081.
McCormick, B,W. (1994), Aerodynamics, Aeronautics and Flight Mechanics. Wiley and Sons
Inc., New York, second edition. ISBN 978-0-471-57506-1.
Medici, D. and Alfredsson, P.H. (2006), Measurements on a wind turbine wake: 3D effects and
bluff body vortex shedding. Wind Energy, 9:219–236. doi: 10.1002/we.156.
Merabet, R. and Laurendeau, E. (2021), Hovering helicopter rotors modeling using the actuator
line method. Journal of Aircraft, art. in advance:1–14.
Meyer, R.E. (1982), Introduction to mathematical fluid dynamics. Dover Publications Inc.,
New York. ISBN 978-0486615547.
Micallef, D. (2012), 3D flows near a HAWT rotor. PhD thesis, available at
TU-Delft repository and U Malta. ISBN 9789995703134. doi: 10.4233/uuid:
ca471701-2817-4a36-9839-4545c1cceb45.
Micallef, D.; van Bussel, G.J.W.; Ferreira, C.S., and Sant, T. (2013), An investigation of radial
velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy, 16:
–544. doi: 10.1002/we.1503.
Micallef, D.; Akay, B.; Ferreira, C.S.; Sant, T., and van Bussel, G.J.W. (2014), The origins of a
wind turbine tip vortex. Journal of Physics: Conference Series, 012074(1). ISSN 17426596.
doi: 10.1088/1742-6596/555/1/012074.
Micallef, D.; Simao Ferreira, C.J.; Sant, T., and van Bussel, G.J.W. (2015), Experimental
and numerical investigation of tip vortex generation and evolution on horizontal axis wind
turbines. Wind Energy, 19(8):1485–1501. doi: 10.1002/we.1932.
Micallef, D.; Ferreira, C.; Herraez, I.; Honing, L.; Yu, W, and Capdevila, H. (2020), Assessment
of actuator disc models in predicting radial flow and wake expansion. Journal of Wind
Engineering and Industrial Aerodynamics, 207(104396). ISSN 01676105. doi: 10.1016/j.
jweia.2020.104396.
Mikkelsen, R.F. (2011), personal communication at the Visby Wake conference.
Mikkelsen, R.F.; Oye, S.; Sorensen, J.N.; Madsen, H.A., and Shen, W.Z. (2009), Analysis of
Wake Expansion and Induction near Tip. In Proceedings EWEC2009, Marseille.
Milne-Thomson, L.M. (1966), Theoretical Aerodynamics. MacMillan and Company Ltd, republished
in 1973 by Dover Publications. ISBN 048661980X, 9780486619804.
Moens, M. and Chatelain, P. (2018), An actuator disk method with tip-loss correction based
on local effective upstream velocities. Wind Energy, 21:766–782. doi: 10.1002/we.2192.
Morrison, P.J. (2006), Hamiltonian Fluid Dynamics. Encyclopedia of Mathematical Physics, 2:
ISSN 00664189. doi: 10.1016/B0-12-512666-2/00246-7.
Morton, B.R. (1984), The generation and decay of vorticity. Geophysical & Astrophysical Fluid
Dynamics, 28:277–308. doi: 10.1080/03091928408230368.
Munk, M. (1920), Wind-driven propellers (or "windmills"), from Zeitschrift fur Flugtechnik
und Motorluftschiffart, NACA TM 201. Technical report, NACA.
Okulov, V.L. (2014), Limit cases for rotor theories with Betz optimization. Journal of Physics:
Conference Series, 524:012129. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012129.
Okulov, V.L. and Sorensen, J.N. (2008), Refined Betz limit for rotors with a finite number of
blades. Wind Energy, 11(4):415–426. ISSN 10954244. doi: 10.1002/we.274.
Okulov, V.L. and Sorensen, J.N. (2010), Maximum efficiency of wind turbine rotors using
Joukowsky and Betz approaches. Journal of Fluid Mechanics, 649:497–508. ISSN 0022-1120.
doi: 10.1017/S0022112010000509.
Okulov, V.L. and van Kuik, G.A.M. (2012), The Betz – Joukowsky limit : on the contribution
to rotor aerodynamics by the British, German and Russian scientific schools. Wind Energy,
:335–344. doi: 10.1002/we.464.
Okulov, V.L.; Sorensen, J.N., and Wood, D.H. (2015), Rotor theories by Professor Joukowsky:
Vortex Theories. Progress in Aerospace Sciences, 73:19–46. ISSN 03760421. doi: 10.1016/j.
paerosci.2014.10.002.
Oye, S. (1990), A simple vortex model of a turbine rotor. In McAnulty, K,F., editor, Third IEA
Symposium on the Aerodynamics of Wind Turbine, p. 1–15, Harwell. ETSU.
Parra, E.A.; Boorsma, K.; Schepers, J.G., and Snel, H. (2016), Momentum considerations on
the New MEXICO experiment. Journal of Physics: Conference Series, 753:072001. ISSN
-6588. doi: 10.1088/1742-6596/753/7/072001.
Paxton, F. (1959), Solid Angle Calculation for a Circular Disk. The review of scientific instruments,
(4):254–258.
Pirrung, G.R.; van der Laan, M.P.; Ramos-Garcia, N., and Meyer Forsting, A.R. (2020), A
simple improvement of a tip loss model for actuator disc simulations. Wind Energy, 23(4):
–1163. ISSN 10991824. doi: 10.1002/we.2481.
Porte-Agel, F.; Wu, T.Y.; Lu, H., and Conzemius, R.J. (2011), Large-eddy simulation of
atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind
Engineering and Industrial Aerodynamics, 99(4):154–168. ISSN 01676105. doi: 10.1016/j.
jweia.2011.01.011.
Prandtl, L. (1918), Tragflugeltheorie I. Mitteilung. Nachrichten der Koniglichem Gesellschaft
der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, p. 451–477.
Prandtl, L. (1924), Uber die Entstehung von Wirbeln in der idealen Flussigkeit, mit Anwendung
auf die Tragflugeltheorie und andere Aufgaben. In von Karman, Th., Levi-Cevita, editor,
Vortrage aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922), p. 18–33. Springer,
Berlin. doi: 10.1007/978-3-662-00280-3_2.
Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011a), Non-intrusive aerodynamic loads
analysis of an aircraft propeller blade. Experiments in Fluids, 51(2):361–371. ISSN 0723-
doi: 10.1007/s00348-011-1057-7.
Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011b), 3D pressure imaging of an aircraft
propeller blade-tip flow by phase-locked stereoscopic PIV. Experiments in Fluids, 52(2):
–477. ISSN 0723-4864. doi: 10.1007/s00348-011-1236-6.
Ranjbar, M.H.; Zanganeh Kia, H.; Nasrazadani, S.A.; Gharali, K., and Nathwani, J. (2020),
Experimental and numerical investigations of actuator disks for wind turbines. Energy Science
and Engineering, (January):1–16. ISSN 20500505. doi: 10.1002/ese3.670.
Rankine, W.J.M. (1865), On the mechanical principles of the action of propellers. In 6th session
of the Institution of Naval Architects, number 9, p. 13–19, 1865.
Rathakrishnan, E. (2013), Theoretical Aerodynamics. John Wiley & Sons, Ltd, Singapore.
ISBN 1118479378, 9781118479377.
Rethore, P.-E.; van der Laan, P.; Troldborg, N.; Zahle, F., and Sorensen, N. (2014), Verification
and validation of an actuator disc model. Wind Energy, 17:919–937. doi: 10.1002/we.1607.
Rosen, A. and Gur, O. (2008), Novel Approach to Axisymmetric Actuator Disk Modeling.
AIAA Journal, 46(11):2914–2925. ISSN 0001-1452. doi: 10.2514/1.37383.
Saffman, P.G. (1992), Vortex Dynamics. Cambridge University Press, Cambridge, monographs
edition. ISBN 052142058X, 9780521420587.
Sanderse, B; van der Pijl, S.P., and Koren, B. (2011), Review of computational fluid dynamics
for wind turbine wake aerodynamics. Wind Energy, 14:799–819. doi: 10.1002/we.458.
Schaffarczyk, A.P. (2020), Introduction to wind turbine aerodynamics. Springer Verlag, Berlin-
Heidelberg, second edition. ISBN 978-3-030-41027-8. doi: 10.1007/978-3-030-41028-5.
Schepers, J.G. (2012), Engineering models in wind energy aerodynamics. PhD thesis, available
at TU-Delft repository. ISBN 9789461915078.
Schepers, J.G. and Snel, H. (2007), Model experiments in controlled conditions (MEXICO).
Technical report, ECN Report ECN-E-07–042.
Schepers, J.G.; Boorsma, K, and Munduate, X. (2014), Final Results from Mexnext-I: Analysis
of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German
Dutch Wind Tunnel DNW. Journal of Physics: Conference Series, 555:012089. ISSN 1742-
doi: 10.1088/1742-6596/555/1/012089.
Schmidt, G.H. and Sparenberg, J.A. (1977), On the edge singularity of an actuator disk with
large constant normal load. Journal of Ship Research, 21(2):125–131.
Schmitz, S. and Maniaci, D.C. (2016), Analytical Method to Determine a Tip Loss Factor
for Highly-Loaded Wind Turbine Rotors. 34th Wind Energy Symposium at AIAA SciTech
Forum, p. 1–16. doi: 10.2514/6.2016-0752.
Segalini, A. and Alfredsson, P.H. (2013), A simplified vortex model of propeller and wind-turbine
wakes. Journal of Fluid Mechanics, 725:91–116. ISSN 0022-1120. doi: 10.1017/jfm.2013.182.
Sharpe, D.J. (2004), A general momentum theory applied to an energy-extracting actuator disc.
Wind Energy, 7(3):177–188. ISSN 1095-4244. doi: 10.1002/we.118.
Shen, W.Z.; Mikkelsen, R.F.; Sorensen, J.N., and Bak, C. (2005a), Tip loss corrections for wind
turbine computations. Wind Energy, 8(4):457–475. ISSN 1095-4244. doi: 10.1002/we.153.
Shen, W.Z.; Sorensen, J.N., and Mikkelsen, R.F. (2005b), Tip Loss Correction for Actuator/
Navier–Stokes Computations. Journal of Solar Energy Engineering, 127(2):209. ISSN
doi: 10.1115/1.1850488.
Shen, W.Z.; Zhu, W,J., and Sorensen, J.N. (2014), Study of tip loss corrections using CFD
rotor computations. Journal of Physics: Conference Series, 555:012094. ISSN 1742-6588. doi:
1088/1742-6596/555/1/012094.
Shives, M. and Crawford, C. (2013), Mesh and load distribution requirements for actuator line
CFD simulations. Wind Energy, 16:1183–1196. doi: 10.1002/we.1546.
Sibuet Watters, C.; Breton, S.P., and Masson, C. (2010), Application of the actuator surface
concept to wind turbine rotor aerodynamics. Wind Energy, 13(5):433–447. doi: 10.1002/we.
Simao Ferreira, C.J. (2009), The near wake of the VAWT: 2D and 3D views of the VAWT
aerodynamics. PhD thesis, TU Delft repository.
Snel, H. and Schepers, J.G. (1995), Joint investigation of dynamic inflow effects and implementation
of an engineering method. Technical report, ECN-C-94-107.
Sorensen, J.N. (2011), Aerodynamic Aspects of Wind Energy Conversion. Annual Review of
Fluid Mechanics, 43(1):427–448. ISSN 0066-4189. doi: 10.1146/annurev-fluid-122109-160801.
Sorensen, J.N. (2015), General momentum theory for horizontal axis wind turbines.
Springer International Publishing, Heidelberg. ISBN 978-3-319-22113-7. doi: 10.1007/
-3-319-22114-4.
Sorensen, J.N. and Mikkelsen, R.F. (2001), On the validity of the blade element momentum
method. In EWEC2001, p. 362–366, Copenhagen.
Sorensen, J.N. and Myken, A. (1992), Unsteady actuator disc model for horizontal axis wind
turbines. Journal of Wind Engineering and Industrial Aerodynamics, 39:139–149.
Sorensen, J.N. and Shen, W.Z. (2002), Numerical Modeling of Wind Turbine Wakes. Journal
of Fluids Engineering, 124(2):393. ISSN 00982202. doi: 10.1115/1.1471361.
Sorensen, J.N. and van Kuik, G.A.M. (2011), General momentum theory for wind turbines at
low tip speed ratios. Wind Energy, 14:821–839. doi: 10.1002/we.423.
Sorensen, J.N.; Shen, W.Z., and Munduate, X. (1998), Analysis of wake states by a full field
actuator disc model. Wind Energy, 88:73–88. doi: 10.1002/(SICI)1099-1824(199812)1:2<73::
AID-WE12>3.0.CO;2-L.
Sorensen, J.N.; Dag, K.O., and Ramos-Garcia, N. (2015), A refined tip correction based on
decambering. Wind Energy, 19(5):787–802. doi: 10.1002/we.1865.
Sorensen, J.N.; Okulov, V.L.; Mikkelsen, R.F.; Naumov, I.V., and Litvinov, I.V. (2016), Comparison
of classical methods for blade design and the influence of tip correction on rotor
performance. Journal of Physics: Conference Series, 753(Torque):022020. ISSN 1742-6588.
doi: 10.1088/1742-6596/753/2/022020.
Sorensen, J.N.; Okulov, V.L., and Ramos-Garcia, N. (2022), Analytical and numerical solutions
to classical rotor designs. Progress in Aerospace Sciences, 130:1–12. doi: org/
/j.paerosci.2021.100793.
Spalart, P.R. (2003), On the simple actuator disk. Journal of Fluid Mechanics, 494:399–405.
ISSN 00221120. doi: 10.1017/S0022112003006128.
Stepniewski, W.Z. and Keys, S.N. (1978), Rotary wind aerodynamics. Dover Publications Inc.,
New York. ISBN 978-0486646473.
Stevens, R.J.A.M. and Meneveau, C. (2017), Flow Structure and Turbulence in Wind
Farms. Annual Review of Fluid Mechanics, 49(1):311–339. ISSN 0066-4189. doi: 10.1146/
annurev-fluid-010816-060206.
Stroevesandt, B.; Schepers, G.; Fuglsang, P., and Yuping, S., editors. (2019), Handbook of wind
energy aerodynamics. Springer, online edition. ISBN 9783030054557.
Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2020), The generation and conservation
of vorticity: Deforming interfaces and boundaries in two-dimensional flows. Journal of Fluid
Mechanics, 890(A5):1–42. ISSN 14697645. doi: 10.1017/jfm.2020.128.
Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2021), The generation and diffusion of
vorticity in three-dimensional flows: Lyman’s flux. Journal of Fluid Mechanics, 915:1–42.
ISSN 14697645. doi: 10.1017/jfm.2021.179.
Thoma, D. (1925), Grundsatzliches zur einfachen Strahltheorie der Schraube. Zeitschrift fur
Flugtechnik und Motorluftschiffahrt, 16(10):206–208.
Thwaites, B. (1960), Incompressible Aerodynamics. Clarendon Press, Oxford.
Troldborg, N.; Sorensen, J.N., and Mikkelsen, R.F. (2010), Numerical simulations of wake
characteristics of a wind turbine in uniform inflow. Wind Energy, 13:86–99. doi: 10.1002/
we.345.
van Holten, T. (1981), Concentrator systems for wind energy, with emphasis on tip-vanes. Wind
Engineering, 5(1):29–45.
van Kuik, G.A.M. (1989), Experimental verification of an improved actuator disc concept. In
Proceedings of the 15th European Rotorcraft Forum, Amsterdam.
van Kuik, G.A.M. (2004), The flow induced by Prandtl’s self-similar vortex sheet spirals at
infinite distance from the spiral kernel. European Journal of Mechanics - B/Fluids, 23(4):
–616. ISSN 09977546. doi: 10.1016/j.euromechflu.2004.01.002.
van Kuik, G.A.M. (2007), The Lanchester - Betz - Joukowsky limit. Wind Energy, 10(3):
–291. ISSN 10954244. doi: 10.1002/we.218.
van Kuik, G.A.M. (2009), A steady solution for Prandtl’s self-similar vortex sheet spirals.
European Journal of Mechanics, B/Fluids, 28(2):296–298. ISSN 09977546. doi: 10.1016/j.
euromechflu.2008.05.007.
van Kuik, G.A.M. (2016), Momentum theory of Joukowsky actuator discs with swirl. Journal
of Physics: Conference Series, 753:022021. ISSN 1742-6588. doi: 10.1088/1742-6596/753/2/
van Kuik, G.A.M. (2017), Joukowsky actuator disc momentum theory. Wind Energy Science,
:307–316. ISSN 2366-7621. doi: 10.5194/wes-2016-55.
van Kuik, G.A.M. (2018), Comparison of actuator disc flows representing wind turbines and
propellers. Journal of Physics Conference Series, 1037(Torque2018):1–10. doi: 10.1088/
-6596/1037/2/022007.
van Kuik, G.A.M. (2020), On the velocity at wind turbine and propeller actuator discs. Wind
Energy Science, 5:855–865. doi: https://doi.org/10.5194/wes-5-855-2020.
van Kuik, G.A.M. (2021), The actuator disc concept. In Stroevesandt, B.; Schepers, G.;
Fuglsang, P., and Yuping, S., editors, Handbook of Wind Energy Aerodynamics, p. 1–49.
Springer, Cham. ISBN 9783030054557. doi: 10.1007/978-3-030-05455-7_2-2.
van Kuik, G.A.M. (2022), On (non-)conservative body force fields generating vorticity and
converting energy. Journal of Fluid Mechanics, 941:A46 1—17.doi: 10.1017/jfm.2022.317.
van Kuik, G.A.M. and Chattot, J.J. (2021), Personal communication.
van Kuik, G.A.M. and Lignarolo, L.E.M. (2016), Potential flow solutions for energy extracting
actuator disc flows. Wind Energy, 19:1391–1406. doi: 10.1002/we.1902.
van Kuik, G.A.M.; Micallef, D.; Herraez, I.; van Zuijlen, A.H., and Ragni, D. (2014), The role
of conservative forces in rotor aerodynamics. Journal of Fluid Mechanics, 750:284–315. ISSN
-1120. doi: 10.1017/jfm.2014.256.
van Kuik, G.A.M.; Sorensen, J.N., and Okulov, V.L. (2015a), Rotor theories by Professor
Joukowsky: Momentum theories. Progress in Aerospace Sciences, 73:1–18. ISSN 03760421.
doi: 10.1016/j.paerosci.2014.10.001.
van Kuik, G.A.M.; Yu, W.; Sarmast, S., and Ivanell, S. (2015b), Comparison of actuator disc
and Joukowsky rotor flows, to explore the need for a tip correction. Journal of Physics
Conference Series, 625:012013. doi: 10.1088/1742-6596/625/1/012013.
van Kuik, G.A.M.; Peinke, J.; Nijssen, R.; Lekou, D.; Mann, J.; Ferreira, C.S.; van Wingerden,
J.W.; Schlipf, D.; Gebraad, P.; Polinder, H.; Abrahamsen, A.; van Bussel, G.J.W.; Tavner,
P.; Bottasso, C L; Muskulus, M; Matha, D; Lindeboom, H.J.; Degraer, S.; Kramer, O.;
Lehnhoff, S.; Sonnenschein, M.; Morthorst, P.E., and Skytte, K. (2016), Long-term research
challenges in wind energy – a research agenda by the European Academy of Wind Energy.
Wind Energy Science, 1(1):1–39. ISSN 2366-7443. doi: 10.5194/wes-1-1-2016.
Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.;
Green, P.; Holttinen, H.; Laird, D.; Lehtomaki, V.; Lundquist, J.K.; Manwell, J.; Marquis,
M.; Meneveau, C.; Moriarty, P.; Munduate, X.; Muskulus, M.; Naughton, J.; Pao, L.; Paquette,
J.; Peinke, J.; Robertson, A.; Rodrigo, J,S.; Sempreviva, A.M.; Smith, J,C.; Tuohy,
A, and Wiser, R. (2019), Grand challenges in the science of wind energy. Science, 366(6464).
ISSN 10959203. doi: 10.1126/science.aau2027.
Vetchinkin, V.P. (1913), Calculation of screw propeller, part I. Buleteni Politekhnicheskogo
obshestva (in Russian), 5.
Vetchinkin, V.P. (1918), Calculation of screw propeller, part II. Trudy Avia Raschetno-
Ispytatelnogo Byuro, 4:1–129.
von Karman, Th. and Burgers, T.M. (1935), Motion of a perfect fluid produced by external
forces. In Durand, W.F., editor, Aerodynamic Theory, Vol. II Division E. Springer Verlag,
Berlin.
Wald, Q.R. (2006), The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2):
–128. ISSN 03760421. doi: 10.1016/j.paerosci.2006.04.001.
Wilmshurst, S.; Metherell, A.J.F.; Wilson, D.M.A.; Milborrow, D.J., and Ross, J.N. (1984),
Wind turbine rotor performance in the high thrust region. In Sixth BWEA Conference, 1984.
Wilson, R.E. and Lissaman, P.B.S. (1974), Applied aerodynamics of wind power machines.
NASA STI/Recon Technical Report N, 75(May):22669. doi: 10.1007/978-3-642-91487-4_3.
Wimshurst, A. and Wilden, R.H.J. (2017), Analysis of a tip correction factor for horizontal axis
turbines. Wind Energy. ISSN 10954244. doi: 10.1002/we.2106.
Wimshurst, A. and Wilden, R.H.J. (2018), Computational observations of the tip loss mechanism
experienced by horizontal axis rotors. Wind Energy, Early View:1–14. ISSN 10954244.
doi: 10.1002/we.2177.
Wood, D.H. (2007), Including swirl in the actuator disk analysis of wind turbines. Wind
Engineering, 31(5):317–323.
Wood, D.H. (2015), Maximum wind turbine performance at low tip speed ratio. Journal of
Renewable and Sustainable Energy, 7:053126. doi: 10.1063/1.4934895.
Wood, D.H. (2018), Application of extended vortex theory for blade element analysis of
horizontal-axis wind turbines. Renewable Energy, 121:188–194. ISSN 09601481. doi:
1016/j.renene.2017.12.085.
Wood, D.H. and Limacher, E,. (2021), Some effects of flow expansion on the aerodynamics
of horizontal-axis wind turbines. Wind Energy Science, 6:1413–1425. doi: 10.5194/
wes-6-1413-2021.
Wood, D.H.; Okulov, V.L., and Bhattacharjee, D. (2016), Direct calculation of wind turbine
tip loss. Renewable Energy, 95:269–276. ISSN 0960-1481. doi: 10.1016/j.renene.2016.04.017.
Wu, J.Z. and Wu, J.M. (1998), Boundary vorticity dynamics since Lighthill’s 1963 article:
review and development. Theoretical and computational fluid dynamics, 10:459–474. doi:
1007/s001620050077.
Wu, J.Z.; Ma, H.Y., and Zhou, M.D. (2005), Vorticity and Vortex Dynamics. Springer Verlag,
Berlin-Heidelberg. ISBN -10 3-540-29027-3.
Wu, T.Y. (1962), Flow through a heavily loaded actuator disc. Schiffstechnik, 9(47):134–138.
Xiao, J.; Wu, J.; Chen, L., and Shi, Z. (2011), Particle image velocimetry (PIV) measurements
of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 32(6):
–738. ISSN 0253-4827. doi: 10.1007/s10483-011-1452-x.
Xiros, M.I. and Xiros, N.I. (2007), Remarks on wind turbine power absorption increase by
including the axial force due to the radial pressure gradient in the general momentum theory.
Wind Energy, 10(1):99–102. ISSN 10954244. doi: 10.1002/we.203.
Yoon, S.S. and Heister, S.D. (2004), Analytical formulas for the velocity field induced by an
infinitely thin vortex ring. International journal for numerical methods in fluids, 44:665–672.
doi: 10.1002/fld.666.
Yu, W.; Hong, V.W.; Ferreira, C., and van Kuik, G.A.M. (2017), Experimental analysis on
the dynamic wake of an actuator disc undergoing transient loads. Experiments in Fluids, 58
(149):1–15. ISSN 0723-4864. doi: 10.1007/s00348-017-2432-9.
Yu, W.; Tavernier, D.; Schepers, G.; Ferreira, C., and van Kuik, G.A.M. (2019), New dynamicinflow
engineering models based on linear and nonlinear actuator disc vortex models. Wind
Energy, 22:1433–1450. doi: 10.1002/we.2380.
Zhong, W.; Wang, T.G.; Zhu, W.J., and Shen, W.Z. (2019), Evaluation of Tip Loss Corrections
to AD / NS Simulations of Wind Turbine Aerodynamic Performance. Applied Sciences, 9:
doi: doi:10.3390/app9224919.