The Fluid Dynamic Basis for Actuator Disc and Rotor Theories: Revised Second Edition
Keywords:
actuator disc, wind turbine, propeller, momentum theory, conservative forces, non-conservative forces, rotor aerodynamicsSynopsis
The first rotor performance predictions were published by Joukowsky exactly 100 years ago. Although a century of research has expanded the knowledge of rotor aerodynamics enormously, and modern computer power and measurement techniques now enable detailed analyses that were previously out of reach, the concepts proposed by Froude, Betz, Joukowsky and Glauert for modelling a rotor in performance calculations are still in use today, albeit with modifications and expansions. This book is the result of the author's curiosity as to whether a return to these models with a combination of mathematics, dedicated computations and wind tunnel experiments could yield more physical insight and answer some of the old questions still waiting to be resolved. Although most of the work included here has been published previously, the book connects the various topics, linking them in a coherent storyline.
"The Fluid Dynamic Basis for Actuator Disc and Rotor Theories" was first published in 2018. This Revised Second Edition (2022) will be of interest to those working in all branches of rotor aerodynamics - wind turbines, propellers, ship screws and helicopter rotors. It has been written for proficient students and researchers, and reading it will demand a good knowledge of inviscid (fluid) mechanics.
DOI 10.3233/STAL9781643682792
Downloads
References
Akay, B.; Ferreira, C.S., and van Bussel, G.J.W. (2012), Experimental and Numerical Quantification of Radial Flow in the Root Region of a HAWT. AIAA 50th Aerospace Science Meeting, AIAA 2012-0896: 1-10. doi: pdf/10.2514/6.2012-896. https://doi.org/10.2514/6.2012-896
Anderson, H.B.; Mi1borrow, D.J., and Ross, J.N. (1982), Performance and wake measurements on a 3 m diameter horizontal axis wind turbine rotor. In Proc. 4th Int. Symposium on Wind Energy Systems. Stockholm, BHRA, 1982.
Anderson, J.D. (2010), Fundamentals of Aerodynamics. McGraw-Hill, New York, 5th edn. ISBN 978-0-07-339810-5.
Asmuth, H.; Olivares-Espinosa, H., and Ivanell, St. (2020), Actuator line simulations of wind turbine wakes using the lattice Boltzmann method. Wind Energy Science, 5(2):623-645. ISSN 23667451. doi: 10.5194/wes-5-623-2020. https://doi.org/10.5194/wes-5-623-2020
Batchelor, G.K. (1970), An introduction to fluid dynamics. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511800955. https://doi.org/10.1017/CBO9780511800955
Bendemann, F. (1910), Luftschraubenuntersuchenden. Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 7:177-198.
Betz, A. (1919), Schraubenpropeller mit geringstem Energieverlust. In Vier Abhandlungen zur Hydrodynamik und Aerodynamik. Reprint of 4 famous papers by Universitatsverlag Gottingen.
Betz, A. (1920), Das Maximum der theoretisch moglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift fur das gesamte Turbinenwesen, 26:307-309.
Betz, A. (1921), Vortices and the related principles of hydrodynamics. Naca TN 68, translated from Zeitschrift fur Flugtechnik und Motorluftschiffart.
Betz, A. (1926), Wind-Energie und ihre Ausnutzung durch WindMuhlen. Vandenhoed & Ruprecht, Gottingen.
Betz, A. (1950), Wie entsteht ein Wirbel in einer wenig zahen Flussigkeit? Die Naturwissenschaften, 37(9):7-10. https://doi.org/10.1007/BF00622314
Bontempo, R. and Manna, M. (2016), A nonlinear and semi-analytical actuator disk method accounting for general hub shapes. Part 1. Open rotor. Journal of Fluid Mechanics, 792: 910-935. ISSN 14697645. doi: 10.1017/jfm.2016.98. https://doi.org/10.1017/jfm.2016.98
Bontempo, R. and Manna, M. (2018a), A ring-vortex free-wake model for uniformly loaded propellers. Part II - Solution procedure and analysis of the results. Energy Procedia, 148 (Ati):368-375. ISSN 18766102. doi: 10.1016/j.egypro.2018.08.007. https://doi.org/10.1016/j.egypro.2018.08.007
Bontempo, R. and Manna, M. (2018b), A ring-vortex free-wake model for uniformly loaded propellers. Part I-Model description. Energy Procedia, 148(Ati):360-367. ISSN 18766102. doi: 10.1016/j.egypro.2018.08.089. https://doi.org/10.1016/j.egypro.2018.08.089
Bontempo, R. and Manna, M. (2019), On the validity of the axial momentum theory as applied to the uniformly-loaded propeller. In 13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2019, Lausanne, number April, 2019.
Bothezat, G. (1917), Research of work phenomenon for propeller with blades, Petrograd 1917. English translation in: The General Theory of Blade Screw, Chapter 3. NACA Report, 29: 198-225.
Bragg, S.L. and Hawthorne, W.R. (1950), Some exact solutions of the flow through annual cascade actuator discs. J. Aeronaut. Sci. 17, 243-249. Journal of the Aeronautical Sciences, 17(4):243-249. https://doi.org/10.2514/8.1597
Branlard, E and Gaunaa, M. (2015), Cylindrical vortex wake model : right cylinder. Wind Energy, 18(11):1973-1987. doi: 10.1002/we.1800. https://doi.org/10.1002/we.1800
Branlard, E. (2017), Wind Turbine Aerodynamics and Vorticity-Based Methods. Springer International Publishing. ISBN 9783319551630. doi: 10.1007/978-3-319-55164-7. https://doi.org/10.1007/978-3-319-55164-7
Branlard, E.; Dixon, K., and Gaunaa, M. (2013), Vortex methods to answer the need for improved understanding and modelling of tip-loss factors. IET Renewable Power Generation, 7(4):311-320. ISSN 1752-1416. doi: 10.1049/iet-rpg.2012.0283. https://doi.org/10.1049/iet-rpg.2012.0283
Branlard, E; Gaunaa, M, and Machefaux, E. (2014), Investigation of a new model accounting for rotors of finite tip-speed ratio in yaw or tilt. Journal of Physics: Conference Series, 524 (Torque2014):012124. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012124. https://doi.org/10.1088/1742-6596/524/1/012124
Breslin, J.P. and Andersen, P. (1994), Hydrodynamics of ship propellers. Cambridge University Press. ISBN 0521413605. https://doi.org/10.1017/CBO9780511624254
Burton, T.; Jenkins, N.; Sharpe, D.J., and Bossanyi, E. (2011), Wind Energy Handbook. Wiley. ISBN 9780471489979. doi: 10.1002/0470846062. https://doi.org/10.1002/0470846062
Calaf, M.; Meneveau, C., and Meyers, J. (2010), Large eddy simulation study of fully developed wind-turbine array boundary layers. Physics of Fluids, 22(1):1-16. ISSN 10706631. doi: 10.1063/1.862466. https://doi.org/10.1063/1.862466
Chattot, J.J. (2021), On the Edge Singularity of the Actuator Disk Model. Journal of Solar Energy Engineering, 143(1):1-5. ISSN 0199-6231. doi: 10.1115/1.4047672. https://doi.org/10.1115/1.4047672
Churchfield, M.; Lee, S.; Moriarty, P.; Martinez, L.; Leonardi, S.; Vijayakumar, G., and Brasseur, J. (2012), A Large-Eddy Simulation of Wind-Plant Aerodynamics. In 50th AIAA Aerospace Sciences Meeting, AIAA 2012-0537, p. 1-19, 2012. ISBN 978-1-60086-936-5. doi: 10.2514/6.2012-537. https://doi.org/10.2514/6.2012-537
Clancy, L.J. (1986), Aerodynamics. reprint by Longman Scientific & Technical, London. ISBN 0582988802, 9780582988804.
Conway, J.T. (1998), Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction. Journal of Fluid Mechanics, 365:235-267. ISSN 00221120. doi: 10.1017/S0022112098001372. https://doi.org/10.1017/S0022112098001372
Corten, G.P. (2001a), Aspect ratio correction for wind turbine blades. In presentation at the IEA Joint Action Aerodynamics of Wind turbines, 15th symposium, Athens.
Corten, G.P. (2001b), Novel Views on the Extraction of Energy from Wind-Heat Generation and Terrain Concentration. In EWEC2001 Copenhagen, p. 1-5, 2001b.
Courant, R. and Hilbert, D. (1967), Methoden der mathematischen Physik II. Springer Verlag, Berlin, Heidelberg. ISBN 978-3-642-58039-0.
Crawford, C. (2006), Re-examination of the Precepts of the Blade Element Momentum Theory for Coning Rotors. Wind Energy, 9:457-478. doi: 10.1002/we.197. https://doi.org/10.1002/we.197
Craze, D.J. (1977), On the near wake behind a circular disc. 6th Australasian Hydraulics and Fluid Mechanics Conference, p. 282-286.
Dağ, K.O. and Sorensen, J.N. (2020), A new tip correction for actuator line computations. Wind Energy, 23(2):148-160. doi: 10.1002/we.2419. https://doi.org/10.1002/we.2419
Darmofal, D,L. (1993), The Role of Vorticity Dynamics in Vortex Breakdown. In AIAA 24th Fluid Dynamics Conference, AIAA 93-3036., 1993. https://doi.org/10.2514/6.1993-3036
de Vries, O. (1979), Fluid dynamic aspects of wind energy conversion, AGARD-AG-243. AGARD, Amsterdam. ISBN 9283513266, 9789283513261.
del Campo, V.; Ragni, D.; Micallef, D., and Akay, B. (2014), 3D load estimation on a horizontal axis wind turbine using SPIV. Wind Energy, 17(11):1645-1657. doi: 10.1002/we.1658. https://doi.org/10.1002/we.1658
del Campo, V.; Ragni, D.; Micallef, D.; Akay, B.; Diez, J., and Ferreira, C.S. (2013), Non intrusive 3D load calculation during yaw conditions. In EWEA2013.
del Campo, V.; Ragni, D.; Micallef, D.; Diez, J, and Simao Ferreira, C,J. (2015), Estimation of loads on a horizontal axis wind turbine. Wind Energy, 18(11):1875-1891. doi: 10.1002/we. 1794. https://doi.org/10.1002/we.1794
Dighe, V.V.; Avallone, F.; Igra, O., and van Bussel, G.J.W. (2019), Multi-element ducts for ducted wind turbines : a numerical study. Wind Energy Science, 4:439-449. doi: doi.org/ 10.5194/wes-4-439-2019. https://doi.org/10.5194/wes-4-439-2019
El khchine, Y. and Sriti, M. (2017), Tip Loss Factor Effects on Aerodynamic Performances of Horizontal Axis Wind Turbine. Energy Procedia, 118:136-140. ISSN 18766102. doi: 10.1016/j.egypro.2017.07.028. https://doi.org/10.1016/j.egypro.2017.07.028
Fleming, P.; Gebraad, P.M.O.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield,M.; Michalakes, J.; Spalart, P., and Moriarty, P. (2015), Simulation comparison of wake mitigation control strategies for a two-turbine case. Wind Energy, 18:2135-2143. doi: 10.1002/we.1810. https://doi.org/10.1002/we.1810
Froude, R.E. (1889), On the part played in propulsion by differences of fluid pressure. 13th Session of the Institution of Naval Architects, 30:390-405.
Glauert, H. (1926), The analysis of experimental results in the windmill brake and vortex ring state of an airscrew. H.M. Stationary Office, London, arc r&m 10.
Glauert, H. (1935), The General Momentum Theory. In Durand, W,F., editor, Aerodynamic Theory, volume IV division L. Springer, Berlin.
Goldstein, S. (1929), On the vortex theory of screw propellers. Proc. R. Soc. Lond. A, 123:440-465. https://doi.org/10.1098/rspa.1929.0078
Goorjian, P.M. (1972), An Invalid Equation in the General Momentum Theory of the Actuator Disk. AIAAjournal, 10(4):543-544. https://doi.org/10.2514/3.50146
Gray, R.B.; McMahon, H.M.; Shenoy, K.R., and Hammer, M.L. (1980), Surface pressure measurements at two tips of a model helicopter rotor in hover. NASA CR3281.
Greenberg, M.D. (1972), Nonlinear actuator disk theory. Zeitschrift fur Flugwissenschaften, 20: 90-98.
Haans, W.; Sant, T.; van Kuik, G.A.M., and van Bussel, G.J.W. (2008), HAWT Near-Wake Aerodynamics, Part I: Axial Flow Conditions. Wind Energy, 11:245-264. doi: 10.1002/we.262. https://doi.org/10.1002/we.262
Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S., and Larwood, S.M. (2001), Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. Tech Rep. NREL/TP-500-29955. National Renewable Energy Laboratory. https://doi.org/10.2172/15000240
Hansen, M.O.L. (2008), Aerodynamics of Wind Turbines. Earthscan. ISBN 9781844074389.
Helmholtz, H. (1858), Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal fur die reine und angewandte Mathematik, 55:25-55. https://doi.org/10.1515/crll.1858.55.25
Herraez, I.; Medjroubi, W.; Stoevesandt, B., and Peinke, J. (2014a), Aerodynamic Simulation of the MEXICO Rotor. Journal of Physics: Conference Series, 555:012051. ISSN 1742-6588.doi: 10.1088/1742-6596/555/1/012051. https://doi.org/10.1088/1742-6596/555/1/012051
Herraez, I.; Micallef, D., and van Kuik, G.A.M. (2017), Influence of the conservative rotor loads on the near wake of a wind turbine. Journal of Physics: Conference Series, 854(1):1-10. ISSN 17426596. doi: 10.1088/1742-6596/854/1/012022.https://doi.org/10.1088/1742- 6596/854/1/012022
Herraez, I.; Stoevesandt, B., and Peinke, J. (2014b), Insight into Rotational Effects on a Wind Turbine Blade Using Navier-Stokes Computations. Energies, 7(10):6798-6822. ISSN 1996- 1073. doi: 10.3390/en7106798. https://doi.org/10.3390/en7106798
Hjort, S. (2019), Non-Empirical BEM Corrections Relating to Angular and Axial Momentum Conservation. Energies, 12(320). doi: 10.3390/en12020320. https://doi.org/10.3390/en12020320
Hoff, W. (1921), Theory of the ideal windmill, NACA TN 46. Technical report, NACA.
Holling, M.; Peinke, J., and Ivanell, S., editors. (2014), Wind Energy - Impact of Turbulence. Springer Verlag, Berlin, Heidelberg. ISBN 978-3-642-54696-9. doi: 10.1007/978-3-642-54696-9. https://doi.org/10.1007/978-3-642-54696-9
Horlock, J.H. (1978), Actuator Disc Theory. McGraw-Hill. ISBN 978-0070303607.
Hornung, H. (1989), Vorticity generation and transport. In Tenth Australasian fluid mechanics conference, p. 1-7, Melbourne.
Jamieson, P; Graham, J.M.R.; Hart, E, and Giles, A. (2018), Formulation of the General Momentum Equations. Journal of Physics Conference Series, 1037(Torque2018):1-10. https://doi.org/10.1088/1742-6596/1037/2/022006
Joukowsky, N.J. (1912), Vortex theory of the screw propeller I. Trudy Avia Raschetno- Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire de l'Helice Propulsive, Quatrieme Memoire. 1929; 1: 1-47., 16(1):1-31.
Joukowsky, N.J. (1914), Vortex theory of the screw propeller II. Trudy Avia Raschetno- Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire de l'Helice Propulsive, Quatrieme Memoire. 1929; 2: 48-93., 17(1):1-33.
Joukowsky, N.J. (1915), Vortex theory of the screw propeller III. Trudy Avia Raschetno- Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire de l'Helice Propulsive, Quatrieme Memoire. 1929; 3: 48-93., 17(2):1-23.
Joukowsky, N.J. (1918), Vortex theory of the screw propeller IV. Trudy Avia Raschetno- Ispytatelnogo Byuro (in Russian] Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire de l'Helice Propulsive, Quatrieme Memoire. 1929; 4: 123-198, 3:1-97.
Joukowsky, N.J. (1920), Joukowsky windmills of the NEJ type. Transactions of the Central Institute for Aero-Hydrodynamics of Moscow, (Collected Papers Vol. VI):405-430.
Katz, J. and Plotkin, A. (1991), Low Speed Aerodynamics, From Wing Theory to Panel Methods. McGraw-Hill Book Co., Singapore, int. edition. ISBN 0070504466.
Kuchemann, F.R.S. (1978), The aerodynamic design of aircraft. Pergamon Press.
Kundu, P.K. (1990), Fluid Mechanics. Academic Press Inc., New York. ISBN 978-0123821003.
Lamb, H.A. (1945), Hydrodynamics. Dover Publications, New York, 6st edition.
Lanchester, F.W. (1907), Aerodynamics. A. Constable & co. ltd., London.
Lanchester, F.W. (1915), A contribution to the theory of propulsion and the screw propeller. Fifty-sixth session of the Institution of Naval Architects, 57:98-116 https://doi.org/10.1111/j.1559-3584.1915.tb00408.x
Leishman, J.G. (2006), Principles of Helicopter Aerodynamics, 2nd edition. Cambridge University Press. ISBN 0521858607, 9780521858601.
Lighthill, J. (1986), An informal introduction to fluid mechanics. Clarendon Press, Oxford. ISBN 0198536313, 9780198536314.
Lighthill, M,J. (1963), Introduction: Boundary layer theory. In Rosenhead, L., editor, Laminar Boundary Layers. Clarendon Press, Oxford
Lignarolo, L.E,M.; Ferreira, C.S., and van Bussel, G.J.W. (2016a), Experimental comparison of a wind turbine and of an actuator disc wake. Journal of Renewable and Sustainable Energy, 8(023301):1-26. ISSN 1941-7012. doi: 10.1063/1.4941926. https://doi.org/10.1063/1.4941926
Lignarolo, L.E.M.; Mehta, D.; Stevens, R.J.A.M.; Yilmaz, A.E.; Meyers, J.; Andersen, S J; van Kuik, G.A.M.; Meneveau, C.; Holierhoek, J.; Simao Ferreira, C.J.; Ragni, D., and van Bussel, G.J.W. (2016b), Validation of four LES and a vortex model against PIV measurements of the near wake of an actuator disk and a wind turbine. Renewable Energy, 94:510-523. ISSN 09601481. doi: 10.1016/j.renene.2016.03.070. https://doi.org/10.1016/j.renene.2016.03.070
Limacher, E.J. and Wood, D.H. (2021), An impulse-based derivation of the Kutta -Joukowsky equation for wind turbine thrust. Wind Energy Science, 6(1):191-201. doi: 10.5194/wes-6-191-2021. https://doi.org/10.5194/wes-6-191-2021
Madsen, H.A. (1996), A CFD analysis of the actuator disc flow compared with momentum theory results. 10th IEA Aerodynamic Expert Meeting, p. 109-124.
Madsen, H.A. and Paulsen, U.S. (1990), An integrated rotor and turbulent wake model compared with experiment. In European Community Wind Energy Conference, p. 269-273,
Madsen, H.A.; Bak, C.; Dossing, M.; Mikkelsen, R.F., and Oye, S. (2010), Validation and modification of the Blade Element Momentum theory based on comparisons with actuator disc simulations. Wind Energy, 13:373-389. doi: 10.1002/we359. https://doi.org/10.1002/we.359
Madsen, H.A.; Mikkelsen, R.F.; Oye, S.; Bak, C., and Johansen, J. (2007), A Detailed investigation of the Blade Element Momentum (BEM) model based on analytical and numerical results and proposal for modifications of the BEM model. Journal of Physics: Conference Series, 75:012016. ISSN 1742-6596. doi: 10.1088/1742-6596/75/1/012016. https://doi.org/10.1088/1742-6596/75/1/012016
Maniaci, D. and Schmitz, S. (2016), Extended Glauert Tip Correction to Include Vortex Rollup Effects. Journal of Physics: Conference Series, 753:022051. ISSN 1742-6588. doi: 10.1088/ 1742-6596/753/2/022051. https://doi.org/10.1088/1742-6596/753/2/022051
Manwell, J.F.; McGowan, J.G., and Rogers, A.L. (2009), Wind energy explained. John Wiley & Sons, Ltd, 2nd edition. ISBN 9780470015001. doi: 10.1002/9781119994367. https://doi.org/10.1002/9781119994367
Marshall, J.S. (2001), Inviscid Incompressible Flow. John Wiley and Sons., New York. ISBN 978-0-471-37566-1.
Martinez-Tossas, L.A.; Churchfield, M.J., and Meneveau, C. (2017), Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energy, 20(6):1083-1096. doi: 10.1002/we.2081. https://doi.org/10.1002/we.2081
McCormick, B,W. (1994), Aerodynamics, Aeronautics and Flight Mechanics. Wiley and Sons Inc., New York, second edition. ISBN 978-0-471-57506-1.
Medici, D. and Alfredsson, P.H. (2006), Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy, 9:219-236. doi: 10.1002/we.156. https://doi.org/10.1002/we.156
Merabet, R. and Laurendeau, E. (2021), Hovering helicopter rotors modeling using the actuator line method. Journal of Aircraft, art. in advance:1-14.
Meyer, R.E. (1982), Introduction to mathematical fluid dynamics. Dover Publications Inc., New York. ISBN 978-0486615547.
Micallef, D. (2012), 3D flows near a HAWT rotor. PhD thesis, available at TU-Delft repository and U Malta. ISBN 9789995703134. doi: 10.4233/uuid: ca471701-2817-4a36-9839-4545c1cceb45.
Micallef, D.; Akay, B.; Ferreira, C.S.; Sant, T., and van Bussel, G.J.W. (2014), The origins of a wind turbine tip vortex. Journal of Physics: Conference Series, 012074(1). ISSN 17426596. doi: 10.1088/1742-6596/555/1/012074. https://doi.org/10.1088/1742-6596/555/1/012074
Micallef, D.; Ferreira, C.; Herraez, I.; Honing, L.; Yu, W, and Capdevila, H. (2020), Assessment of actuator disc models in predicting radial flow and wake expansion. Journal of Wind Engineering and Industrial Aerodynamics, 207(104396). ISSN 01676105. doi: 10.1016/j.jweia.2020.104396. https://doi.org/10.1016/j.jweia.2020.104396
Micallef, D.; Simao Ferreira, C.J.; Sant, T., and van Bussel, G.J.W. (2015), Experimental and numerical investigation of tip vortex generation and evolution on horizontal axis wind turbines. Wind Energy, 19(8):1485-1501. doi: 10.1002/we.1932. https://doi.org/10.1002/we.1932
Micallef, D.; van Bussel, G.J.W.; Ferreira, C.S., and Sant, T. (2013), An investigation of radial velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy, 16: 529-544. doi: 10.1002/we.1503. https://doi.org/10.1002/we.1503
Mikkelsen, R.F. (2011), personal communication at the Visby Wake conference.
Mikkelsen, R.F.; Oye, S.; Sorensen, J.N.; Madsen, H.A., and Shen, W.Z. (2009), Analysis of Wake Expansion and Induction near Tip. In Proceedings EWEC2009, Marseille.
Milne-Thomson, L.M. (1966), Theoretical Aerodynamics. MacMillan and Company Ltd, republished in 1973 by Dover Publications. ISBN 048661980X, 9780486619804.
Moens, M. and Chatelain, P. (2018), An actuator disk method with tip-loss correction based on local effective upstream velocities. Wind Energy, 21:766-782. doi: 10.1002/we.2192. https://doi.org/10.1002/we.2192
Morrison, P.J. (2006), Hamiltonian Fluid Dynamics. Encyclopedia of Mathematical Physics, 2: 593. ISSN 00664189. doi: 10.1016/B0-12-512666-2/00246-7. https://doi.org/10.1016/B0-12-512666-2/00246-7
Morton, B.R. (1984), The generation and decay of vorticity. Geophysical & Astrophysical Fluid Dynamics, 28:277-308. doi: 10.1080/03091928408230368. https://doi.org/10.1080/03091928408230368
Munk, M. (1920), Wind-driven propellers (or "windmills"), from Zeitschrift fur Flugtechnik und Motorluftschiffart, NACA TM 201. Technical report, NACA.
Okulov, V.L. (2014), Limit cases for rotor theories with Betz optimization. Journal of Physics: Conference Series, 524:012129. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012129. https://doi.org/10.1088/1742-6596/524/1/012129
Okulov, V.L. and Sorensen, J.N. (2008), Refined Betz limit for rotors with a finite number of blades. Wind Energy, 11(4):415-426. ISSN 10954244. doi: 10.1002/we.274. https://doi.org/10.1002/we.274
Okulov, V.L. and Sorensen, J.N. (2010), Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. Journal of Fluid Mechanics, 649:497-508. ISSN 0022-1120. doi: 10.1017/S0022112010000509. https://doi.org/10.1017/S0022112010000509
Okulov, V.L. and van Kuik, G.A.M. (2012), The Betz - Joukowsky limit : on the contribution to rotor aerodynamics by the British, German and Russian scientific schools. Wind Energy, 15:335-344. doi: 10.1002/we.464. https://doi.org/10.1002/we.464
Okulov, V.L.; Sorensen, J.N., and Wood, D.H. (2015), Rotor theories by Professor Joukowsky: Vortex Theories. Progress in Aerospace Sciences, 73:19-46. ISSN 03760421. doi: 10.1016/j. paerosci.2014.10.002. https://doi.org/10.1016/j.paerosci.2014.10.002
Oye, S. (1990), A simple vortex model of a turbine rotor. In McAnulty, K,F., editor, Third IEA Symposium on the Aerodynamics of Wind Turbine, p. 1-15, Harwell. ETSU.
Parra, E.A.; Boorsma, K.; Schepers, J.G., and Snel, H. (2016), Momentum considerations on the New MEXICO experiment. Journal of Physics: Conference Series, 753:072001. ISSN 1742-6588. doi: 10.1088/1742-6596/753/7/072001. https://doi.org/10.1088/1742-6596/753/7/072001
Paxton, F. (1959), Solid Angle Calculation for a Circular Disk. The review of scientific instruments, 30(4):254-258. https://doi.org/10.1063/1.1716590
Pirrung, G.R.; van der Laan, M.P.; Ramos-Garcia, N., and Meyer Forsting, A.R. (2020), A simple improvement of a tip loss model for actuator disc simulations. Wind Energy, 23(4): 1154-1163. ISSN 10991824. doi: 10.1002/we.2481. https://doi.org/10.1002/we.2481
Porte-Agel, F.; Wu, T.Y.; Lu, H., and Conzemius, R.J. (2011), Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):154-168. ISSN 01676105. doi: 10.1016/j. jweia.2011.01.011. https://doi.org/10.1016/j.jweia.2011.01.011
Prandtl, L. (1918), Tragflugeltheorie I. Mitteilung. Nachrichten der Koniglichem Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, p. 451-477.
Prandtl, L. (1924), Uber die Entstehung von Wirbeln in der idealen Flussigkeit, mit Anwendung auf die Tragflugeltheorie und andere Aufgaben. In von Karman, Th., Levi-Cevita, editor, Vortrage aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922), p. 18-33. Springer, Berlin. doi: 10.1007/978-3-662-00280-3_2. https://doi.org/10.1007/978-3-662-00280-3_2
Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011a), Non-intrusive aerodynamic loads analysis of an aircraft propeller blade. Experiments in Fluids, 51(2):361-371. ISSN 0723- 4864. doi: 10.1007/s00348-011-1057-7. https://doi.org/10.1007/s00348-011-1057-7
Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011b), 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV. Experiments in Fluids, 52(2): 463-477. ISSN 0723-4864. doi: 10.1007/s00348-011-1236-6. https://doi.org/10.1007/s00348-011-1236-6
Ranjbar, M.H.; Zanganeh Kia, H.; Nasrazadani, S.A.; Gharali, K., and Nathwani, J. (2020), Experimental and numerical investigations of actuator disks for wind turbines. Energy Science and Engineering, (January):1-16. ISSN 20500505. doi: 10.1002/ese3.670. https://doi.org/10.1002/ese3.670
Rankine, W.J.M. (1865), On the mechanical principles of the action of propellers. In 6th session of the Institution of Naval Architects, number 9, p. 13-19, 1865.
Rathakrishnan, E. (2013), Theoretical Aerodynamics. John Wiley & Sons, Ltd, Singapore. ISBN 1118479378, 9781118479377.
Rethore, P.-E.; van der Laan, P.; Troldborg, N.; Zahle, F., and Sorensen, N. (2014), Verification and validation of an actuator disc model. Wind Energy, 17:919-937. doi: 10.1002/we.1607. https://doi.org/10.1002/we.1607
Rosen, A. and Gur, O. (2008), Novel Approach to Axisymmetric Actuator Disk Modeling. AIAA Journal, 46(11):2914-2925. ISSN 0001-1452. doi: 10.2514/1.37383.https://doi.org/10.2514/1.37383
Saffman, P.G. (1992), Vortex Dynamics. Cambridge University Press, Cambridge, monographs edition. ISBN 052142058X, 9780521420587.https://doi.org/10.1017/CBO9780511624063
Sanderse, B; van der Pijl, S.P., and Koren, B. (2011), Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy, 14:799-819. doi: 10.1002/we.458. https://doi.org/10.1002/we.458
Schaffarczyk, A.P. (2020), Introduction to wind turbine aerodynamics. Springer Verlag, Berlin- Heidelberg, second edition. ISBN 978-3-030-41027-8. doi: 10.1007/978-3-030-41028-5. https://doi.org/10.1007/978-3-030-41028-5
Schepers, J.G. (2012), Engineering models in wind energy aerodynamics. PhD thesis, available at TU-Delft repository. ISBN 9789461915078.
Schepers, J.G. and Snel, H. (2007), Model experiments in controlled conditions (MEXICO). Technical report, ECN Report ECN-E-07-042.
Schepers, J.G.; Boorsma, K, and Munduate, X. (2014), Final Results from Mexnext-I: Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW. Journal of Physics: Conference Series, 555:012089. ISSN 1742- 6588. doi: 10.1088/1742-6596/555/1/012089. https://doi.org/10.1088/1742-6596/555/1/012089
Schmidt, G.H. and Sparenberg, J.A. (1977), On the edge singularity of an actuator disk with large constant normal load. Journal of Ship Research, 21(2):125-131. https://doi.org/10.5957/jsr.1977.21.2.125
Schmitz, S. and Maniaci, D.C. (2016), Analytical Method to Determine a Tip Loss Factor for Highly-Loaded Wind Turbine Rotors. 34th Wind Energy Symposium at AIAA SciTech Forum, p. 1-16. doi: 10.2514/6.2016-0752. https://doi.org/10.2514/6.2016-0752
Segalini, A. and Alfredsson, P.H. (2013), A simplified vortex model of propeller and wind-turbine wakes. Journal of Fluid Mechanics, 725:91-116. ISSN 0022-1120. doi: 10.1017/jfm.2013.182. https://doi.org/10.1017/jfm.2013.182
Sharpe, D.J. (2004), A general momentum theory applied to an energy-extracting actuator disc. Wind Energy, 7(3):177-188. ISSN 1095-4244. doi: 10.1002/we.118. https://doi.org/10.1002/we.118
Shen, W.Z.; Mikkelsen, R.F.; Sorensen, J.N., and Bak, C. (2005a), Tip loss corrections for wind turbine computations. Wind Energy, 8(4):457-475. ISSN 1095-4244. doi: 10.1002/we.153. https://doi.org/10.1002/we.153
Shen, W.Z.; Sorensen, J.N., and Mikkelsen, R.F. (2005b), Tip Loss Correction for Actuator/ Navier-Stokes Computations. Journal of Solar Energy Engineering, 127(2):209. ISSN 01996231. doi: 10.1115/1.1850488. https://doi.org/10.1115/1.1850488
Shen, W.Z.; Zhu, W,J., and Sorensen, J.N. (2014), Study of tip loss corrections using CFD rotor computations. Journal of Physics: Conference Series, 555:012094. ISSN 1742-6588. doi: 10.1088/1742-6596/555/1/012094. https://doi.org/10.1088/1742-6596/555/1/012094
Shives, M. and Crawford, C. (2013), Mesh and load distribution requirements for actuator line CFD simulations. Wind Energy, 16:1183-1196. doi: 10.1002/we.1546. https://doi.org/10.1002/we.1546
Sibuet Watters, C.; Breton, S.P., and Masson, C. (2010), Application of the actuator surface concept to wind turbine rotor aerodynamics. Wind Energy, 13(5):433-447. doi: 10.1002/we. 365. https://doi.org/10.1002/we.365
Simao Ferreira, C.J. (2009), The near wake of the VAWT: 2D and 3D views of the VAWT aerodynamics. PhD thesis, TU Delft repository.
Snel, H. and Schepers, J.G. (1995), Joint investigation of dynamic inflow effects and implementation of an engineering method. Technical report, ECN-C-94-107.
Sorensen, J.N. (2011), Aerodynamic Aspects of Wind Energy Conversion. Annual Review of Fluid Mechanics, 43(1):427-448. ISSN 0066-4189. doi: 10.1146/annurev-fluid-122109-160801. https://doi.org/10.1146/annurev-fluid-122109-160801
Sorensen, J.N. (2015), General momentum theory for horizontal axis wind turbines. Springer International Publishing, Heidelberg. ISBN 978-3-319-22113-7. doi: 10.1007/ 978-3-319-22114-4.
Sorensen, J.N. and Mikkelsen, R.F. (2001), On the validity of the blade element momentum method. In EWEC2001, p. 362-366, Copenhagen.
Sorensen, J.N. and Myken, A. (1992), Unsteady actuator disc model for horizontal axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 39:139-149. https://doi.org/10.1016/0167-6105(92)90540-Q
Sorensen, J.N. and Shen, W.Z. (2002), Numerical Modeling of Wind Turbine Wakes. Journal of Fluids Engineering, 124(2):393. ISSN 00982202. doi: 10.1115/1.1471361. https://doi.org/10.1115/1.1471361
Sorensen, J.N. and van Kuik, G.A.M. (2011), General momentum theory for wind turbines at low tip speed ratios. Wind Energy, 14:821-839. doi: 10.1002/we.423. https://doi.org/10.1002/we.423
Sorensen, J.N.; Dag, K.O., and Ramos-Garcia, N. (2015), A refined tip correction based on decambering. Wind Energy, 19(5):787-802. doi: 10.1002/we.1865. https://doi.org/10.1002/we.1865
Sorensen, J.N.; Okulov, V.L., and Ramos-Garcia, N. (2022), Analytical and numerical solutions to classical rotor designs. Progress in Aerospace Sciences, 130:1-12. doi: org/ 101016/j.paerosci.2021.100793. https://doi.org/10.1016/j.paerosci.2021.100793
Sorensen, J.N.; Okulov, V.L.; Mikkelsen, R.F.; Naumov, I.V., and Litvinov, I.V. (2016), Comparison of classical methods for blade design and the influence of tip correction on rotor performance. Journal of Physics: Conference Series, 753(Torque):022020. ISSN 1742-6588. doi: 10.1088/1742-6596/753/2/022020. https://doi.org/10.1088/1742-6596/753/2/022020
Sorensen, J.N.; Shen, W.Z., and Munduate, X. (1998), Analysis of wake states by a full field actuator disc model. Wind Energy, 88:73-88. doi: 10.1002/(SICI)1099-1824(199812)1:2<73:: AID-WE12>3.0.CO;2-L. https://doi.org/10.1002/(SICI)1099-1824(199812)1:2<73::AID-WE12>3.0.CO;2-L
Spalart, P.R. (2003), On the simple actuator disk. Journal of Fluid Mechanics, 494:399-405. ISSN 00221120. doi: 10.1017/S0022112003006128. https://doi.org/10.1017/S0022112003006128
Stepniewski, W.Z. and Keys, S.N. (1978), Rotary wind aerodynamics. Dover Publications Inc., New York. ISBN 978-0486646473.
Stevens, R.J.A.M. and Meneveau, C. (2017), Flow Structure and Turbulence in Wind Farms. Annual Review of Fluid Mechanics, 49(1):311-339. ISSN 0066-4189. doi: 10.1146/annurev-fluid-010816-060206. https://doi.org/10.1146/annurev-fluid-010816-060206
Stroevesandt, B.; Schepers, G.; Fuglsang, P., and Yuping, S., editors. (2019), Handbook of wind energy aerodynamics. Springer, online edition. ISBN 9783030054557. https://doi.org/10.1007/978-3-030-05455-7
Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2020), The generation and conservation of vorticity: Deforming interfaces and boundaries in two-dimensional flows. Journal of Fluid Mechanics, 890(A5):1-42. ISSN 14697645. doi: 10.1017/jfm.2020.128. https://doi.org/10.1017/jfm.2020.128
Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2021), The generation and diffusion of vorticity in three-dimensional flows: Lyman's flux. Journal of Fluid Mechanics, 915:1-42. ISSN 14697645. doi: 10.1017/jfm.2021.179. https://doi.org/10.1017/jfm.2021.179
Thoma, D. (1925), Grundsatzliches zur einfachen Strahltheorie der Schraube. Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 16(10):206-208.
Thwaites, B. (1960), Incompressible Aerodynamics. Clarendon Press, Oxford. https://doi.org/10.1115/1.3644123
Troldborg, N.; Sorensen, J.N., and Mikkelsen, R.F. (2010), Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy, 13:86-99. doi: 10.1002/ we.345. https://doi.org/10.1002/we.345
van Holten, T. (1981), Concentrator systems for wind energy, with emphasis on tip-vanes. Wind Engineering, 5(1):29-45.
van Kuik, G.A.M. (1989), Experimental verification of an improved actuator disc concept. In Proceedings of the 15th European Rotorcraft Forum, Amsterdam.
van Kuik, G.A.M. (2004), The flow induced by Prandtl's self-similar vortex sheet spirals at infinite distance from the spiral kernel. European Journal of Mechanics - B/Fluids, 23(4): 607-616. ISSN 09977546. doi: 10.1016/j.euromechflu.2004.01.002. https://doi.org/10.1016/j.euromechflu.2004.01.002
van Kuik, G.A.M. (2007), The Lanchester - Betz - Joukowsky limit. Wind Energy, 10(3): 289-291. ISSN 10954244. doi: 10.1002/we.218. https://doi.org/10.1002/we.218
van Kuik, G.A.M. (2009), A steady solution for Prandtl's self-similar vortex sheet spirals. European Journal of Mechanics, B/Fluids, 28(2):296-298. ISSN 09977546. doi: 10.1016/j. euromechflu.2008.05.007. https://doi.org/10.1016/j.euromechflu.2008.05.007
van Kuik, G.A.M. (2016), Momentum theory of Joukowsky actuator discs with swirl. Journal of Physics: Conference Series, 753:022021. ISSN 1742-6588. doi: 10.1088/1742-6596/753/2/022021. https://doi.org/10.1088/1742-6596/753/2/022021
van Kuik, G.A.M. (2017), Joukowsky actuator disc momentum theory. Wind Energy Science, 2:307-316. ISSN 2366-7621. doi: 10.5194/wes-2016-55. https://doi.org/10.5194/wes-2016-55
van Kuik, G.A.M. (2018), Comparison of actuator disc flows representing wind turbines and propellers. Journal of Physics Conference Series, 1037(Torque2018):1-10. doi: 10.1088/ 1742-6596/1037/2/022007 https://doi.org/10.1088/1742-6596/1037/2/022007
van Kuik, G.A.M. (2020), On the velocity at wind turbine and propeller actuator discs. Wind Energy Science, 5:855-865. doi: https://doi.org/10.5194/wes-5-855-2020. https://doi.org/10.5194/wes-5-855-2020
van Kuik, G.A.M. (2021), The actuator disc concept. In Stroevesandt, B.; Schepers, G.; Fuglsang, P., and Yuping, S., editors, Handbook of Wind Energy Aerodynamics, p. 1-49. Springer, Cham. ISBN 9783030054557. doi: 10.1007/978-3-030-05455-7_2-2. https://doi.org/10.1007/978-3-030-05455-7_2-2
van Kuik, G.A.M. (2022), On (non-)conservative body force fields generating vorticity and converting energy. Journal of Fluid Mechanics, 941:A46 1-17.doi: 10.1017/jfm.2022.317. https://doi.org/10.1017/jfm.2022.317
van Kuik, G.A.M. and Chattot, J.J. (2021), Personal communication.
van Kuik, G.A.M. and Lignarolo, L.E.M. (2016), Potential flow solutions for energy extracting actuator disc flows. Wind Energy, 19:1391-1406. doi: 10.1002/we.1902. https://doi.org/10.1002/we.1902
van Kuik, G.A.M.; Micallef, D.; Herraez, I.; van Zuijlen, A.H., and Ragni, D. (2014), The role of conservative forces in rotor aerodynamics. Journal of Fluid Mechanics, 750:284-315. ISSN 0022-1120. doi: 10.1017/jfm.2014.256. https://doi.org/10.1017/jfm.2014.256
van Kuik, G.A.M.; Peinke, J.; Nijssen, R.; Lekou, D.; Mann, J.; Ferreira, C.S.; van Wingerden, J.W.; Schlipf, D.; Gebraad, P.; Polinder, H.; Abrahamsen, A.; van Bussel, G.J.W.; Tavner, P.; Bottasso, C L; Muskulus, M; Matha, D; Lindeboom, H.J.; Degraer, S.; Kramer, O.; Lehnhoff, S.; Sonnenschein, M.; Morthorst, P.E., and Skytte, K. (2016), Long-term research challenges in wind energy - a research agenda by the European Academy of Wind Energy. Wind Energy Science, 1(1):1-39. ISSN 2366-7443. doi: 10.5194/wes-1-1-2016. https://doi.org/10.5194/wes-1-1-2016
van Kuik, G.A.M.; Sorensen, J.N., and Okulov, V.L. (2015a), Rotor theories by Professor Joukowsky: Momentum theories. Progress in Aerospace Sciences, 73:1-18. ISSN 03760421. doi: 10.1016/j.paerosci.2014.10.001. https://doi.org/10.1016/j.paerosci.2014.10.001
van Kuik, G.A.M.; Yu, W.; Sarmast, S., and Ivanell, S. (2015b), Comparison of actuator disc and Joukowsky rotor flows, to explore the need for a tip correction. Journal of Physics Conference Series, 625:012013. doi: 10.1088/1742-6596/625/1/012013. https://doi.org/10.1088/1742-6596/625/1/012013
Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; Laird, D.; Lehtomaki, V.; Lundquist, J.K.; Manwell, J.; Marquis, M.; Meneveau, C.; Moriarty, P.; Munduate, X.; Muskulus, M.; Naughton, J.; Pao, L.; Paquette, J.; Peinke, J.; Robertson, A.; Rodrigo, J,S.; Sempreviva, A.M.; Smith, J,C.; Tuohy, A, and Wiser, R. (2019), Grand challenges in the science of wind energy. Science, 366(6464). ISSN 10959203. doi: 10.1126/science.aau2027. https://doi.org/10.1126/science.aau2027
Vetchinkin, V.P. (1913), Calculation of screw propeller, part I. Buleteni Politekhnicheskogo obshestva (in Russian), 5.
Vetchinkin, V.P. (1918), Calculation of screw propeller, part II. Trudy Avia Raschetno- Ispytatelnogo Byuro, 4:1-129.
von Karman, Th. and Burgers, T.M. (1935), Motion of a perfect fluid produced by external forces. In Durand, W.F., editor, Aerodynamic Theory, Vol. II Division E. Springer Verlag, Berlin.
Wald, Q.R. (2006), The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2): 85-128. ISSN 03760421. doi: 10.1016/j.paerosci.2006.04.001. https://doi.org/10.1016/j.paerosci.2006.04.001
Wilmshurst, S.; Metherell, A.J.F.; Wilson, D.M.A.; Milborrow, D.J., and Ross, J.N. (1984), Wind turbine rotor performance in the high thrust region. In Sixth BWEA Conference, 1984.
Wilson, R.E. and Lissaman, P.B.S. (1974), Applied aerodynamics of wind power machines. NASA STI/Recon Technical Report N, 75(May):22669. doi: 10.1007/978-3-642-91487-4_3. https://doi.org/10.1007/978-3-642-91487-4_3
Wimshurst, A. and Wilden, R.H.J. (2017), Analysis of a tip correction factor for horizontal axis turbines. Wind Energy. ISSN 10954244. doi: 10.1002/we.2106. https://doi.org/10.1002/we.2106
Wimshurst, A. and Wilden, R.H.J. (2018), Computational observations of the tip loss mechanism experienced by horizontal axis rotors. Wind Energy, Early View:1-14. ISSN 10954244. doi: 10.1002/we.2177. https://doi.org/10.1002/we.2177
Wood, D.H. (2007), Including swirl in the actuator disk analysis of wind turbines. Wind Engineering, 31(5):317-323. https://doi.org/10.1260/030952407783418766
Wood, D.H. (2015), Maximum wind turbine performance at low tip speed ratio. Journal of Renewable and Sustainable Energy, 7:053126. doi: 10.1063/1.4934895. https://doi.org/10.1063/1.4934895
Wood, D.H. (2018), Application of extended vortex theory for blade element analysis of horizontal-axis wind turbines. Renewable Energy, 121:188-194. ISSN 09601481. doi: 10.1016/j.renene.2017.12.085. https://doi.org/10.1016/j.renene.2017.12.085
Wood, D.H. and Limacher, E,. (2021), Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines. Wind Energy Science, 6:1413-1425. doi: 10.5194/wes-6-1413-2021. https://doi.org/10.5194/wes-6-1413-2021
Wood, D.H.; Okulov, V.L., and Bhattacharjee, D. (2016), Direct calculation of wind turbine tip loss. Renewable Energy, 95:269-276. ISSN 0960-1481. doi: 10.1016/j.renene.2016.04.017. https://doi.org/10.1016/j.renene.2016.04.017
Wu, J.Z. and Wu, J.M. (1998), Boundary vorticity dynamics since Lighthill's 1963 article: review and development. Theoretical and computational fluid dynamics, 10:459-474. doi: 10.1007/s001620050077. https://doi.org/10.1007/s001620050077
Wu, J.Z.; Ma, H.Y., and Zhou, M.D. (2005), Vorticity and Vortex Dynamics. Springer Verlag, Berlin-Heidelberg. ISBN -10 3-540-29027-3.
Wu, T.Y. (1962), Flow through a heavily loaded actuator disc. Schiffstechnik, 9(47):134-138.
Xiao, J.; Wu, J.; Chen, L., and Shi, Z. (2011), Particle image velocimetry (PIV) measurements of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 32(6): 729-738. ISSN 0253-4827. doi: 10.1007/s10483-011-1452-x. https://doi.org/10.1007/s10483-011-1452-x
Xiros, M.I. and Xiros, N.I. (2007), Remarks on wind turbine power absorption increase by including the axial force due to the radial pressure gradient in the general momentum theory. Wind Energy, 10(1):99-102. ISSN 10954244. doi: 10.1002/we.203. https://doi.org/10.1002/we.203
Yoon, S.S. and Heister, S.D. (2004), Analytical formulas for the velocity field induced by an infinitely thin vortex ring. International journal for numerical methods in fluids, 44:665-672. doi: 10.1002/fld.666. https://doi.org/10.1002/fld.666
Yu, W.; Hong, V.W.; Ferreira, C., and van Kuik, G.A.M. (2017), Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads. Experiments in Fluids, 58 (149):1-15. ISSN 0723-4864. doi: 10.1007/s00348-017-2432-9. https://doi.org/10.1007/s00348-017-2432-9
Yu, W.; Tavernier, D.; Schepers, G.; Ferreira, C., and van Kuik, G.A.M. (2019), New dynamicinflow engineering models based on linear and nonlinear actuator disc vortex models. Wind Energy, 22:1433-1450. doi: 10.1002/we.2380. https://doi.org/10.1002/we.2380
Zhong, W.; Wang, T.G.; Zhu, W.J., and Shen, W.Z. (2019), Evaluation of Tip Loss Corrections to AD / NS Simulations of Wind Turbine Aerodynamic Performance. Applied Sciences, 9: 4919. doi: doi:10.3390/app9224919. https://doi.org/10.3390/app9224919
