The Fluid Dynamic Basis for Actuator Disc and Rotor Theories: Revised Second Edition

Authors

Gijs van Kuik
Department of Aerodynamics, Wind Energy, Flight Performance and Propulsion (AWEP), Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands
https://orcid.org/0000-0003-2022-8945
Keywords: actuator disc, wind turbine, propeller, momentum theory, conservative forces, non-conservative forces, rotor aerodynamics

Synopsis

The first rotor performance predictions were published by Joukowsky exactly 100 years ago. Although a century of research has expanded the knowledge of rotor aerodynamics enormously, and modern computer power and measurement techniques now enable detailed analyses that were previously out of reach, the concepts proposed by Froude, Betz, Joukowsky and Glauert for modelling a rotor in performance calculations are still in use today, albeit with modifications and expansions. This book is the result of the author's curiosity as to whether a return to these models with a combination of mathematics, dedicated computations and wind tunnel experiments could yield more physical insight and answer some of the old questions still waiting to be resolved. Although most of the work included here has been published previously, the book connects the various topics, linking them in a coherent storyline.
"The Fluid Dynamic Basis for Actuator Disc and Rotor Theories" was first published in 2018. This Revised Second Edition (2022) will be of interest to those working in all branches of rotor aerodynamics - wind turbines, propellers, ship screws and helicopter rotors. It has been written for proficient students and researchers, and reading it will demand a good knowledge of inviscid (fluid) mechanics.

DOI 10.3233/STAL9781643682792

Downloads

Download data is not yet available.

References

Akay, B.; Ferreira, C.S., and van Bussel, G.J.W. (2012), Experimental and Numerical Quantification

of Radial Flow in the Root Region of a HAWT. AIAA 50th Aerospace Science

Meeting, AIAA 2012-0896: 1–10. doi: pdf/10.2514/6.2012-896.

Anderson, H.B.; Mi1borrow, D.J., and Ross, J.N. (1982), Performance and wake measurements

on a 3 m diameter horizontal axis wind turbine rotor. In Proc. 4th Int. Symposium on Wind

Energy Systems. Stockholm, BHRA, 1982.

Anderson, J.D. (2010), Fundamentals of Aerodynamics. McGraw-Hill, New York, 5th edn.

ISBN 978-0-07-339810-5.

Asmuth, H.; Olivares-Espinosa, H., and Ivanell, St. (2020), Actuator line simulations of wind

turbine wakes using the lattice Boltzmann method. Wind Energy Science, 5(2):623–645.

ISSN 23667451. doi: 10.5194/wes-5-623-2020.

Batchelor, G.K. (1970), An introduction to fluid dynamics. Cambridge University Press, Cambridge.

doi: 10.1017/CBO9780511800955.

Bendemann, F. (1910), Luftschraubenuntersuchenden. Zeitschrift fur Flugtechnik und Motorluftschiffahrt,

:177–198.

Betz, A. (1919), Schraubenpropeller mit geringstem Energieverlust. In Vier Abhandlungen zur

Hydrodynamik und Aerodynamik. Reprint of 4 famous papers by Universitatsverlag Gottingen.

Betz, A. (1920), Das Maximum der theoretisch moglichen Ausnutzung des Windes durch Windmotoren.

Zeitschrift fur das gesamte Turbinenwesen, 26:307–309.

Betz, A. (1921), Vortices and the related principles of hydrodynamics. Naca TN 68, translated

from Zeitschrift fur Flugtechnik und Motorluftschiffart.

Betz, A. (1926), Wind-Energie und ihre Ausnutzung durch WindMuhlen. Vandenhoed &

Ruprecht, Gottingen.

Betz, A. (1950), Wie entsteht ein Wirbel in einer wenig zahen Flussigkeit? Die Naturwissenschaften,

(9):7–10.

Bontempo, R. and Manna, M. (2016), A nonlinear and semi-analytical actuator disk method

accounting for general hub shapes. Part 1. Open rotor. Journal of Fluid Mechanics, 792:

–935. ISSN 14697645. doi: 10.1017/jfm.2016.98.

Bontempo, R. and Manna, M. (2018a), A ring-vortex free-wake model for uniformly loaded

propellers. Part II - Solution procedure and analysis of the results. Energy Procedia, 148

(Ati):368–375. ISSN 18766102. doi: 10.1016/j.egypro.2018.08.007.

Bontempo, R. and Manna, M. (2018b), A ring-vortex free-wake model for uniformly loaded

propellers. Part I-Model description. Energy Procedia, 148(Ati):360–367. ISSN 18766102.

doi: 10.1016/j.egypro.2018.08.089.

Bontempo, R. and Manna, M. (2019), On the validity of the axial momentum theory as applied

to the uniformly-loaded propeller. In 13th European Turbomachinery Conference on Turbomachinery

Fluid Dynamics and Thermodynamics, ETC 2019, Lausanne, number April,

Bothezat, G. (1917), Research of work phenomenon for propeller with blades, Petrograd 1917.

English translation in: The General Theory of Blade Screw, Chapter 3. NACA Report, 29:

–225.

Bragg, S.L. and Hawthorne, W.R. (1950), Some exact solutions of the flow through annual

cascade actuator discs. J. Aeronaut. Sci. 17, 243–249. Journal of the Aeronautical Sciences,

(4):243–249.

Branlard, E. (2017), Wind Turbine Aerodynamics and Vorticity-Based Methods. Springer

International Publishing. ISBN 9783319551630. doi: 10.1007/978-3-319-55164-7.

Branlard, E and Gaunaa, M. (2015), Cylindrical vortex wake model : right cylinder. Wind

Energy, 18(11):1973–1987. doi: 10.1002/we.1800.

Branlard, E.; Dixon, K., and Gaunaa, M. (2013), Vortex methods to answer the need for

improved understanding and modelling of tip-loss factors. IET Renewable Power Generation,

(4):311–320. ISSN 1752-1416. doi: 10.1049/iet-rpg.2012.0283.

Branlard, E; Gaunaa, M, and Machefaux, E. (2014), Investigation of a new model accounting

for rotors of finite tip-speed ratio in yaw or tilt. Journal of Physics: Conference Series, 524

(Torque2014):012124. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012124.

Breslin, J.P. and Andersen, P. (1994), Hydrodynamics of ship propellers. Cambridge University

Press. ISBN 0521413605.

Burton, T.; Jenkins, N.; Sharpe, D.J., and Bossanyi, E. (2011), Wind Energy Handbook. Wiley.

ISBN 9780471489979. doi: 10.1002/0470846062.

Calaf, M.; Meneveau, C., and Meyers, J. (2010), Large eddy simulation study of fully developed

wind-turbine array boundary layers. Physics of Fluids, 22(1):1–16. ISSN 10706631. doi:

1063/1.862466.

Chattot, J.J. (2021), On the Edge Singularity of the Actuator Disk Model. Journal of Solar

Energy Engineering, 143(1):1–5. ISSN 0199-6231. doi: 10.1115/1.4047672.

Churchfield, M.; Lee, S.; Moriarty, P.; Martinez, L.; Leonardi, S.; Vijayakumar, G., and

Brasseur, J. (2012), A Large-Eddy Simulation of Wind-Plant Aerodynamics. In 50th AIAA

Aerospace Sciences Meeting, AIAA 2012-0537, p. 1–19, 2012. ISBN 978-1-60086-936-5. doi:

2514/6.2012-537.

Clancy, L.J. (1986), Aerodynamics. reprint by Longman Scientific & Technical, London. ISBN

, 9780582988804.

Conway, J.T. (1998), Exact actuator disk solutions for non-uniform heavy loading and slipstream

contraction. Journal of Fluid Mechanics, 365:235–267. ISSN 00221120. doi:

1017/S0022112098001372.

Corten, G.P. (2001a), Aspect ratio correction for wind turbine blades. In presentation at the

IEA Joint Action Aerodynamics of Wind turbines, 15th symposium, Athens.

Corten, G.P. (2001b), Novel Views on the Extraction of Energy from Wind-Heat Generation

and Terrain Concentration. In EWEC2001 Copenhagen, p. 1–5, 2001b.

Courant, R. and Hilbert, D. (1967), Methoden der mathematischen Physik II. Springer Verlag,

Berlin, Heidelberg. ISBN 978-3-642-58039-0.

Crawford, C. (2006), Re-examination of the Precepts of the Blade Element Momentum Theory

for Coning Rotors. Wind Energy, 9:457–478. doi: 10.1002/we.197.

Craze, D.J. (1977), On the near wake behind a circular disc. 6th Australasian Hydraulics and

Fluid Mechanics Conference, p. 282–286.

Darmofal, D,L. (1993), The Role of Vorticity Dynamics in Vortex Breakdown. In AIAA 24th

Fluid Dynamics Conference, AIAA 93-3036., 1993.

Dağ, K.O. and Sorensen, J.N. (2020), A new tip correction for actuator line computations.

Wind Energy, 23(2):148–160. doi: 10.1002/we.2419.

de Vries, O. (1979), Fluid dynamic aspects of wind energy conversion, AGARD-AG-243.

AGARD, Amsterdam. ISBN 9283513266, 9789283513261.

del Campo, V.; Ragni, D.; Micallef, D.; Akay, B.; Diez, J., and Ferreira, C.S. (2013), Non

intrusive 3D load calculation during yaw conditions. In EWEA2013.

del Campo, V.; Ragni, D.; Micallef, D., and Akay, B. (2014), 3D load estimation on a horizontal

axis wind turbine using SPIV. Wind Energy, 17(11):1645–1657. doi: 10.1002/we.1658.

del Campo, V.; Ragni, D.; Micallef, D.; Diez, J, and Simao Ferreira, C,J. (2015), Estimation of

loads on a horizontal axis wind turbine. Wind Energy, 18(11):1875–1891. doi: 10.1002/we.

Dighe, V.V.; Avallone, F.; Igra, O., and van Bussel, G.J.W. (2019), Multi-element ducts for

ducted wind turbines : a numerical study. Wind Energy Science, 4:439–449. doi: doi.org/

5194/wes-4-439-2019.

El khchine, Y. and Sriti, M. (2017), Tip Loss Factor Effects on Aerodynamic Performances

of Horizontal Axis Wind Turbine. Energy Procedia, 118:136–140. ISSN 18766102. doi:

1016/j.egypro.2017.07.028.

Fleming, P.; Gebraad, P.M.O.; Lee, S.; van Wingerden, J.W.; Johnson, K.; Churchfield,

M.; Michalakes, J.; Spalart, P., and Moriarty, P. (2015), Simulation comparison of wake

BIBLIOGRAPHY 135

mitigation control strategies for a two-turbine case. Wind Energy, 18:2135–2143. doi:

1002/we.1810.

Froude, R.E. (1889), On the part played in propulsion by differences of fluid pressure. 13th

Session of the Institution of Naval Architects, 30:390–405.

Glauert, H. (1926), The analysis of experimental results in the windmill brake and vortex ring

state of an airscrew. H.M. Stationary Office, London, arc r&m 10.

Glauert, H. (1935), The General Momentum Theory. In Durand, W,F., editor, Aerodynamic

Theory, volume IV division L. Springer, Berlin.

Goldstein, S. (1929), On the vortex theory of screw propellers. Proc. R. Soc. Lond. A, 123:

–465.

Goorjian, P.M. (1972), An Invalid Equation in the General Momentum Theory of the Actuator

Disk. AIAAjournal, 10(4):543–544.

Gray, R.B.; McMahon, H.M.; Shenoy, K.R., and Hammer, M.L. (1980), Surface pressure measurements

at two tips of a model helicopter rotor in hover. NASA CR3281.

Greenberg, M.D. (1972), Nonlinear actuator disk theory. Zeitschrift fur Flugwissenschaften, 20:

–98.

Haans, W.; Sant, T.; van Kuik, G.A.M., and van Bussel, G.J.W. (2008), HAWT Near-Wake

Aerodynamics, Part I: Axial Flow Conditions. Wind Energy, 11:245–264. doi: 10.1002/we.

Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S., and Larwood,

S.M. (2001), Unsteady aerodynamics experiment phase VI: wind tunnel test configurations

and available data campaigns. Tech Rep. NREL/TP-500-29955. National Renewable Energy

Laboratory.

Hansen, M.O.L. (2008), Aerodynamics of Wind Turbines. Earthscan. ISBN 9781844074389.

Helmholtz, H. (1858), Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen

entsprechen. Journal fur die reine und angewandte Mathematik, 55:25–55.

Herraez, I.; Medjroubi, W.; Stoevesandt, B., and Peinke, J. (2014a), Aerodynamic Simulation

of the MEXICO Rotor. Journal of Physics: Conference Series, 555:012051. ISSN 1742-6588.

doi: 10.1088/1742-6596/555/1/012051.

Herraez, I.; Stoevesandt, B., and Peinke, J. (2014b), Insight into Rotational Effects on a Wind

Turbine Blade Using Navier–Stokes Computations. Energies, 7(10):6798–6822. ISSN 1996-

doi: 10.3390/en7106798.

Herraez, I.; Micallef, D., and van Kuik, G.A.M. (2017), Influence of the conservative rotor loads

on the near wake of a wind turbine. Journal of Physics: Conference Series, 854(1):1–10. ISSN

doi: 10.1088/1742-6596/854/1/012022.

Hjort, S. (2019), Non-Empirical BEM Corrections Relating to Angular and Axial Momentum

Conservation. Energies, 12(320). doi: 10.3390/en12020320.

Hoff, W. (1921), Theory of the ideal windmill, NACA TN 46. Technical report, NACA.

Holling, M.; Peinke, J., and Ivanell, S., editors. (2014), Wind Energy - Impact of Turbulence.

Springer Verlag, Berlin, Heidelberg. ISBN 978-3-642-54696-9. doi: 10.1007/

-3-642-54696-9.

Horlock, J.H. (1978), Actuator Disc Theory. McGraw-Hill. ISBN 978-0070303607.

Hornung, H. (1989), Vorticity generation and transport. In Tenth Australasian fluid mechanics

conference, p. 1-7, Melbourne.

Jamieson, P; Graham, J.M.R.; Hart, E, and Giles, A. (2018), Formulation of the General

Momentum Equations. Journal of Physics Conference Series, 1037(Torque2018):1–10.

Joukowsky, N.J. (1912), Vortex theory of the screw propeller I. Trudy Avia Raschetno- Ispytatelnogo

Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire

de l’Helice Propulsive, Quatrieme Memoire. 1929; 1: 1–47., 16(1):1–31.

Joukowsky, N.J. (1914), Vortex theory of the screw propeller II. Trudy Avia Raschetno- Ispytatelnogo

Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillonnaire

de l’Helice Propulsive, Quatrieme Memoire. 1929; 2: 48–93., 17(1):1–33.

Joukowsky, N.J. (1915), Vortex theory of the screw propeller III. Trudy Avia Raschetno-

Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie. (eds). Theorie

Tourbillonnaire de l’Helice Propulsive, Quatrieme Memoire. 1929; 3: 48–93., 17(2):1–23.

Joukowsky, N.J. (1918), Vortex theory of the screw propeller IV. Trudy Avia Raschetno-

Ispytatelnogo Byuro (in Russian] Also published in Gauthier-Villars et Cie. (eds). Theorie

Tourbillonnaire de l’Helice Propulsive, Quatrieme Memoire. 1929; 4: 123–198, 3:1–97.

Joukowsky, N.J. (1920), Joukowsky windmills of the NEJ type. Transactions of the Central

BIBLIOGRAPHY

Institute for Aero-Hydrodynamics of Moscow, (Collected Papers Vol. VI):405–430.

Katz, J. and Plotkin, A. (1991), Low Speed Aerodynamics, From Wing Theory to Panel

Methods. McGraw-Hill Book Co., Singapore, int. edition. ISBN 0070504466.

Kuchemann, F.R.S. (1978), The aerodynamic design of aircraft. Pergamon Press.

Kundu, P.K. (1990), Fluid Mechanics. Academic Press Inc., New York. ISBN 978-0123821003.

Lamb, H.A. (1945), Hydrodynamics. Dover Publications, New York, 6st edition.

Lanchester, F.W. (1907), Aerodynamics. A. Constable & co. ltd., London.

Lanchester, F.W. (1915), A contribution to the theory of propulsion and the screw propeller.

Fifty-sixth session of the Institution of Naval Architects, 57:98–116

Leishman, J.G. (2006), Principles of Helicopter Aerodynamics, 2nd edition. Cambridge University

Press. ISBN 0521858607, 9780521858601.

Lighthill, J. (1986), An informal introduction to fluid mechanics. Clarendon Press, Oxford.

ISBN 0198536313, 9780198536314.

Lighthill, M,J. (1963), Introduction: Boundary layer theory. In Rosenhead, L., editor, Laminar

Boundary Layers. Clarendon Press, Oxford

Lignarolo, L.E,M.; Ferreira, C.S., and van Bussel, G.J.W. (2016a), Experimental comparison of

a wind turbine and of an actuator disc wake. Journal of Renewable and Sustainable Energy,

(023301):1–26. ISSN 1941-7012. doi: 10.1063/1.4941926.

Lignarolo, L.E.M.; Mehta, D.; Stevens, R.J.A.M.; Yilmaz, A.E.; Meyers, J.; Andersen, S J; van

Kuik, G.A.M.; Meneveau, C.; Holierhoek, J.; Simao Ferreira, C.J.; Ragni, D., and van Bussel,

G.J.W. (2016b), Validation of four LES and a vortex model against PIV measurements of

the near wake of an actuator disk and a wind turbine. Renewable Energy, 94:510–523. ISSN

doi: 10.1016/j.renene.2016.03.070.

Limacher, E.J. and Wood, D.H. (2021), An impulse-based derivation of the Kutta –

Joukowsky equation for wind turbine thrust. Wind Energy Science, 6(1):191–201. doi:

5194/wes-6-191-2021.

Madsen, H.A. (1996), A CFD analysis of the actuator disc flow compared with momentum

theory results. 10th IEA Aerodynamic Expert Meeting, p. 109–124.

Madsen, H.A. and Paulsen, U.S. (1990), An integrated rotor and turbulent wake model compared

with experiment. In European Community Wind Energy Conference, p. 269–273,

Madrid.

Madsen, H.A.; Mikkelsen, R.F.; Oye, S.; Bak, C., and Johansen, J. (2007), A Detailed investigation

of the Blade Element Momentum (BEM) model based on analytical and numerical

results and proposal for modifications of the BEM model. Journal of Physics: Conference

Series, 75:012016. ISSN 1742-6596. doi: 10.1088/1742-6596/75/1/012016.

Madsen, H.A.; Bak, C.; Dossing, M.; Mikkelsen, R.F., and Oye, S. (2010), Validation and

modification of the Blade Element Momentum theory based on comparisons with actuator

disc simulations. Wind Energy, 13:373–389. doi: 10.1002/we359.

Maniaci, D. and Schmitz, S. (2016), Extended Glauert Tip Correction to Include Vortex Rollup

Effects. Journal of Physics: Conference Series, 753:022051. ISSN 1742-6588. doi: 10.1088/

-6596/753/2/022051.

Manwell, J.F.; McGowan, J.G., and Rogers, A.L. (2009), Wind energy explained. John Wiley

& Sons, Ltd, 2nd edition. ISBN 9780470015001. doi: 10.1002/9781119994367.

Marshall, J.S. (2001), Inviscid Incompressible Flow. John Wiley and Sons., New York. ISBN

-0-471-37566-1.

Martinez-Tossas, L.A.; Churchfield, M.J., and Meneveau, C. (2017), Optimal smoothing length

scale for actuator line models of wind turbine blades based on Gaussian body force distribution.

Wind Energy, 20(6):1083–1096. doi: 10.1002/we.2081.

McCormick, B,W. (1994), Aerodynamics, Aeronautics and Flight Mechanics. Wiley and Sons

Inc., New York, second edition. ISBN 978-0-471-57506-1.

Medici, D. and Alfredsson, P.H. (2006), Measurements on a wind turbine wake: 3D effects and

bluff body vortex shedding. Wind Energy, 9:219–236. doi: 10.1002/we.156.

Merabet, R. and Laurendeau, E. (2021), Hovering helicopter rotors modeling using the actuator

line method. Journal of Aircraft, art. in advance:1–14.

Meyer, R.E. (1982), Introduction to mathematical fluid dynamics. Dover Publications Inc.,

New York. ISBN 978-0486615547.

Micallef, D. (2012), 3D flows near a HAWT rotor. PhD thesis, available at

TU-Delft repository and U Malta. ISBN 9789995703134. doi: 10.4233/uuid:

ca471701-2817-4a36-9839-4545c1cceb45.

Micallef, D.; van Bussel, G.J.W.; Ferreira, C.S., and Sant, T. (2013), An investigation of radial

velocities for a horizontal axis wind turbine in axial and yawed flows. Wind Energy, 16:

–544. doi: 10.1002/we.1503.

Micallef, D.; Akay, B.; Ferreira, C.S.; Sant, T., and van Bussel, G.J.W. (2014), The origins of a

wind turbine tip vortex. Journal of Physics: Conference Series, 012074(1). ISSN 17426596.

doi: 10.1088/1742-6596/555/1/012074.

Micallef, D.; Simao Ferreira, C.J.; Sant, T., and van Bussel, G.J.W. (2015), Experimental

and numerical investigation of tip vortex generation and evolution on horizontal axis wind

turbines. Wind Energy, 19(8):1485–1501. doi: 10.1002/we.1932.

Micallef, D.; Ferreira, C.; Herraez, I.; Honing, L.; Yu, W, and Capdevila, H. (2020), Assessment

of actuator disc models in predicting radial flow and wake expansion. Journal of Wind

Engineering and Industrial Aerodynamics, 207(104396). ISSN 01676105. doi: 10.1016/j.

jweia.2020.104396.

Mikkelsen, R.F. (2011), personal communication at the Visby Wake conference.

Mikkelsen, R.F.; Oye, S.; Sorensen, J.N.; Madsen, H.A., and Shen, W.Z. (2009), Analysis of

Wake Expansion and Induction near Tip. In Proceedings EWEC2009, Marseille.

Milne-Thomson, L.M. (1966), Theoretical Aerodynamics. MacMillan and Company Ltd, republished

in 1973 by Dover Publications. ISBN 048661980X, 9780486619804.

Moens, M. and Chatelain, P. (2018), An actuator disk method with tip-loss correction based

on local effective upstream velocities. Wind Energy, 21:766–782. doi: 10.1002/we.2192.

Morrison, P.J. (2006), Hamiltonian Fluid Dynamics. Encyclopedia of Mathematical Physics, 2:

ISSN 00664189. doi: 10.1016/B0-12-512666-2/00246-7.

Morton, B.R. (1984), The generation and decay of vorticity. Geophysical & Astrophysical Fluid

Dynamics, 28:277–308. doi: 10.1080/03091928408230368.

Munk, M. (1920), Wind-driven propellers (or "windmills"), from Zeitschrift fur Flugtechnik

und Motorluftschiffart, NACA TM 201. Technical report, NACA.

Okulov, V.L. (2014), Limit cases for rotor theories with Betz optimization. Journal of Physics:

Conference Series, 524:012129. ISSN 1742-6596. doi: 10.1088/1742-6596/524/1/012129.

Okulov, V.L. and Sorensen, J.N. (2008), Refined Betz limit for rotors with a finite number of

blades. Wind Energy, 11(4):415–426. ISSN 10954244. doi: 10.1002/we.274.

Okulov, V.L. and Sorensen, J.N. (2010), Maximum efficiency of wind turbine rotors using

Joukowsky and Betz approaches. Journal of Fluid Mechanics, 649:497–508. ISSN 0022-1120.

doi: 10.1017/S0022112010000509.

Okulov, V.L. and van Kuik, G.A.M. (2012), The Betz – Joukowsky limit : on the contribution

to rotor aerodynamics by the British, German and Russian scientific schools. Wind Energy,

:335–344. doi: 10.1002/we.464.

Okulov, V.L.; Sorensen, J.N., and Wood, D.H. (2015), Rotor theories by Professor Joukowsky:

Vortex Theories. Progress in Aerospace Sciences, 73:19–46. ISSN 03760421. doi: 10.1016/j.

paerosci.2014.10.002.

Oye, S. (1990), A simple vortex model of a turbine rotor. In McAnulty, K,F., editor, Third IEA

Symposium on the Aerodynamics of Wind Turbine, p. 1–15, Harwell. ETSU.

Parra, E.A.; Boorsma, K.; Schepers, J.G., and Snel, H. (2016), Momentum considerations on

the New MEXICO experiment. Journal of Physics: Conference Series, 753:072001. ISSN

-6588. doi: 10.1088/1742-6596/753/7/072001.

Paxton, F. (1959), Solid Angle Calculation for a Circular Disk. The review of scientific instruments,

(4):254–258.

Pirrung, G.R.; van der Laan, M.P.; Ramos-Garcia, N., and Meyer Forsting, A.R. (2020), A

simple improvement of a tip loss model for actuator disc simulations. Wind Energy, 23(4):

–1163. ISSN 10991824. doi: 10.1002/we.2481.

Porte-Agel, F.; Wu, T.Y.; Lu, H., and Conzemius, R.J. (2011), Large-eddy simulation of

atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind

Engineering and Industrial Aerodynamics, 99(4):154–168. ISSN 01676105. doi: 10.1016/j.

jweia.2011.01.011.

Prandtl, L. (1918), Tragflugeltheorie I. Mitteilung. Nachrichten der Koniglichem Gesellschaft

der Wissenschaften zu Gottingen, Mathematisch-physikalische Klasse, p. 451–477.

Prandtl, L. (1924), Uber die Entstehung von Wirbeln in der idealen Flussigkeit, mit Anwendung

auf die Tragflugeltheorie und andere Aufgaben. In von Karman, Th., Levi-Cevita, editor,

Vortrage aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922), p. 18–33. Springer,

Berlin. doi: 10.1007/978-3-662-00280-3_2.

Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011a), Non-intrusive aerodynamic loads

analysis of an aircraft propeller blade. Experiments in Fluids, 51(2):361–371. ISSN 0723-

doi: 10.1007/s00348-011-1057-7.

Ragni, D.; Oudheusden, B.W., and Scarano, F. (2011b), 3D pressure imaging of an aircraft

propeller blade-tip flow by phase-locked stereoscopic PIV. Experiments in Fluids, 52(2):

–477. ISSN 0723-4864. doi: 10.1007/s00348-011-1236-6.

Ranjbar, M.H.; Zanganeh Kia, H.; Nasrazadani, S.A.; Gharali, K., and Nathwani, J. (2020),

Experimental and numerical investigations of actuator disks for wind turbines. Energy Science

and Engineering, (January):1–16. ISSN 20500505. doi: 10.1002/ese3.670.

Rankine, W.J.M. (1865), On the mechanical principles of the action of propellers. In 6th session

of the Institution of Naval Architects, number 9, p. 13–19, 1865.

Rathakrishnan, E. (2013), Theoretical Aerodynamics. John Wiley & Sons, Ltd, Singapore.

ISBN 1118479378, 9781118479377.

Rethore, P.-E.; van der Laan, P.; Troldborg, N.; Zahle, F., and Sorensen, N. (2014), Verification

and validation of an actuator disc model. Wind Energy, 17:919–937. doi: 10.1002/we.1607.

Rosen, A. and Gur, O. (2008), Novel Approach to Axisymmetric Actuator Disk Modeling.

AIAA Journal, 46(11):2914–2925. ISSN 0001-1452. doi: 10.2514/1.37383.

Saffman, P.G. (1992), Vortex Dynamics. Cambridge University Press, Cambridge, monographs

edition. ISBN 052142058X, 9780521420587.

Sanderse, B; van der Pijl, S.P., and Koren, B. (2011), Review of computational fluid dynamics

for wind turbine wake aerodynamics. Wind Energy, 14:799–819. doi: 10.1002/we.458.

Schaffarczyk, A.P. (2020), Introduction to wind turbine aerodynamics. Springer Verlag, Berlin-

Heidelberg, second edition. ISBN 978-3-030-41027-8. doi: 10.1007/978-3-030-41028-5.

Schepers, J.G. (2012), Engineering models in wind energy aerodynamics. PhD thesis, available

at TU-Delft repository. ISBN 9789461915078.

Schepers, J.G. and Snel, H. (2007), Model experiments in controlled conditions (MEXICO).

Technical report, ECN Report ECN-E-07–042.

Schepers, J.G.; Boorsma, K, and Munduate, X. (2014), Final Results from Mexnext-I: Analysis

of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German

Dutch Wind Tunnel DNW. Journal of Physics: Conference Series, 555:012089. ISSN 1742-

doi: 10.1088/1742-6596/555/1/012089.

Schmidt, G.H. and Sparenberg, J.A. (1977), On the edge singularity of an actuator disk with

large constant normal load. Journal of Ship Research, 21(2):125–131.

Schmitz, S. and Maniaci, D.C. (2016), Analytical Method to Determine a Tip Loss Factor

for Highly-Loaded Wind Turbine Rotors. 34th Wind Energy Symposium at AIAA SciTech

Forum, p. 1–16. doi: 10.2514/6.2016-0752.

Segalini, A. and Alfredsson, P.H. (2013), A simplified vortex model of propeller and wind-turbine

wakes. Journal of Fluid Mechanics, 725:91–116. ISSN 0022-1120. doi: 10.1017/jfm.2013.182.

Sharpe, D.J. (2004), A general momentum theory applied to an energy-extracting actuator disc.

Wind Energy, 7(3):177–188. ISSN 1095-4244. doi: 10.1002/we.118.

Shen, W.Z.; Mikkelsen, R.F.; Sorensen, J.N., and Bak, C. (2005a), Tip loss corrections for wind

turbine computations. Wind Energy, 8(4):457–475. ISSN 1095-4244. doi: 10.1002/we.153.

Shen, W.Z.; Sorensen, J.N., and Mikkelsen, R.F. (2005b), Tip Loss Correction for Actuator/

Navier–Stokes Computations. Journal of Solar Energy Engineering, 127(2):209. ISSN

doi: 10.1115/1.1850488.

Shen, W.Z.; Zhu, W,J., and Sorensen, J.N. (2014), Study of tip loss corrections using CFD

rotor computations. Journal of Physics: Conference Series, 555:012094. ISSN 1742-6588. doi:

1088/1742-6596/555/1/012094.

Shives, M. and Crawford, C. (2013), Mesh and load distribution requirements for actuator line

CFD simulations. Wind Energy, 16:1183–1196. doi: 10.1002/we.1546.

Sibuet Watters, C.; Breton, S.P., and Masson, C. (2010), Application of the actuator surface

concept to wind turbine rotor aerodynamics. Wind Energy, 13(5):433–447. doi: 10.1002/we.

Simao Ferreira, C.J. (2009), The near wake of the VAWT: 2D and 3D views of the VAWT

aerodynamics. PhD thesis, TU Delft repository.

Snel, H. and Schepers, J.G. (1995), Joint investigation of dynamic inflow effects and implementation

of an engineering method. Technical report, ECN-C-94-107.

Sorensen, J.N. (2011), Aerodynamic Aspects of Wind Energy Conversion. Annual Review of

Fluid Mechanics, 43(1):427–448. ISSN 0066-4189. doi: 10.1146/annurev-fluid-122109-160801.

Sorensen, J.N. (2015), General momentum theory for horizontal axis wind turbines.

Springer International Publishing, Heidelberg. ISBN 978-3-319-22113-7. doi: 10.1007/

-3-319-22114-4.

Sorensen, J.N. and Mikkelsen, R.F. (2001), On the validity of the blade element momentum

method. In EWEC2001, p. 362–366, Copenhagen.

Sorensen, J.N. and Myken, A. (1992), Unsteady actuator disc model for horizontal axis wind

turbines. Journal of Wind Engineering and Industrial Aerodynamics, 39:139–149.

Sorensen, J.N. and Shen, W.Z. (2002), Numerical Modeling of Wind Turbine Wakes. Journal

of Fluids Engineering, 124(2):393. ISSN 00982202. doi: 10.1115/1.1471361.

Sorensen, J.N. and van Kuik, G.A.M. (2011), General momentum theory for wind turbines at

low tip speed ratios. Wind Energy, 14:821–839. doi: 10.1002/we.423.

Sorensen, J.N.; Shen, W.Z., and Munduate, X. (1998), Analysis of wake states by a full field

actuator disc model. Wind Energy, 88:73–88. doi: 10.1002/(SICI)1099-1824(199812)1:2<73::

AID-WE12>3.0.CO;2-L.

Sorensen, J.N.; Dag, K.O., and Ramos-Garcia, N. (2015), A refined tip correction based on

decambering. Wind Energy, 19(5):787–802. doi: 10.1002/we.1865.

Sorensen, J.N.; Okulov, V.L.; Mikkelsen, R.F.; Naumov, I.V., and Litvinov, I.V. (2016), Comparison

of classical methods for blade design and the influence of tip correction on rotor

performance. Journal of Physics: Conference Series, 753(Torque):022020. ISSN 1742-6588.

doi: 10.1088/1742-6596/753/2/022020.

Sorensen, J.N.; Okulov, V.L., and Ramos-Garcia, N. (2022), Analytical and numerical solutions

to classical rotor designs. Progress in Aerospace Sciences, 130:1–12. doi: org/

/j.paerosci.2021.100793.

Spalart, P.R. (2003), On the simple actuator disk. Journal of Fluid Mechanics, 494:399–405.

ISSN 00221120. doi: 10.1017/S0022112003006128.

Stepniewski, W.Z. and Keys, S.N. (1978), Rotary wind aerodynamics. Dover Publications Inc.,

New York. ISBN 978-0486646473.

Stevens, R.J.A.M. and Meneveau, C. (2017), Flow Structure and Turbulence in Wind

Farms. Annual Review of Fluid Mechanics, 49(1):311–339. ISSN 0066-4189. doi: 10.1146/

annurev-fluid-010816-060206.

Stroevesandt, B.; Schepers, G.; Fuglsang, P., and Yuping, S., editors. (2019), Handbook of wind

energy aerodynamics. Springer, online edition. ISBN 9783030054557.

Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2020), The generation and conservation

of vorticity: Deforming interfaces and boundaries in two-dimensional flows. Journal of Fluid

Mechanics, 890(A5):1–42. ISSN 14697645. doi: 10.1017/jfm.2020.128.

Terrington, S.J.; Hourigan, K., and Thompson, M.C. (2021), The generation and diffusion of

vorticity in three-dimensional flows: Lyman’s flux. Journal of Fluid Mechanics, 915:1–42.

ISSN 14697645. doi: 10.1017/jfm.2021.179.

Thoma, D. (1925), Grundsatzliches zur einfachen Strahltheorie der Schraube. Zeitschrift fur

Flugtechnik und Motorluftschiffahrt, 16(10):206–208.

Thwaites, B. (1960), Incompressible Aerodynamics. Clarendon Press, Oxford.

Troldborg, N.; Sorensen, J.N., and Mikkelsen, R.F. (2010), Numerical simulations of wake

characteristics of a wind turbine in uniform inflow. Wind Energy, 13:86–99. doi: 10.1002/

we.345.

van Holten, T. (1981), Concentrator systems for wind energy, with emphasis on tip-vanes. Wind

Engineering, 5(1):29–45.

van Kuik, G.A.M. (1989), Experimental verification of an improved actuator disc concept. In

Proceedings of the 15th European Rotorcraft Forum, Amsterdam.

van Kuik, G.A.M. (2004), The flow induced by Prandtl’s self-similar vortex sheet spirals at

infinite distance from the spiral kernel. European Journal of Mechanics - B/Fluids, 23(4):

–616. ISSN 09977546. doi: 10.1016/j.euromechflu.2004.01.002.

van Kuik, G.A.M. (2007), The Lanchester - Betz - Joukowsky limit. Wind Energy, 10(3):

–291. ISSN 10954244. doi: 10.1002/we.218.

van Kuik, G.A.M. (2009), A steady solution for Prandtl’s self-similar vortex sheet spirals.

European Journal of Mechanics, B/Fluids, 28(2):296–298. ISSN 09977546. doi: 10.1016/j.

euromechflu.2008.05.007.

van Kuik, G.A.M. (2016), Momentum theory of Joukowsky actuator discs with swirl. Journal

of Physics: Conference Series, 753:022021. ISSN 1742-6588. doi: 10.1088/1742-6596/753/2/

van Kuik, G.A.M. (2017), Joukowsky actuator disc momentum theory. Wind Energy Science,

:307–316. ISSN 2366-7621. doi: 10.5194/wes-2016-55.

van Kuik, G.A.M. (2018), Comparison of actuator disc flows representing wind turbines and

propellers. Journal of Physics Conference Series, 1037(Torque2018):1–10. doi: 10.1088/

-6596/1037/2/022007.

van Kuik, G.A.M. (2020), On the velocity at wind turbine and propeller actuator discs. Wind

Energy Science, 5:855–865. doi: https://doi.org/10.5194/wes-5-855-2020.

van Kuik, G.A.M. (2021), The actuator disc concept. In Stroevesandt, B.; Schepers, G.;

Fuglsang, P., and Yuping, S., editors, Handbook of Wind Energy Aerodynamics, p. 1–49.

Springer, Cham. ISBN 9783030054557. doi: 10.1007/978-3-030-05455-7_2-2.

van Kuik, G.A.M. (2022), On (non-)conservative body force fields generating vorticity and

converting energy. Journal of Fluid Mechanics, 941:A46 1—17.doi: 10.1017/jfm.2022.317.

van Kuik, G.A.M. and Chattot, J.J. (2021), Personal communication.

van Kuik, G.A.M. and Lignarolo, L.E.M. (2016), Potential flow solutions for energy extracting

actuator disc flows. Wind Energy, 19:1391–1406. doi: 10.1002/we.1902.

van Kuik, G.A.M.; Micallef, D.; Herraez, I.; van Zuijlen, A.H., and Ragni, D. (2014), The role

of conservative forces in rotor aerodynamics. Journal of Fluid Mechanics, 750:284–315. ISSN

-1120. doi: 10.1017/jfm.2014.256.

van Kuik, G.A.M.; Sorensen, J.N., and Okulov, V.L. (2015a), Rotor theories by Professor

Joukowsky: Momentum theories. Progress in Aerospace Sciences, 73:1–18. ISSN 03760421.

doi: 10.1016/j.paerosci.2014.10.001.

van Kuik, G.A.M.; Yu, W.; Sarmast, S., and Ivanell, S. (2015b), Comparison of actuator disc

and Joukowsky rotor flows, to explore the need for a tip correction. Journal of Physics

Conference Series, 625:012013. doi: 10.1088/1742-6596/625/1/012013.

van Kuik, G.A.M.; Peinke, J.; Nijssen, R.; Lekou, D.; Mann, J.; Ferreira, C.S.; van Wingerden,

J.W.; Schlipf, D.; Gebraad, P.; Polinder, H.; Abrahamsen, A.; van Bussel, G.J.W.; Tavner,

P.; Bottasso, C L; Muskulus, M; Matha, D; Lindeboom, H.J.; Degraer, S.; Kramer, O.;

Lehnhoff, S.; Sonnenschein, M.; Morthorst, P.E., and Skytte, K. (2016), Long-term research

challenges in wind energy – a research agenda by the European Academy of Wind Energy.

Wind Energy Science, 1(1):1–39. ISSN 2366-7443. doi: 10.5194/wes-1-1-2016.

Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.;

Green, P.; Holttinen, H.; Laird, D.; Lehtomaki, V.; Lundquist, J.K.; Manwell, J.; Marquis,

M.; Meneveau, C.; Moriarty, P.; Munduate, X.; Muskulus, M.; Naughton, J.; Pao, L.; Paquette,

J.; Peinke, J.; Robertson, A.; Rodrigo, J,S.; Sempreviva, A.M.; Smith, J,C.; Tuohy,

A, and Wiser, R. (2019), Grand challenges in the science of wind energy. Science, 366(6464).

ISSN 10959203. doi: 10.1126/science.aau2027.

Vetchinkin, V.P. (1913), Calculation of screw propeller, part I. Buleteni Politekhnicheskogo

obshestva (in Russian), 5.

Vetchinkin, V.P. (1918), Calculation of screw propeller, part II. Trudy Avia Raschetno-

Ispytatelnogo Byuro, 4:1–129.

von Karman, Th. and Burgers, T.M. (1935), Motion of a perfect fluid produced by external

forces. In Durand, W.F., editor, Aerodynamic Theory, Vol. II Division E. Springer Verlag,

Berlin.

Wald, Q.R. (2006), The aerodynamics of propellers. Progress in Aerospace Sciences, 42(2):

–128. ISSN 03760421. doi: 10.1016/j.paerosci.2006.04.001.

Wilmshurst, S.; Metherell, A.J.F.; Wilson, D.M.A.; Milborrow, D.J., and Ross, J.N. (1984),

Wind turbine rotor performance in the high thrust region. In Sixth BWEA Conference, 1984.

Wilson, R.E. and Lissaman, P.B.S. (1974), Applied aerodynamics of wind power machines.

NASA STI/Recon Technical Report N, 75(May):22669. doi: 10.1007/978-3-642-91487-4_3.

Wimshurst, A. and Wilden, R.H.J. (2017), Analysis of a tip correction factor for horizontal axis

turbines. Wind Energy. ISSN 10954244. doi: 10.1002/we.2106.

Wimshurst, A. and Wilden, R.H.J. (2018), Computational observations of the tip loss mechanism

experienced by horizontal axis rotors. Wind Energy, Early View:1–14. ISSN 10954244.

doi: 10.1002/we.2177.

Wood, D.H. (2007), Including swirl in the actuator disk analysis of wind turbines. Wind

Engineering, 31(5):317–323.

Wood, D.H. (2015), Maximum wind turbine performance at low tip speed ratio. Journal of

Renewable and Sustainable Energy, 7:053126. doi: 10.1063/1.4934895.

Wood, D.H. (2018), Application of extended vortex theory for blade element analysis of

horizontal-axis wind turbines. Renewable Energy, 121:188–194. ISSN 09601481. doi:

1016/j.renene.2017.12.085.

Wood, D.H. and Limacher, E,. (2021), Some effects of flow expansion on the aerodynamics

of horizontal-axis wind turbines. Wind Energy Science, 6:1413–1425. doi: 10.5194/

wes-6-1413-2021.

Wood, D.H.; Okulov, V.L., and Bhattacharjee, D. (2016), Direct calculation of wind turbine

tip loss. Renewable Energy, 95:269–276. ISSN 0960-1481. doi: 10.1016/j.renene.2016.04.017.

Wu, J.Z. and Wu, J.M. (1998), Boundary vorticity dynamics since Lighthill’s 1963 article:

review and development. Theoretical and computational fluid dynamics, 10:459–474. doi:

1007/s001620050077.

Wu, J.Z.; Ma, H.Y., and Zhou, M.D. (2005), Vorticity and Vortex Dynamics. Springer Verlag,

Berlin-Heidelberg. ISBN -10 3-540-29027-3.

Wu, T.Y. (1962), Flow through a heavily loaded actuator disc. Schiffstechnik, 9(47):134–138.

Xiao, J.; Wu, J.; Chen, L., and Shi, Z. (2011), Particle image velocimetry (PIV) measurements

of tip vortex wake structure of wind turbine. Applied Mathematics and Mechanics, 32(6):

–738. ISSN 0253-4827. doi: 10.1007/s10483-011-1452-x.

Xiros, M.I. and Xiros, N.I. (2007), Remarks on wind turbine power absorption increase by

including the axial force due to the radial pressure gradient in the general momentum theory.

Wind Energy, 10(1):99–102. ISSN 10954244. doi: 10.1002/we.203.

Yoon, S.S. and Heister, S.D. (2004), Analytical formulas for the velocity field induced by an

infinitely thin vortex ring. International journal for numerical methods in fluids, 44:665–672.

doi: 10.1002/fld.666.

Yu, W.; Hong, V.W.; Ferreira, C., and van Kuik, G.A.M. (2017), Experimental analysis on

the dynamic wake of an actuator disc undergoing transient loads. Experiments in Fluids, 58

(149):1–15. ISSN 0723-4864. doi: 10.1007/s00348-017-2432-9.

Yu, W.; Tavernier, D.; Schepers, G.; Ferreira, C., and van Kuik, G.A.M. (2019), New dynamicinflow

engineering models based on linear and nonlinear actuator disc vortex models. Wind

Energy, 22:1433–1450. doi: 10.1002/we.2380.

Zhong, W.; Wang, T.G.; Zhu, W.J., and Shen, W.Z. (2019), Evaluation of Tip Loss Corrections

to AD / NS Simulations of Wind Turbine Aerodynamic Performance. Applied Sciences, 9:

doi: doi:10.3390/app9224919.

cover image of the book Fluid Dynamic Basis for Actuator Disc and Rotor Theories

Published

June 27, 2022

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: Download PDF

ISBN-13 (15)

978-1-64368-278-5

Date of first publication (11)

2018-05-01

Publication date (01)

2022-06-27